Advertisement

Climate changes and variability in the Great Artesian Basin (Australia), future projections, and implications for groundwater management

  • Guobin FuEmail author
  • Yuanchun Zou
  • Russell S. Crosbie
  • Olga Barron
Paper
  • 54 Downloads

Abstract

The Great Artesian Basin (GAB) in Australia is one of the largest aquifer systems in the world and it supports a range of agriculture, industry, fragile ecosystems, and townships. Climate variability and future projections of climate change will impact on both recharge of the GAB and demands on the resource. Understanding the climate in the GAB region is therefore critical to informing regional groundwater management. Observed decadal climatic variability and trends were assessed for significance with Kendall’s test and investigated in light of future climate scenarios with 40 global climate model (GCM) outputs. Historic climate observations show that the GAB region had become warmer and wetter over the last five to six decades. The annual rainfall increased by 0.95 mm/year2 during the period 1960–2016, although this trend magnitude was neither statistically significant nor uniform geographically across the GAB. The annual means of daily mean, maximum, and minimum temperatures increased during that period by 0.019, 0.019, and 0.020 °C/year, with statistically significant increases in 92.4, 91.4 and 85.1% of the GAB, respectively. Trends of other rainfall statistics associated with recharge indicated an increase of the 95th percentile daily rainfall amount, an increase of average rainfall intensity, and a statistically significant decrease in mean wet-spell length. In contrast with past warm and wet climate, the future climate in the GAB region is projected to be warmer and drier, which would potentially produce serious challenges for groundwater resources management for the region.

Keywords

Climate change Global climate model Groundwater recharge Trend analysis Australia 

Changements climatiques et variabilité dans le Grand Bassin Artésien (Australie), projections futures, et implications pour la gestion des eaux souterraines

Résumé

Le Grand Bassin Artésien (GBA) en Australie est l’un des plus grands systèmes aquifères du monde et il abrite un large éventail d’agriculture, d’industries, d’écosystèmes fragiles, et de municipalités. La variabilité climatique et les projections futures du changement climatique auront un impact à la fois sur la recharge du GBA et sur la demande pour la ressource. Il est donc essentiel de comprendre le climat dans la région du GBA pour éclairer la gestion régionale des eaux souterraines. La variabilité et les tendances climatiques décennales observées ont été évaluées pour déterminer leur importance avec l'essai de Kendall et analysées à la lumière des scénarios climatiques futurs considérant les 40 résultats de modèles climatiques mondiaux (MCG). Les observations climatiques historiques montrent que la région du GBA est devenue plus chaude et plus humide au cours des cinq à six dernières décennies. Les précipitations annuelles ont augmenté de 0.95 mm /an² au cours de la période de 1960 à 2016, bien que cette amplitude de tendance ne soit ni statistiquement significative ni uniforme géographiquement dans l'ensemble du GBA. Les moyennes annuelles des températures journalières moyennes, maximales et minimales ont augmenté de 0.0019, 0.019 et 0.020 °C/an au cours de cette période, avec des augmentations statistiquement significatives de 92.4, 01.4 et 85.1% du GBA, respectivement. Les tendances des autres statistiques de précipitations associées à la recharge indiquent une augmentation du 95ème percentile de la quantité de pluie journalière, une augmentation de l'intensité de la pluie moyenne, et une diminution statistiquement significative de la durée moyenne des épisodes pluvieux. Contrairement au climat chaud et humide du passé, le climat futur dans la région du GBA devrait être plus chaud et plus sec, ce qui pourrait potentiellement poser de sérieux problèmes de gestion des ressources en eaux souterraines pour la région.

Cambios y variabilidad climáticos en la Great Artesian Basin (Australia), proyecciones futuras e implicancias en la gestión de las aguas subterráneas

Resumen

La Great Artesian Basin (GAB) en Australia es uno de los sistemas acuíferos más grandes del mundo y sustenta una amplia gama de agricultura, industria, ecosistemas frágiles y urbanizaciones. La variabilidad climática y las proyecciones futuras del cambio climático afectarán tanto a la recarga del GAB como a la demanda del recurso. Por lo tanto, la comprensión del clima en la región del BRM es fundamental para la gestión regional de las aguas subterráneas. La variabilidad climática y las tendencias observadas durante décadas fueron evaluadas para determinar su importancia con la prueba de Kendall e investigadas a la luz de escenarios climáticos futuros con 40 resultados del modelo climático global (GCM). Las observaciones climáticas históricas muestran que la región del GAB se ha vuelto más cálida y húmeda en las últimas cinco o seis décadas. La precipitación anual aumentó en 0.95 mm/año2 durante el periodo 1960-2016, aunque esta magnitud de tendencia no fue estadísticamente significativa ni uniforme geográficamente en todo el GAB. Las medias anuales de las temperaturas medias diarias, máximas y mínimas aumentaron durante ese período en 0.019, 0.019 y 0.020 °C/año, con aumentos estadísticamente significativos en 92.4, 91.4 y 85.1% del GAB, respectivamente. Las tendencias de otras estadísticas de precipitaciones asociadas con la recarga indicaron un aumento de la cantidad de precipitaciones diarias del percentil 95, un aumento de la intensidad media de las precipitaciones y una disminución estadísticamente significativa de la duración media de la etapa de lluvia. En contraste con el clima cálido y húmedo del pasado, se proyecta que el clima futuro en la región del GAB sea más cálido y seco, lo que potencialmente produciría serios desafíos para la gestión de los recursos de aguas subterráneas en la región.

大自流盆地(澳大利亚)的气候变化和变异性, 未来预测及其对地下水管理的影响

摘要

澳大利亚的大自流盆地(GAB)是世界上最大的含水层系统之一, 它支撑着大片农业、工业、脆弱生态系统和乡镇。气候变异性和气候变化的未来预测将影响GAB的补给和对资源的需求。因此, 了解GAB地区的气候对于提供区域的地下水管理方案至关重要。采用Kendall显著性检验方法评估了观测到的年际气候变化和趋势, 并根据未来气候情景对40种全球气候模型(GCM)输出进行了分析。历史气候观测表明, GAB地区在过去五十到六十年中变得暖湿。尽管在整个GAB上这种趋势的幅度既没有统计学意义, 也没有出现地理上的一致性, 但在1960-2016年期间年降雨量增加了0.95 mm/year2。在此期间, 日平均、最高和最低温度的年平均值分别增加了0.019、0.019和0.020 °C/year, 在GAB具有统计意义的显著性分别增加92.4, 91.4和85.1%。与补给有关的其他降雨统计数据的趋势表明, 日降水量增加了95%, 平均降雨强度增加了, 统计意义上平均湿期长度显著减少了。与过去的暖湿气候相比, GAB地区的未来气候预计会变得更暖和更干燥, 这可能对该地区的地下水资源管理带来严峻挑战。

Mudanças climáticas e variabilidade na Grande Bacia Artesiana (Austrália), projeções futuras e implicações para o gerenciamento das águas subterrâneas

Resumo

A Grande Bacia Artesiana (GBA) na Austrália é um dos maiores sistemas aquíferos do mundo e suporta uma variedade de agricultura, indústria, ecossistemas frágeis e municípios. A variabilidade climática e as projeções futuras das mudanças climáticas terão impactos tanto na recarga da GBA quanto nas demandas sobre o recurso. Portanto, entender o clima na região da GBA é fundamental para informar o gerenciamento regional das águas subterrâneas. A variabilidade climática e as tendências decadais observadas foram avaliadas quanto à significância com o teste de Kendall e investigadas à luz de cenários climáticos futuros com 40 saídas do modelo climático global (MCG). Observações climáticas históricas mostram que a região da GBA havia se tornado mais quente e úmida nas últimas cinco a seis décadas. A precipitação anual aumentou 0.95 mm/ano2 durante o período de 1960 a 2016, embora essa magnitude da tendência não tenha sido estatisticamente significativa nem uniforme geograficamente em todo a GBA. As médias anuais de temperatura média diária, máxima e mínima aumentaram durante esse período em 0.019, 0.019 e 0.020 °C/ano, com aumentos estatisticamente significativos em 92.4, 91.4 e 85.1% da GBA, respectivamente. As tendências de outras estatísticas de precipitação associadas à recarga indicaram um aumento da quantidade diária de precipitação do 95º percentil, um aumento da intensidade média da precipitação e uma diminuição estatisticamente significativa no comprimento médio do período de chuvas. Em contraste com o clima quente e úmido do passado, o clima futuro na região da GBA é projetado para ser mais quente e seco, o que potencialmente produziria sérios desafios para o gerenciamento de recursos de águas subterrâneas na região.

Notes

Acknowledgements

We would like to thank Dr. Carlos Miraldo Ordens (guest editor), Dr. Neil McIntyre (guest editor), Dr. Tim Ransley (guest editor), Dr. Aryal Santosh (CSIRO internal reviewer), Dr. Michelle Ho (CSIRO internal reviewer), Dr. Brian Smerdon (reviewer) and one anonymous reviewer for their invaluable comments and constructive suggestions which are used to improve the quality of the manuscript.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrig. Drainage Pap. 56, Food and Agriculture Organization, RomeGoogle Scholar
  2. Barron O, Crosbie R, Dawes W, Charles S, Pickett T, Donn M (2012) Climatic controls on diffuse groundwater recharge across Australia. Hydrol Earth Syst Sci 16(12):4557–4570.  https://doi.org/10.5194/hess-16-4557-2012 CrossRefGoogle Scholar
  3. Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986) Chlorine 36 dating of very old groundwater: the Great Artesian Basin, Australia. Water Resour Res 22(13):1991–2001CrossRefGoogle Scholar
  4. BoM (2019) Southern Oscillation Index (SOI) since 1876. Australian Government, Bureau of Meteorology. http://www.bom.gov.au/climate/current/soi2.shtml. Accessed 24 September 2019
  5. Chiew FHS, Teng J, Kirono D, Frost AJ, Bathols JM, Vaze J, Viney NR, Young WJ, Hennessy KJ, Cai WJ (2008) Climate data for hydrologic scenario modelling across the Murray-Darling Basin. CSIRO.  https://doi.org/10.4225/08/585972af6b88b
  6. Collerson KD, Ullman WJ, Torgersen T (1988) Ground waters with unradiogenic 87Sr/86Sr ratios in the Great Artesian Basin, Australia. Geology 16(1):59–63CrossRefGoogle Scholar
  7. Costelloe JF, Matic V, Western AW (2015) Determining vertical leakage from the Great Artesian Basin, Australia, through up-scaling field estimates of phreatic evapotranspiration. J Hydrol 529:1079–1094CrossRefGoogle Scholar
  8. Crosbie RS, Dawes WR, Charles SP et al (2011) Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys Res Lett 38:L11406CrossRefGoogle Scholar
  9. Crosbie RS, Pickett T, Mpelasoka FS, Hodgson G, Charles SP, Barron OV (2013) An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Clim Chang 117(1–2):41–53CrossRefGoogle Scholar
  10. CSIRO and Bureau of Meteorology (2015) Climate Change in Australia Information for Australia’s Natural Resource Management Regions. Technical report, CSIRO and Bureau of Meteorology, Melbourne, AustraliaGoogle Scholar
  11. Fu GB, Chen SL, Liu CM, Shepard D (2004a) Hydro-climatic trends of the Yellow River Basin for the last 50 years. Clim Chang 65:149–178CrossRefGoogle Scholar
  12. Fu GB, Liu C, Chen S, Hong J (2004b) Investigating the conversion coefficients for free water surface evaporation of different evaporation pans. Hydrol Process 18:2247–2262CrossRefGoogle Scholar
  13. Fu G, Barber ME, Chen S (2007) The impacts of climate change on regional hydrological regimes in the Spokane River watershed. J Hydrol Eng 12:452–461CrossRefGoogle Scholar
  14. Fu GB, Charles SP, Yu JJ, Liu CM (2009a) Decadal climatic variability, trends and future scenarios for the North China Plain. J Clim 22:2111–2123.  https://doi.org/10.1175/2008JCLI2605.1 CrossRefGoogle Scholar
  15. Fu GB, Charles SP, Yu JJ (2009b) A critical overview of pan evaporation trends over the last 50 years. Clim Chang 97:193–214.  https://doi.org/10.1007/s10584-009-9579-1 CrossRefGoogle Scholar
  16. Fu GB, Charles SP, Kirshner S (2013a) Daily rainfall projections from general circulation models with a downscaling nonhomogeneous hidden Markov model (NHMM) for south-eastern Australia. Hydrol Process 27(25):3663–3673.  https://doi.org/10.1002/hyp.9483 CrossRefGoogle Scholar
  17. Fu GB, Liu ZF, Charles SP, Xu ZX, Yao ZJ (2013b) A score-based method for assessing the performance of GCMs: a case study of southeastern Australia. J Geophys Res Atmos 118:4154–4167.  https://doi.org/10.1002/jgrd.50269 CrossRefGoogle Scholar
  18. Fu GB, Crosbie RS, Barron O, Charles SP, Dawes W, Shi XG, Van Niel T, Li C (2019) Attributing variations of temporal and spatial groundwater recharge: a statistical analysis of climatic and non-climatic factors. J Hydrol 568:816–834.  https://doi.org/10.1016/j.jhydrol.2018.11.022 CrossRefGoogle Scholar
  19. Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27:1295–1298CrossRefGoogle Scholar
  20. Habermehl MA, Devonshire J, Magee J (2009) Sustainable groundwater allocations in the intake beds of the Great Artesian Basin in New South Wales [Recharge to the New South Wales part of the Great Artesian Basin]. Final report for the National Water Commission, Bureau of Rural Sciences, CanberraGoogle Scholar
  21. Habermehl MA (2019) Review: The evolving understanding of the Great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrogeol J.  https://doi.org/10.1007/s10040-019-02036-6
  22. IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 ppGoogle Scholar
  23. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18:107–121CrossRefGoogle Scholar
  24. Keir G, Bulovic N, McIntyre N (2019) Stochastic modelling of groundwater extractions over a data-sparse region of Australia. Groundwater 57:97–109.  https://doi.org/10.1111/gwat.12658 CrossRefGoogle Scholar
  25. Kellett JR, Radke BM (2012) Introduction, chapter 1. In: Ransley TR and Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO Water for a Healthy Country Flagship, Canberra, AustraliaGoogle Scholar
  26. Kellett JR, Ransley TR, Coram J, Jaycock J, Barclay DF, McMahon GA, Foster LM, Hillier JR (2003) Groundwater Recharge in the Great Artesian Basin Intake Beds, Queensland. Final Report for the NHT Project no. 982713 Sustainable Groundwater Use in the GAB Intake Beds, Queensland. BRS, Natural Resources and Mines, Queensland Government, Brisbane, AustraliaGoogle Scholar
  27. Kendall MG (1975) Rank correlation methods. Charles Griffin, LondonGoogle Scholar
  28. Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16:309–330CrossRefGoogle Scholar
  29. Li L, Donohue R, McVicar T, Van Niel T, Teng J, Potter N, Smith I, Kirono D, Bathols J, Cai W, Marvanek S, Gallant S, Chiew F, Frost A (2009) Climate data and their characterisation for hydrological scenario modelling across northern Australia. CISRO EP113200, CISRO.  https://doi.org/10.4225/08/584af30470d0a
  30. Love AJ, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia. Water Resour Res 36(6):1561–1574CrossRefGoogle Scholar
  31. Maraun D et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003.  https://doi.org/10.1029/2009RG000314 CrossRefGoogle Scholar
  32. Masetti M, Pedretti D, Sorichetta A, Stevenazzi S, Bacci F (2016) Impact of a storm water infiltration basin on the recharge dynamics in a highly permeable aquifer. Water Resour Manag 30(1):149–165.  https://doi.org/10.1007/s11269-015-1151-3 CrossRefGoogle Scholar
  33. McCallum JL, Crosbie RS, Walker GR, Dawes WR (2010) Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol J 18:1625–1638.  https://doi.org/10.1007/s10040-010-0624-y CrossRefGoogle Scholar
  34. McMahon TA, Murphy RE, Peel MC, Costelloe JF, Chiew FHS (2008) Understanding the surface hydrology of the Lake Eyre Basin: part 1, rainfall. J Arid Environ 72(10):1853–1868CrossRefGoogle Scholar
  35. Ransley T, Radke B, Feitz A, Kellett J, Owens R, Bell J, Stewart G (2014) Hydrogeological atlas of the Great Artesian Basin. Catalogue no. 79790, Geoscience Australia, Canberra. www.ga.gov.au. Accessed 24 September 2019
  36. Rousseau-Gueutin P, Love AJ, Vasseur G, Robinson NI, Simmons CT, Marsily G (2013) Time to reach near-steady state in large aquifers. Water Resour Res 49:6893–6908CrossRefGoogle Scholar
  37. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  38. Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin. Hydrogeol J 23:949–960CrossRefGoogle Scholar
  39. Smerdon BD, Ransley TR, Radke BM, Kellett JR (2012) Water resource assessment for the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Canberra, AustraliaGoogle Scholar
  40. Taylor RG et al (2013) Ground water and climate change. Nat Clim Chang 3(4):322–329.  https://doi.org/10.1038/nclimate1744 CrossRefGoogle Scholar
  41. Vasseur G, Rousseau-Gueutin P, de Marsily G (2015) Time constant of hydraulic-head response in aquifers subjected to sudden recharge change: application to large basins. Hydrogeol J 23:915–934CrossRefGoogle Scholar
  42. Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15(5):891–901CrossRefGoogle Scholar
  43. Yan JB, Jia SF, Lv A, Mahmood R, Zhu WB (2017) Analysis of the spatio-temporal variability of terrestrial water storage in the Great Artesian Basin, Australia. Water Sci Technol Water Suppl 17:324–341.  https://doi.org/10.2166/ws.2016.136 CrossRefGoogle Scholar
  44. Zhao PP, Lü H, Yang H, Wang W, Fu G (2019) Impacts of climate change on hydrological droughts at basin scale: a case study of the Weihe River Basin, China. Quatern Int 513:37–46.  https://doi.org/10.1016/j.quaint.2019.02.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CSIRO Land and WaterWembleyAustralia
  2. 2.Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
  3. 3.CSIRO Land and WaterGlen OsmondAustralia

Personalised recommendations