Advertisement

Hydrogeological site investigation and economic evaluation to assess the potential of managed aquifer recharge in the Lower Jordan Valley

  • Julian XankeEmail author
  • Amer Salman
  • Emad Al-Karablieh
  • Tanja Liesch
  • Elias Salameh
  • Nico Goldscheider
Report
  • 35 Downloads

Abstract

Improving water availability and distribution is key to combatting water stress in semi-arid regions. This study presents an approach that integrates hydrogeological surveys and economic analysis at a pilot site in the eastern Lower Jordan Valley to assess the potential for managed aquifer recharge (MAR). Based on exploratory drillings, hydraulic tests, water-quality analyses and previous studies, an appropriate storage space in the alluvial fans along the eastern margin of the valley was found. Average measured infiltration rates of 9.8 × 10−5 m/s in a gravel pit and average hydraulic conductivity values of 6.8 × 10−5 m/s in the aquifer indicate that up to 1 Mm3/year can be infiltrated and stored underground. It is assumed that water is trapped towards the center of the valley where the alluvial sediments inter-finger with fine-grained layers. An increase in electrical conductivity values in the same direction probably indicates irrigation return flow and the presence of evaporitic layers and suggests a water recovery before reaching these saline zones. Depending on whether the water provided by MAR is used for irrigation or domestic water purpose, an average incremental profit of 0.81 and 2.44 US$/m3 can be achieved, respectively. These calculations result in a net present value of the MAR plant of 10.6 or 31.9 million US$, respectively, over a lifetime of 30 years. The presented study serves as a basis for further investigations and planning of a MAR plant, and can be transferred and upscaled to other sites in the Jordan Valley.

Keywords

Managed aquifer recharge (MAR) Unconsolidated aquifer Hydrogeology Socio-economic aspects Jordan 

Investigation hydrogéologique sur site et évaluation économique pour évaluer les potentialités de recharge d’aquifère dans la partie inférieure de la vallée du Jourdain

Résumé

L’amélioration de la disponibilité en ressources en eau et de leur distribution est un élément clef pour combattre le stress hydrique dans les régions semi-arides. Cette étude présente une approche qui intègre des investigations hydrogéologiques et des analyses économiques au niveau d’un site pilote dans la partie orientale de la vallée inférieure du Jourdain pour évaluer les potentialités pour une Recharge d’Aquifère. Sur la base de forages d’exploration, de tests hydrauliques, d’analyses de la qualité de l’eau et d’études antérieures, un secteur approprié pour le stockage dans les deltas alluviaux le long de la marge orientale de la vallée a été identifié. Des taux d’infiltration mesurés moyens de 9.8 × 10−5 m/s dans un puits dans les graviers et des valeurs moyennes de conductivité hydraulique de 6.8 × 10−5 m/s dans l’aquifère indiquent qu’un volume d’eau atteignant 1Mm3/an peut être infiltré et stocké dans le sous-sol. Il est supposé que l’eau est piégée au niveau du centre de la vallée, là où les sédiments alluviaux sont entremêlés avec des couches à granulométrie fine. Une augmentation des valeurs de la conductivité électrique dans la même direction indique probablement un reflux issu de l’irrigation et la présence de couches évaporitiques; cela suggère une récupération de l’eau avant d’atteindre ces zones salines. Selon si l’eau fournie par la recharge de l’aquifère est utilisée pour l’irrigation ou pour des usages domestiques, un bénéfice différentiel moyen de 0.81 $US/m3 et de 2.44 $US/m3 peut être réalisé, respectivement. Ces calculs se traduisent par une valeur nette actualisée d’un site de Recharge d’Aquifère de 10.6 ou 31.9 millions US$, respectivement, pour une durée de vie de 30 ans. L’étude présentée constitue une base pour d’autres investigations et planification de site de Recharge d’Aquifère, et peut être transférée et adaptée à d’autres sites de la vallée du Jourdain.

Investigación de un sitio hidrogeológico y evaluación económica para evaluar el potencial de la recarga de acuíferos gestionados en el Valle inferior del Jordán

Resumen

La mejora de la disponibilidad y la distribución del agua es clave para combatir la escasez de agua en las regiones semiáridas. Este estudio presenta un enfoque que integra estudios hidrogeológicos y análisis económicos en un sitio piloto en el este del Valle Inferior del Jordán para evaluar el potencial de recarga de acuíferos manejados (MAR). Con base en perforaciones exploratorias, ensayos hidráulicos, análisis de calidad de agua y estudios previos, se encontró un espacio de almacenamiento adecuado en los abanicos aluviales a lo largo de la margen oriental del valle. Las tasas medias de infiltración medidas de 9.8 × 10−5 m/s en una grava y los valores medios de conductividad hidráulica de 6.8 × 10−5 m/s en el acuífero indican que se puede infiltrar y almacenar en el subsuelo hasta 1 Mm3/a. Se supone que el agua está atrapada hacia el centro del valle donde los sedimentos aluviales se entrecruzan con capas de grano fino. Un aumento de los valores de conductividad eléctrica en la misma dirección indica probablemente un retorno del caudal de riego y la presencia de capas evaporíticas y sugiere una recuperación del agua antes de llegar a estas zonas salinas. Dependiendo de si el agua suministrada por MAR se utiliza para riego o para uso doméstico, se puede lograr una ganancia incremental promedio de 0.81 US$/m3 y 2.44 US$/m3, respectivamente. Estos cálculos dan como resultado un valor presente neto de la planta MAR de 10.6 ó 31.9 millones de dólares estadounidenses, respectivamente, a lo largo de una vida útil de 30 años. El estudio presentado sirve como base para investigaciones posteriores y la planificación de una planta MAR, y puede ser transferido y ampliado a otros sitios en el Valle del Jordán.

水文地质场地调查和经济评估,以评估约旦峡谷下游含水层补给管理的潜力

摘要

改善水的有效性和分配是解决半干旱地区水压力的关键。本研究提出了约旦峡谷下游东部试验区的水文地质调查和经济分析相结合的方法,以评估含水层补给管理(MAR)的潜力。根据勘探,水力试验,水质分析和先前研究,在峡谷东缘的冲积扇找到了合适的储藏空间。砾石坑中测得的平均入渗率为9.8 × 10−5 m/s,含水层中的平均渗透系数为6.8 × 10−5 m/s,这表明可以渗透至地下并存储的水量高达1 Mm3/a。假定水被捕获到峡谷中心,在那里冲积沉积物与细颗粒层互层。电导率值在相同方向上增加可能表明灌溉回归和蒸发层的存在,而且表示在到达盐水区之前水位开始恢复。MAR提供的水是用于灌溉还是生活用水,分别可实现的平均增量值分别为0.81 US$/m3和2.44 US$/m3。这些计算得出,在30年的使用周期内,MAR工厂的净现值分别为1060或3190万US$。本研究是MAR厂进行进一步调查和规划的基础,并且可以转移并扩大到约旦峡谷的其他地方。

Investigação hidrogeológica in loco e avaliação econômica para aferir o potencial de recarga artificial em aquífero no Vale do Jordão inferior

Resumo

Melhorar a avaliação e distribuição da água é a chave para combater o estresse hídrico em regiões semiáridas. Esse estudo apresenta uma abordagem que integra pesquisas hidrogeológicas e análises econômicas em uma área piloto no leste do Vale do Jordão Inferior para avaliar o potencial do gerenciamento de recarga de aquíferos (GRA). Baseado em perfurações exploratórias, testes hidráulicos, análises da qualidade da água e estudo anteriores, um local de armazenamento apropriado em leques aluviais pela margem ao leste do vale foi encontrado. Taxas médias de infiltrações medidas de 9.8 × 10−5 m/s em cascalho e valores médios de condutividade hidráulica de 6.8 × 10−5 m/s no aquífero indicam que até 1 Mm3/a pode ser infiltrado e armazenado subterraneamente. Assume-se que a água é confinada em direção ao centro do vale onde os sedimentos aluviais entremeia uma camada de granulometria fina. Um aumento nos valores de condutividade elétrica na mesma direção provavelmente indica um fluxo de retorno da irrigação e a presença de camadas evaporíticas e sugerem uma recuperação de água antes de atingir zonas salinas. Dependendo de que se a água fornecida pela GRA for utilizada para propósitos de irrigação ou uso doméstico, um ganho incremental médio de 0.81 US$/m3 e 2.44 US$/m3 podem ser atingidos, respectivamente. Esses cálculos resultam em um valor liquido de instalação de GRA de 10.6 ou 31.9 milhões de US$, respectivamente, em um período de 30 anos. O estudo apresentado serve como base para investigações futuras em planejamento de instalações de GRA, e pode ser transferida e aumentada para outros locais do Vale do Jordão.

Notes

Acknowledgements

The authors thank the Ministry of Water (MWI), the Jordan Valley Authority (JVA) and the Water Authority of Jordan (WAJ) for their support during fieldwork and provision of data. Special thanks go to Dr. Malcolm Field for language editing.

Fudnign information

The German Federal Ministry of Education and Research (BMBF) is acknowledged for funding the SMART Projects (Sustainable Management of Available Water Resources with Innovative Technologies) (FKZ 02WM1079-1086, FKZ02WM1211-1212 and 02WM1355C).

References

  1. Agudelo JI (2001) The economic valuation of water: principles and methods. Value of Water Research report series, vol 5. IHE, Delft, The NetherlandsGoogle Scholar
  2. Al-Amoush H, Salameh E, Al-Raggad M (2012) Hydro-Geoelectrical investigation for the potential of underground water storage along the lower reaches of King Abdullah Canal-Deir Alla area/Jordan. J Water Resour Protect 4(07):545CrossRefGoogle Scholar
  3. Alfaro PM (2017) Water resources assessment under semi-arid conditions: modelling applications in a complex surface-groundwater system in Jordan. PhD Thesis, Karlsruher Institut für Technologie, Karlsruhe, GermanyGoogle Scholar
  4. Al-Karablieh EK, Salman AZ, Al-Omari AS, Wolff HP, Al-Assa’d TA, Hunaiti DA, Subah AM (2012) Estimation of the economic value of irrigation water in Jordan. J Agric Sci Technol B 2(5B):487Google Scholar
  5. Alkhoury W, Ziegmann M, Frimmel FH, Abbt-Braun G, Salameh E (2010) Water quality of the King Abdullah Canal/Jordan: impact on eutrophication and water disinfection. Toxicol Environ Chem 92(5):855–877CrossRefGoogle Scholar
  6. Al-Omari AS, Al-Karablieh EK, Al-Houri ZM, Salman AZ, Al-Weshah RA (2015) Irrigation water management in the Jordan Valley under water scarcity. Fresenius Environ Bull 24:1176–1188Google Scholar
  7. Al-Taani AA (2013) Seasonal variations in water quality of Al-Wehda Dam north of Jordan and water suitability for irrigation in summer. Arabian Journal of Geosciences, 6(4):1131–1140CrossRefGoogle Scholar
  8. Al-Qadi M, Margane A, Hamdan I (2017) Well field management Wadi Al Arab, part 4: well field management plan. BGR, Hannover, Germany and Ministry of Water, AmmanGoogle Scholar
  9. Al-Weshah RA (2000) Optimal use of irrigation water in the Jordan Valley: a case study. Water Resour Manag 14(5):327–338CrossRefGoogle Scholar
  10. Anderson TL, Landry CJ (2001) Exporting water to the world. J Contemp Water Res Educ 118(1):8Google Scholar
  11. Aulong S, Bouzit M, Dorfliger Na, Comair F, Al-Karablieh E, Salman A (2008) Integrating water balance and cost-effectiveness analysis for water management: an application in Jordan and Lebanon. 13th IWRA World Water Congress. Montpellier, France, 1–4 September 2008Google Scholar
  12. ASCE (2001) Standard guidelines for artificial recharge of ground water, standards ASCE/EWRI 34–01. American Society of Civil Engineers, Reston, VACrossRefGoogle Scholar
  13. Barham N, Mensching HG (1987) Agrargeographische Folgen der Urbanisierung von Amman/Jordanien [Agricultural-geographical consequences of the urbanization of Amman/Jordan]. Erdkunde, Bonn, Germany, pp 241–246Google Scholar
  14. Bauder TA, Waskom RM, Sutherland PL, Davis JG, Follett RH, Soltanpour PN (2011) Irrigation water quality criteria. Fact sheet no. 0.506, Colorado State University, Extension, Fort Collins, COGoogle Scholar
  15. Bayer HJ, Hötzl H, Jado AR, Röscher B, Voggenreiter W (1988) Sedimentary and structural evolution of the northwest Arabian Red Sea margin. Tectonophysics 153(1):137–151CrossRefGoogle Scholar
  16. Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve [To determine the water permeability of gravels and sands from the grain distribution curve]. WWT- Wasserwirtschaft Wassertechnik 14:165–168Google Scholar
  17. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142CrossRefGoogle Scholar
  18. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  19. Closson D, Karaki NA (2009) Human-induced geological hazards along the Dead Sea coast. Environ Geol 58(2):371–380CrossRefGoogle Scholar
  20. Department of Statistics (2018) Online data query. http://dosweb.dos.gov.jo/. Accessed 7 January 2019
  21. Dillon P, Stuyfzand P, Grischek T, Lluria M, Pyne RDG, Jain RC, Bear J, Schwarz J, Wang W, Fernandez E, Stefan C, Pettenati M, van der Gun J, Sprenger C, Massmann G, Scanlon BR, Xanke J, Jokela P, Zheng Y, Rossetto R, Shamrukh M, Pavelic P, Murray E, Ross A, Bonilla Valverde JP, Palma Nava A, Ansems N, Posavec K, Ha K, Martin R, Sapiano M (2018) Sixty years of global progress in managed aquifer recharge. Hydrogeol J 27(1):1–30CrossRefGoogle Scholar
  22. Dillon PJ, Pavelic P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction. Waterlines report series no. 13. National Water Commission, Canberra, Australia, 65 ppGoogle Scholar
  23. Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316CrossRefGoogle Scholar
  24. Gerasidi A, Katsiardi P, Papaefstathiou N, Manoli E, Assimacopoulos D (2003) Cost-effectiveness analysis for water management in the island of Paros, Greece. In: 8th International Conference on Environmental Science and Technology, Lemnos Island, Greece, September 2003, pp 8–10Google Scholar
  25. Goonetilleke A, Vithanage M (2017) Water resources management: innovation and challenges in a changing world. Water 9(4).  https://doi.org/10.3390/w9040281 CrossRefGoogle Scholar
  26. Hadadin N (2015) Dams in Jordan current and future perspective. Can J Pure Appl Sci 9(1):3279–3290Google Scholar
  27. Horton RE (1939) Analysis of runoff-plat experiments with varying infiltration-capacity. EOS Trans Am Geophys Union 20(4):693–711CrossRefGoogle Scholar
  28. Hrayshat ES (2009) Viability of solar photovoltaics as an electricity generation source for Jordan. Int J Sustain Eng 2(1):67–77CrossRefGoogle Scholar
  29. Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Bull. no. 36, Waterways Exper. Station, Army Corps of Engineers, US Army, Vicksburg, MI, pp 1–50Google Scholar
  30. International Resources Group (IRG) and Al-Karablieh E (2012) Water valuation study: disaggregated economic value of water in industry and irrigated agriculture in Jordan. Final report, United States Agency for International Development, Washington, DCGoogle Scholar
  31. JISM (2001) Technical regulations no. 286/2001 date 16/09/2001 for tap drinking water, and no. 1214/2001 date 16/09/2001 for water-bottled drinking water. Jordanian Institution for Standards and Metrology, AmmanGoogle Scholar
  32. Khatib T, Qalalweh S, Ameerah R, Warad I (2019) An efficient method for water treatment of artificial ponds in Jordan Valley based on photovoltaic pumping system. Agriculture 9(7):151CrossRefGoogle Scholar
  33. Koundouri P, Karousakis K (2006) Water management in arid and semi-arid regions: interdisciplinary perspectives. Edward Elgar, Cheltenham, UKCrossRefGoogle Scholar
  34. Lienhoop N, Al-Karablieh EK, Salman AZ, Cardona JA (2014) Environmental cost–benefit analysis of decentralised wastewater treatment and re-use: a case study of rural Jordan. Water Policy 16(2):323–339CrossRefGoogle Scholar
  35. Martin R (2013) Clogging issues associated with managed aquifer recharge methods. IAH Commission on Managing Aquifer Recharge, Canberra, AustraliaGoogle Scholar
  36. Ministry of Water and Irrigation (2008) Water for life: Jordan’s water strategy, 2008–2022. Ministry of Water and Irrigation, AmmanGoogle Scholar
  37. Ministry of Water and Irrigation (2016) National water strategy of Jordan, 2016–2025. Ministry of Water and Irrigation, AmmanGoogle Scholar
  38. Murakami M (1995) Managing water for peace in the Middle East: alternative strategies. United Nations University Press, TokyoGoogle Scholar
  39. Naeser RB, Bennett LL (1998) The cost of noncompliance: the economic value of water in the middle Arkansas River valley. Nat Resour J 38:445–463Google Scholar
  40. Pedretti D, Fernàndez-Garcia D, Sanchez-Vila X, Barahona-Palomo M, Bolster D (2011) Combining physical-based models and satellite images for the spatio-temporal assessment of soil infiltration capacity. Stoch Env Res Risk A 25(8):1065–1075CrossRefGoogle Scholar
  41. Riepl D (2013) Knowledge-based decision support for integrated water resources management with an application for Wadi Shueib. KIT Scientific, Amman, JordanGoogle Scholar
  42. Rogers P, Bhatia R, Huber A (1998) Water as a social and economic good: how to put the principle into practice. Global Water Partnership/Swedish International Development Cooperation Agency, Technical Advisory Committee, Stockholm, SwedenGoogle Scholar
  43. Ross A, Hasnain S (2018) Factors affecting the cost of managed aquifer recharge (MAR) schemes. Sustain Water Resour Manag 2(2018):1–12Google Scholar
  44. Salameh E (2001) Sources of water salinities in the Jordan Valley area/Jordan. Acta Hydrochim Hydrobiol 29(6/7):329–362CrossRefGoogle Scholar
  45. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370CrossRefGoogle Scholar
  46. Scheytt T, Hengelhaupt F (2001) Auffüllversuche in der wassergesättigten und ungesättigten Zone–ein Vergleich unterschiedlicher Verfahren [Replenishment tests in the water-saturated and unsaturated zone: a comparison of different methods]. Grundwasser 6(2):71–80CrossRefGoogle Scholar
  47. Schiffler M (2014) The economics of groundwater management in arid countries: theory, international experience and a case study of Jordan. Routledge, Abingdon, UKCrossRefGoogle Scholar
  48. Shilo E, Ziv B, Shamir E, Rimmer A (2015) Evaporation from Lake Kinneret, Israel, during hot summer days. J Hydrol 528:264–275CrossRefGoogle Scholar
  49. Steinel A (2012) Guideline for assessment and implementation of managed aquifer recharge (MAR) in (semi-) arid regions: pre-feasibility study for infiltration of floodwater in the Amman-Zarqa and Azraq basins, Jordan. BGR, Hanover, GermanyGoogle Scholar
  50. Storz K, Steger H, Wagner V, Bayer P, Blum P (2017) Methodenvergleich zur Bestimmung der hydraulischen Durchlässigkeit [Comparison of methods for the determination of hydraulic conductivity]. Grundwasser 22(2):103–111CrossRefGoogle Scholar
  51. Strasser D, Lensing HJ, Nuber T, Richter D, Frank S, Goeppert N, Goldscheider N (2015) Improved geohydraulic characterization of river bed sediments based on freeze-core sampling: development and evaluation of a new measurement approach. J Hydrol 527:133–141CrossRefGoogle Scholar
  52. Tabieh M, Al-Karablieh E, Salman A, Al-Qudah H, Al-Rimawi A, Qtaishat T (2015) Farmers’ ability to pay for irrigation water in the Jordan Valley. J Water Resour Protect 7(15):1157–1172CrossRefGoogle Scholar
  53. United Nations (2018) DESA population division. Online data query. https://population.un.org/wpp/DataQuery/. Accessed 27.12.2018
  54. Water Authority Jordan (WAJ) (2019) Water and wastewater tariff for quarterly bills for governorates which are managed by companies 2016. Online Data Query. http://www.waj.gov.jo/sites/en-us/default.aspx. Accessed 27 July 2019
  55. Wheater H, Sorooshian S, Sharma KD (2007) Hydrological modelling in arid and semi-arid areas. Cambridge University PressGoogle Scholar
  56. Wolff HP, Al-Karablieh E, Al-Assa’d T, Subah A, Salman AZ (2012) Jordan water demand management study: on behalf of the Jordanian Ministry of Water and Irrigation in cooperation with the French Development Agency (AFD). Water Sci Technol Water Suppl 12(1):38–44CrossRefGoogle Scholar
  57. World Commission on Dams (2000) Dams and development: a new framework for decision-making: the report of the World Commission on Dams. Earthscan, Abingdon, UKGoogle Scholar
  58. Young R (2005) Determining the economic value of water: concepts and methods. Resources for the Future, Washington, DCGoogle Scholar
  59. Young R, Loomis JB (2014) Determining the economic value of water: concepts and methods, 2nd edn. RFF Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Julian Xanke
    • 1
    Email author
  • Amer Salman
    • 2
  • Emad Al-Karablieh
    • 2
  • Tanja Liesch
    • 1
  • Elias Salameh
    • 3
  • Nico Goldscheider
    • 1
  1. 1.Institute of Applied Geosciences, Division of HydrogeologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Department of Agricultural Economics and Agribusiness Management, School of AgricultureThe University of JordanAmmanJordan
  3. 3.Center for Strategic StudiesUniversity of JordanAmmanJordan

Personalised recommendations