Advertisement

Evidence for intra-plate seismicity from spring-carbonate mound springs in the Kati Thanda–Lake Eyre region, South Australia: implications for groundwater discharge from the Great Artesian Basin

  • Mark N. KeppelEmail author
  • Karl Karlstrom
  • Laura Crossey
  • Andrew J. Love
  • Stacey Priestley
Paper
  • 50 Downloads

Abstract

The relationship between fault structures and Great Artesian Basin (GAB) spring occurrence has rarely been discussed in relation to intra-plate seismicity. This is despite the occurrence of mound springs in the southwest portion of the GAB in South Australia being previously linked with the occurrence of faulting and the many studies concerning the role that tectonics plays in the formation and ongoing maintenance of spring activity. This study examines the correlation between seismicity and spring occurrences within the southwestern GAB, as well as field evidence for the relationship between ongoing spring activity and intra-plate seismicity. It was found that spring formation within the southwestern GAB is correlated with an interpreted northwest–southeast, left-lateral transpressional shear zone that is related to the Adelaide Fold Belt underlying the GAB. The influence of seismicity at these sites is implied through the propagation of deformation structures and lineaments concordant with interpreted underlying regional structures. In zones of reactivation, these structures and lineaments develop networks that readily form conduits for the migration of groundwater. Consequently, the spring-carbonate-depositing springs of the southwestern GAB have potential as a record for intra-plate tectonic activity associated with the northern portion of the underlying Adelaide Fold Belt. The work presented here re-enforces the importance of considering the effect that faulting has on groundwater flow paths and interconnectivity with either overlying or underlying aquifers within the southwestern GAB.

Keywords

Australia Lineaments Faulting Carbonate rocks Groundwater flow 

Preuve de la séismicité intra-plaque à partir des sources à monticules carbonatés dans la région de Kati Thanda-Lake Eyre, Sud de l’Australie: conséquences pour la décharge des eaux souterraines du Grand Basin Artésien

Résumé

La relation entre les structures de failles et la présence de sources dans la Grand Bassin Artésien (GBA) a peu été discutée sous l’angle de leur lien avec la séismicité intra-plaque. Et ce, malgré l’apparition de sources à monticules dans la partie sud-ouest du GBA en Australie du Sud, qui était auparavant liée à l’occurrence de failles et aux nombreuses études concernant le rôle que joue la tectonique dans la formation et le maintien continu de l’activité des sources. Cette étude examine la corrélation entre la séismicité et les occurrences de sources dans la région sud-ouest du GBA, ainsi que des évidences de terrains relatives à la relation entre l’activité des sources et la séismicité intra-plaque. Il en ressort que la formation des sources dans cette région est corrélée avec une zone de cisaillement en transpression latérale gauche de direction NW–SE qui est associée à la ceinture de plissement d’Adélaïde sous-jacente au GBA. L’influence de la séismicité sur les sites est implicite dans la propagation des structures de déformation et des linéaments en concordance avec les structures régionales sous-jacentes interprétées. Dans les zones de réactivation, ces structures et linéaments développent des réseaux qui forme de manière lisible des conduits utilisés pour la migration des eaux souterraines. Par conséquence, les sources à monticules de dépôts carbonatés du Sud-Ouest du GBA traduisent une activité tectonique intra-plaque associée à la partie nord de la ceinture de plissement d’Adélaïde sous-jacente. Les travaux présentés ici renforcent l’importance de tenir compte de l’effet des failles sur les écoulements des eaux souterraines et l’inter-connectivité avec les aquifères sus-jacents ou sous-jacents dans le GBA du Sud-Ouest.

Evidencia de sismicidad intraplaca de los manantiales carbonáticos en la región de Kati Thanda-Lake Eyre, Australia del Sur: implicancias para la descarga de aguas subterráneas de la Great Artesian Basin

Resumen

La relación entre las estructuras de falla y la ocurrencia de manantiales en la Great Artesian Basin (GAB) rara vez ha sido discutida en relación con la sismicidad intraplaca. Esto es a pesar de la ocurrencia de manantiales en la porción suroccidental del GAB en Australia del Sur, que se había relacionado previamente con la ocurrencia de fallas y los muchos estudios concernientes al papel que la tectónica juega en la formación y el mantenimiento continuo de la actividad de los manantiales. Este estudio examina la correlación entre la sismicidad y las ocurrencias de manantiales dentro del GAB del suroeste, así como la evidencia de campo para la relación entre la actividad de los manantiales y la sismicidad intraplaca. Se encontró que la formación de manantiales dentro del GAB suroccidental está correlacionada con una zona de cizallamiento transpresional interpretada del noroeste-sureste del lado izquierdo que se relaciona con el cinturón de pliegues de Adelaida subyacente al GAB. La influencia de la sismicidad en estos sitios está implícita a través de la propagación de estructuras de deformación y lineamientos concordantes con las estructuras regionales subyacentes interpretadas. En las zonas de reactivación, estas estructuras y lineamientos desarrollan redes que fácilmente forman conductos para la migración del agua subterránea. En consecuencia, los manantiales en depósitos carbonáticos de manantiales del suroeste del GAB tienen potencial para registrar la actividad tectónica intraplaca asociada con la porción norte del cinturón de pliegues subyacentes de Adelaida. El trabajo presentado aquí refuerza la importancia de considerar el efecto que las fallas tienen sobre las trayectorias de flujo de agua subterránea y la interconectividad con los acuíferos superpuestos o subyacentes dentro del GAB del suroeste.

南澳大利亚Kati Thanda-Lake Eyre地区碳酸盐泉的丘泉群板内地震活动的证据:对大自流盆地地下水排泄的影响

摘要

很少有人讨论断层构造与大自流盆地(GAB)泉出露关系与板内地震活动的联系。尽管南澳大利亚GAB西南部出露了丘陵泉群,但之前均认为与断层的存在有关,而且许多研究关注构造在泉活动的形成和持续维持中所起的作用。本研究考察了西南地区GAB内地震活动与泉出露之间的相关性,以及目前泉活动与板内地震活动之间关系的现场证据。结果发现,GAB西南部泉的形成与解译的西北-东南向和左侧横向剪切带有关,该剪切带与GAB下覆的Adelaide褶皱带有关。变形结构和构造线的展布与解译的潜在区域结构一致,揭示在这些地点有地震活动的影响。在再活化区域,这些结构和构造线形成了易于地下水迁移通道的网络。因此,西南部GAB的碳酸盐泉的沉积泉群有可能记录下覆Adelaide褶皱带北部相关的板内构造活动。这里介绍的工作再次强调了考虑断层对地下水流动路径的影响以及与西南GAB上伏或下覆含水层相互联系的重要性。

Evidências de sismicidade intraplaca de nascentes carbonatadas em morros na região de Kati Thanda-Lago Eyre, Austrália do Sul: implicações para a descarga de águas subterrâneas da Grande Bacia Artesiana

Resumo

A relação entre estruturas de falhas e ocorrências de nascentes na Grande Bacia Artesiana (GBA) tem sido raramente discutida em relação à sismicidade intraplaca apesar da ocorrência de nascentes na parte sudoeste do GBA, na Austrália do Sul, que já eram previamente vinculadas à ocorrência de falhas e a muitos estudos sobre o papel que a tectônica desempenha na formação e manutenção contínua da atividade da nascente. Este estudo examina a correlação entre sismicidade e ocorrências de nascentes dentro da GBA sudoeste, bem como evidências de campo para a relação entre a atividade da nascente e sismicidade intraplaca. Verificou-se que a formação de nascentes no sudoeste da GBA está correlacionada com uma zona de cisalhamento interpretada como transpressional esquerda-lateral, noroeste-sudeste, que está relacionada com o Cinturão de Dobra de Adelaide subjacente à GBA. A influência da sismicidade nesses locais é sugerida pela propagação de estruturas de deformação e lineamentos concordantes interpretadas como estruturas regionais subjacentes. Em zonas de reativação, essas estruturas e lineamentos desenvolvem redes que prontamente formam condutos para a migração de águas subterrâneas. Consequentemente, as nascentes de depósito de carbonato de nascentes do sudoeste da GBA têm potencial como um registro para a atividade tectônica intraplaca associada à porção norte do Cinturão de Dobra de Adelaide subjacente. O trabalho aqui apresentado reforça a importância de se considerar o efeito que a falha tem sobre os caminhos de fluxo das águas subterrâneas e a interconectividade com aquíferos sobrejacentes ou subjacentes dentro do sudoeste da GBA.

Notes

Acknowledgements

The authors would like to thank the following organizations and people: the traditional owners of this land, the Arabana People, for graciously allowing us to undertake this work, the Australian Federal Government National Water Commission (NWC), the South Australian Arid Lands Natural Resources Management Board (SAAL NRM) and the Great Artesian Basin Coordinating Committee (GABCC) for providing management assistance. The authors would also like to thank Dr. Phil Hayes and Prof. Mike Sandiford for reviewing the original manuscript and Dr. Graham Green and Dr. Mel White for donating two of the images in Fig. 9. This work was first presented as part of a PhD dissertation by Keppel (2013).

Funding information

Funding was provided by the Australian Federal Government National Water Commission (NWC), the South Australian Arid Lands Natural Resources Management Board (SAAL NRM) and the Great Artesian Basin Coordinating Committee (GABCC).

References

  1. Aldam R, Kuang KS (1988) An investigation of structures controlling discharge of springwaters in the south western Great Artesian Basin. Report Book 88/4, Department of Mines and Energy, Adelaide, AustraliaGoogle Scholar
  2. Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol J 28(3–4):335–346CrossRefGoogle Scholar
  3. Babiker M, Gudmundsson A (2004) The effects of dykes and faults on groundwater flow in an arid land: the Red Sea Hills, Sudan. J Hydrol 297(1–4):256–273CrossRefGoogle Scholar
  4. Barton CA, Zoback MD, Moos D (1995) Fluid-flow along potentially active faults in crystalline rock. Geology 23(8):683–686CrossRefGoogle Scholar
  5. Brogi A (2004) Faults linkage, damage rocks and hydrothermal fluid circulation: tectonic interpretation of the Rapolano Terme travertines (southern Tuscany, Italy) in the context of Northern Apennines Neogene-Quaternary extension. Eclogae Geol Helv 97(3):307–320CrossRefGoogle Scholar
  6. Cartwright, J, James, D and Bolton, A (2003) The genesis of polygonal fault systems: a review. In: Van Rensbergen P et al. (eds) Subsurface sediment mobilization. Geol. Soc. Spec. Publ. 216, Geol. Soc. London, pp 223–243Google Scholar
  7. Celerier J, Sandiford M, Hansen DL, Quigley M (2005) Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics 24(6):TC6006 1–TC600612CrossRefGoogle Scholar
  8. Chia YP, Chiu JJ, Chiang H, Lee TP, Liu CW (2008) Spatial and temporal changes of groundwater level induced by thrust faulting. Pure Appl Geophys 165(1):5–16CrossRefGoogle Scholar
  9. Cloetingh S, Wortel R (1986) Stress in the Indo-Australian Plate. Tectonophysics 132(1–3):49–67CrossRefGoogle Scholar
  10. Crossey LJ, Karlstrom KE, Springer A, Newell D, Hilton D, Fischer T (2009) Degassing of mantle-derived CO2 and 3He from springs in the southern Colorado Plateau region: flux rates, neotectonics connections, and implications for understanding the groundwater system. Geol Soc Am Bull 121(7–8):1034–1053CrossRefGoogle Scholar
  11. Crossey LJ, Karlstrom KE, Schmandt B, Crow R, Coleman D, Cron B, Takacs-Vesbach TD, Dahm C, Northup DE, Hilton DR, Ricketts JR, Lowry AR (2016) Continental smokers couple mantle degassing and unique microbiology within continents. Earth Planet Sci Lett 435:22–30CrossRefGoogle Scholar
  12. Curewitz D, Karson JA (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79(3–4):149–168CrossRefGoogle Scholar
  13. Dailey, MKM (2011) Hydrogeophysical evidence for ground water mixing at Freeling Spring Group, South Australia. MSc Thesis, Oklahoma State University, Stillwater, OKGoogle Scholar
  14. Davidson GJ, Bavea M, Harris K (2011) Ferruginous thermal spring complexes, northwest Tasmania: evidence that far-field stresses acting on a fracture mesh can open and maintain vertical flow in carbonate terrains. Hydrogeol J 19(7):1367–1386CrossRefGoogle Scholar
  15. Dias RP, Cabral J (2002) Interpretation of recent structures in an area of cryptokarst evolution: neotectonic versus subsidence genesis. Geodin Acta 15(4):233–248CrossRefGoogle Scholar
  16. Geoscience Australia (2009) Earthquakes. Geoscience Australia, Canberra. http://www.ga.gov.au/earthquakes. Accessed 28 May 2019
  17. Government of South Australia (2019) South Australian Resources Information Gateway. https://map.sarig.sa.gov.au/. Accessed 28 May 2019
  18. Grohmann CH, Campanha GA (2010) OpenStereo: Open Source, Cross-Platform Software for Structural Geology Analysis. Presented at 2010 Fall Meeting, American Geophysics Union (AGU), San Francisco, CA, 13–17 December 2010. http://www.agu.org/meetings/fm10/. Accessed 28 May 2019
  19. Gudmundsson A (2000) Active fault zones and groundwater flow. Geophys Res Lett 27(18):2993–2996CrossRefGoogle Scholar
  20. Gudmundsson A, Brenner SL (2001) How hydrofractures become arrested. Terra Nova 13(6):456–462CrossRefGoogle Scholar
  21. Gudmundsson A, Fjeldskaar I, Brenner SL (2002) Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields. J Volcanol Geotherm Res 116(3–4):257–278CrossRefGoogle Scholar
  22. Habermehl, MA (1982) Springs in the Great Artesian Basin: their origin and nature. Report 235, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia, 50 ppGoogle Scholar
  23. Hancock PL, Chalmers RML, Altunel E, Cakir Z (1999) Travitonics: using travertines in active fault studies. J Struct Geol 21(8–9):903–916CrossRefGoogle Scholar
  24. Harrington GA, Smerdon BD, Gardner, PW, Taylor AR and Hendry J (2013). Chapter 8: Diffuse discharge. In: Love AJ et al. (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the western Great Artesian Basin. National Water Commission, Canberra, AustraliaGoogle Scholar
  25. Hillis RR, Meyer JJ, Reynolds SD (1998) The Australian stress map. Explor Geophys 29(4):420–427CrossRefGoogle Scholar
  26. Hillis RR, Reynolds SD (2000) The Australian stress map. J Geol Soc 157:915–921CrossRefGoogle Scholar
  27. Homberg C, Hu JC, Angelier J, Bergerat F, Lacombe O (1997) Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains). J Struct Geol 19(5):703–718CrossRefGoogle Scholar
  28. Inverarity K (2014) Electrical geophysics of carbonate mound springs of the south-western Great Artesian Basin. PhD Thesis, University of Adelaide, AustraliaGoogle Scholar
  29. Jessup RW, Norris RM (1971) Cainozoic stratigraphy of the Lake Eyre Basin and part of the arid region lying to the south. J Geol Soc Aust 18:303–331CrossRefGoogle Scholar
  30. Karlstrom KE, Keppel MN, Love AJ, Crossey L (2013) Structural and tectonic history, chapt 4. In: Keppel MN et al. (eds) Hydrogeological framework of the western margin of the Great Artesian Basin, Australia. National Water Commission, Canberra, AustraliaGoogle Scholar
  31. Keppel MN (2013) The geology and hydrochemistry of calcareous mound spring wetland environments in the Lake Eyre South region, Great Artesian Basin, South Australia. PhD Thesis, Flinders University, Bedford Park, SA, AustraliaGoogle Scholar
  32. Keppel MN, Clarke JDA, Halihan T, Love AJ, Werner AD (2011) Mound springs in the arid Lake Eyre South region of South Australia: a new depositional tufa model and its controls. Sediment Geol 240:55–70Google Scholar
  33. Keppel MN, Halihan T, Love A, Post V, Werner A, Clarke J (2013) Formation and evolution of mound springs, chapt. 3. In: Love A, Shand P, Crossey L, Harrington GA, Rousseau-Gueutin P (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the western Great Artesian Basin. National Water Commission, Canberra, AustraliaGoogle Scholar
  34. Keppel MN, Inverarity K, Wohling DL (2015) A hydrogeological characterisation of springs in the Neales River catchment and Lake Cadibarrawirracanna regions, Lake Eyre Basin, South Australia. DEWNR Technical report 2015/13, Department of Environment, Water and Natural Resources, Adelaide, AustraliaGoogle Scholar
  35. Krieg GW (1989) Geology. In: Zeider W, Ponder WF (eds) Natural History of Dalhousie Springs. South Australian Museum, Adelaide, Australia, pp 19–26Google Scholar
  36. Krieg GW, Rogers PA, Callen RA, Freeman PJ, Alley NF, Forbes BG (1991) Curdimurka, South Australia, explanatory notes: 1:250,000 geological series, Sheet SH 53-8. Geological Survey South Australia, Adelaide, AustraliaGoogle Scholar
  37. Kulikowski D, Amrouch K, Cooke D, Gray ME (2018) Basement structural architecture and hydrocarbon conduit potential of polygonal faults in the Cooper-Eromanga Basin, Australia. Geophys Prospect 66:366–396CrossRefGoogle Scholar
  38. Langbein J, Hill DP, Parker TN, Wilkinson SK (1993) An episode of reinflation of the Long Valley Caldera, eastern California: 1989–1991. J Geophys Res Solid Earth 98(B9):15851–15870CrossRefGoogle Scholar
  39. Leonard M (2008) One hundred years of earthquake recording in Australia. Bull Seismol Soc Am 98(3):1458–1470CrossRefGoogle Scholar
  40. Love A, Rosseau-Gueutin P, Simmons C, Karlstrom K, Crossey L, Shand P, Priestley S (2010) Toward a new paradigm for the Great Artesian Basin hydrologic mixing, partitioned sub-basins, and mantle influences on groundwater quality. In: Groundwater 2010, Proceedings of National Groundwater Conference, Canberra, Australia, October 2010Google Scholar
  41. Love A, Wohling D, Fulton S, Rousseau-Gueutin P, De Ritter S (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol II: groundwater recharge, hydrodynamics and hydrochemistry of the western Great Artesian Basin. National Water Commission, Canberra, AustraliaGoogle Scholar
  42. Manga M, Wang CY (2007) Earthquake hydrology. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 293–320CrossRefGoogle Scholar
  43. Manga M, Rowland JC (2009) Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids 9(3):37–250CrossRefGoogle Scholar
  44. Martinez-Diaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356(4):291–305CrossRefGoogle Scholar
  45. Matthews C (2009) Geothermal energy prospectivity of the Torrens Hinge Zone: evidence from new heat flow data. Explor Geophys 40(3):288–300CrossRefGoogle Scholar
  46. McCutchin WR (1982) Some elements of a theory of in situ stresses. Int J Rock Mech Min Sci 19(4):201–203CrossRefGoogle Scholar
  47. Miller PJ (1987) Affinities, origin and adaptive features of the Australian Desert Goby Chlamydogobius eremius (Zietz, 1896) (Teleostei: Gobiidae). J Nat Hist 21:687705CrossRefGoogle Scholar
  48. Muir-Wood R (1993) Neohydrotectonics. In: Stewart I, Vita-Finzi C, Owen L (eds) International Conference on Neotectonics, Zeitschrift Geomorphologie Supplementband, vol 94. Balogh, London, pp 275–284Google Scholar
  49. Murphy NP, Adams M, Austin AD (2009) Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Mol Ecol 18(1):109–122Google Scholar
  50. Ollier CD (1995) Tectonics and landscape evolution in southeast Australia. Geomorphology 12(1):37–44CrossRefGoogle Scholar
  51. Palmström A, Singh R (2001) The deformation modulus of rock masses. Tunn Undergr Space Technol 16(3):115–131CrossRefGoogle Scholar
  52. Preiss WV (1987) The Adelaide Geosyncline: Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. South Australian Geological Survey, Adelaide, AustraliaGoogle Scholar
  53. Prescott JR, Habermehl MA (2008) Luminescence dating of spring mound deposits in the southwestern Great Artesian Basin, northern South Australia. Aust J Earth Sci 55(2):167–181CrossRefGoogle Scholar
  54. Priestley SC, Karlstrom KE, Love AJ, Crossey LJ, Polyak VJ, Asmerom Y, Meredith KT, Crow R, Keppel MN, Habermehl MA (2018) Uranium series dating of Great Artesian Basin travertine deposits: implications for palaeohydrogeology and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 490:163–177CrossRefGoogle Scholar
  55. Quigley M, Sandiford M, Fifield K, Alimanovic A (2007) Bedrock erosion and relief production in the northern Flinders Ranges, Australia. Earth Surf Process Landf 32(6):929–944CrossRefGoogle Scholar
  56. Radke BM (1990) Petrology of mound spring complexes, Curdimurka 1:250,000 Sheet Great Artesian Basin. Bureau of Mineral Resources, Canberra, AustraliaGoogle Scholar
  57. Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer, Great Artesian Basin Australia. Bureau of Rural Sciences, Canberra, AustraliaGoogle Scholar
  58. Reynolds SD, Coblentz DD, Hillis RR (2002) Tectonic forces controlling the regional intraplate stress field in continental Australia: results from new finite element modeling. J Geophys Res Solid Earth 107(B7):ETG 1-1–ETG 1-15Google Scholar
  59. Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen [On the mechanics of geological fracturing]. Zentralblatt Mineral Geol Paleontol B:354–368Google Scholar
  60. Ring U, Uysal IT, Yűce G, Űnal-Ímer E, Italiano F, Ímer A, Zhao J (2016) Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australia. Earth Planter Sci Lett 454:304–318CrossRefGoogle Scholar
  61. Rogers PA, Freeman PJ (1994) Explanatory notes for the Warrina, South Australia: 1:250,000 geological map. Report Book 93/10. Geological Survey South Australia, Adelaide, AustraliaGoogle Scholar
  62. Royden L (1996) Coupling and decoupling of crust and mantle in convergent orogens: umplications for strain partitioning in the crust. J Geophys Res Solid Earth 101(B8):17679–17705Google Scholar
  63. Sampson L, Jensen-Schmidt B (2013) Appendix 1: Hydrogeological map of the western margin of the GAB. In: Keppel MN et al. (eds) (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol I: hydrogeological framework of the western Great Artesian Basin. National Water Commission, Canberra, AustraliaGoogle Scholar
  64. Sandiford M, Lawrie K, Brodie RS (2019) Hydrogeological implications of active tectonics in the Great Artesian Basin. Hydrogeol J.  https://doi.org/10.1007/s10040-019-02046-4
  65. Sandiford M, Quigley M (2009) TOPO-OZ: insights into the various modes of intraplate deformation in the Australian continent. Tectonophysics 474(1–2):405–416CrossRefGoogle Scholar
  66. Sandiford M, Quigley M, de Broekert P, Jakica S (2009) Tectonic framework for the Cenozoic cratonic basins of Australia. Aust J Earth Sci 56:5–18CrossRefGoogle Scholar
  67. Singh B, Geol RK (2011) Engineering rock mass classification: tunnelling, foundations, and landslides. Elsevier, Amsterdam, 364 ppGoogle Scholar
  68. Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin. Hydrogeol J 23:949–960CrossRefGoogle Scholar
  69. Smerdon BD, Welsh WD, Ransley TR (2012) Water resource assessment for the Western Eromanga region: a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Canberra, AustraliaGoogle Scholar
  70. Sprigg RC (1957) The Great Artesian Basin in South Australia. J Geol Soc Aust 5(2):88–101Google Scholar
  71. Underschultz J, Esterle J, Strand J, Hayes S (2018) Conceptual representation of fluid flow conditions associated with faults in sedimentary basins. Prepared for the Department of the Environment and Energy by The University of Queensland Centre for Coal Seam Gas, Brisbane, Australia, 61 ppGoogle Scholar
  72. Uysal IT, Feng Y, Zhao J, Isik V, Nuriel P, Golding SD (2009) Hydrothermal CO2 degassing in seismically active zones during the Late Quaternary. Chem Geol 265(3–4):442–454CrossRefGoogle Scholar
  73. Watterson J, Walsh J, Nicol A, Nell PAR, Bretan PG (2000) Geometry and origin of a polygonal fault system. J Geol Soc 157:151–162CrossRefGoogle Scholar
  74. Wopfner H, Twidale CR (1967) Geomorphological History of the Lake Eyre Basin. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea. Australian National University Press, Canberra, Australia, pp 144–182Google Scholar
  75. Wopfner H, Freytag B, Heath GR (1970) Basal Jurassic-Cretaceous rocks of the western Great Artesian Basin, South Australia: stratigraphy and environment. Am Assoc Petrol Geologists Bull 54(3):383–416Google Scholar
  76. Yechieli Y, Bein A (2002) Response of groundwater systems in the Dead Sea Rift Valley to the Nuweiba earthquake: changes in head, water chemistry, and near-surface effects. J Geophys Res Solid Earth 107(B12):ETG4-9–ETG4-10)CrossRefGoogle Scholar
  77. Zoback ML (1992) First and second-order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97(11):703–728Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mark N. Keppel
    • 1
    Email author
  • Karl Karlstrom
    • 2
  • Laura Crossey
    • 2
  • Andrew J. Love
    • 1
  • Stacey Priestley
    • 3
  1. 1.College of Science & EngineeringFlinders UniversityAdelaideAustralia
  2. 2.Department of Earth Planetary SciencesUniversity of New MexicoAlbuquerqueUSA
  3. 3.Australia Nuclear Science and Technology OrganisationLucas HeightsAustralia

Personalised recommendations