Advertisement

Simulation of groundwater flow paths under managed abstraction and recharge in an analogous sand-tank phreatic aquifer

  • Peipeng Wu
  • Longcang ShuEmail author
  • Changbing Yang
  • Yang Xu
  • Yongjie Zhang
Paper
  • 57 Downloads

Abstract

Understanding the impacts of managed abstraction and recharge, i.e. artificial regulation of groundwater, on flow dynamics contributes to water resources planning and effective management of river basins. Based on the hydrogeological conditions of the aquifer in the Tailan River Basin, northwestern China, a two-dimensional sand-tank physical model and the corresponding numerical model were conceptualized and developed to investigate the influence of such regulation on the moisture content, groundwater flow patterns, groundwater age, residence time distributions, and groundwater flow paths in the groundwater reservoir. Four scenarios were examined at laboratory scale. The results showed that groundwater flow was influenced significantly by artificial regulation and that the depth of influence greatly increased depending on the regulation modes. Abstraction mainly alters the groundwater flow paths and moisture content at the ground surface in the core area of the depression cone and reduces the groundwater age in the entire aquifer. Groundwater flow lines are gradually parted by artificial recharge at different depths. Groundwaters of different ages have different behavior under the different artificial recharge depths and artificial recharge modes. Saddle points (kind of stagnation points) appeared at different locations, which were highly dependent on the modes of artificial regulation. Some of the lessons learned, and some management strategies, are proposed based on the results. Despite the dimensionality and scale of the model adopted, resulting in a relatively very large capillarity zone unrepresentative of field conditions, these findings nonetheless have important implications for understanding groundwater flow dynamics impacted by highly intensive human activities.

Keywords

Groundwater flow paths Abstraction Artificial recharge Infiltration basin Laboratory experiments/measurements 

Simulation des voies d’écoulement des eaux souterraines, sous Une gestion active par prélèvement et recharge, dans un aquifère à nappe libre analogue à un réservoir sableux

Résumé

La compréhension des impacts d’une gestion active par prélèvement et recharge, c’est-à-dire d’une régulation artificielle de la nappe, sur les dynamiques d’écoulement contribue à la planification des ressources en eau et à la gestion efficace des bassins hydrographiques. Basé sur les conditions hydrogéologiques de l’aquifère du bassin de la rivière Tailan, dans le Nord-ouest de la Chine, un modèle physique bidimensionnel à réservoir sableux et le modèle numérique associé ont été conceptualisés et développés pour étudier l’influence d’une telle régulation sur la teneur en eau, les schémas d’écoulements hydrogéologiques, l’âge des eaux souterraines, la distribution des temps de résidence et les voies d’écoulement au sein du réservoir aquifère. Quatre scenarios ont été examinés à l’échelle du laboratoire. Les résultats ont montré que les écoulements d’eaux souterraines étaient significativement influencés par la régulation artificielle et que la profondeur de l’influence augmentait fortement selon les modes de régulation. Les prélèvements impactent principalement les voies d’écoulement des eaux souterraines et la teneur en eau des sols dans l’emprise du cône de rabattement et réduit l’âge des eaux souterraines dans l’ensemble de l’aquifère. Les lignes d’écoulement des eaux souterraines sont réparties graduellement par la recharge artificielle aux différentes profondeurs. Les eaux souterraines d’âges différents ont un comportement différent selon les différentes profondeurs de recharge artificiell, et selon les modes de recharge. Des points d’équilibre (sorte de points de stagnation) sont apparus à différents endroits, lesquels étaient fortement dépendants des modes de régulation artificielle. Certains des enseignements acquis et quelques stratégies de gestion sont proposés sur la base de ces résultats. Malgré l’échelle du modèle adopté, qui conduit à une frange capillaire relativement très importante et non représentative des conditions de terrain, ces découvertes ont toutefois d’importantes implications pour la compréhension des dynamiques d’écoulements d’eau souterraine fortement impactées par des activités humaines intensives.

Simulación de trayectorias de flujo de agua subterránea bajo extracción y recarga gestionadas en un acuífero freático análogo de tanque de arena

Resumen

La comprensión de los impactos de la extracción y la recarga gestionadas, es decir, la regulación artificial de las aguas subterráneas, sobre la dinámica de los caudales contribuye a la planificación de los recursos hídricos y a la gestión eficaz de las cuencas fluviales. Sobre la base de las condiciones hidrogeológicas del acuífero de la cuenca del río Tailan, en el noroeste de China, se conceptualizó y desarrolló un modelo físico bidimensional de tanque de arena y el correspondiente modelo numérico para investigar la influencia de dicha regulación en el contenido de humedad, los patrones de flujo de agua subterránea, la edad del agua subterránea, la distribución del tiempo de residencia y las trayectorias del flujo de agua subterránea en el reservorio. Se examinaron cuatro escenarios a escala de laboratorio. Los resultados mostraron que el flujo de agua subterránea fue influenciado significativamente por la regulación artificial y que la profundidad de la influencia aumentó considerablemente dependiendo de los modos de regulación. La extracción altera principalmente las trayectorias del flujo de agua subterránea y el contenido de humedad en la superficie del suelo en el área central del cono de depresión y reduce la edad del agua subterránea en todo el acuífero. Las líneas de flujo de agua subterránea son gradualmente separadas por recarga artificial a diferentes profundidades. Las aguas subterráneas de diferentes edades tienen diferentes comportamientos bajo las diferentes profundidades de recarga artificial y modos de recarga artificial. Los puntos de silla (una especie de puntos de estancamiento) aparecieron en diferentes lugares, que dependían en gran medida de los modos de regulación artificial. Algunas de las lecciones aprendidas y algunas estrategias de gestión se proponen sobre la base de los resultados. A pesar de la dimensionalidad y escala del modelo adoptado, lo que resulta en una zona de capilaridad relativamente grande que no es representativa de las condiciones de campo, estos hallazgos tienen importantes implicancias para la comprensión de la dinámica del flujo de agua subterránea impactada por actividades humanas altamente intensivas.

基于砂槽试验的开采和人工补给条件下潜水含水层地下水流路径模拟

摘要

认识开采和人工补给 (即地下水人工调控)对地下水动力场的影响有助于流域水资源规划和有效管理。基于中国西北部台兰河流域实际水文地质条件,建立了二维砂槽模型及相应的数值模型,对地下水库区土壤含水量、地下水流场、地下水年龄、地下水滞留时间及地下水流路径进行了研究。基于实验室尺度的四个试验场景研究显示:人工调控下区域地下水流特征显著改变,且主要受人工调控方式及调控设置位置的影响;开采主要改变了地下水位降落漏斗核心区的地下水流路径及地表土壤含水量,并且减小了含水层的地下水年龄;人工回灌条件下,随着回灌位置的变化地下水流路径逐渐被回灌设施分开;地下水年龄在不同的人工补给深度和补给方式驱动下变化规律不同;人工调控下地下水库出现多个鞍点 (一种驻点),且鞍点位置高度依赖于人工调控方式。同时,在此基础上还提出了一些地下水资源管理策略。此外,尽管本研究所采用的研究方法具有尺度效应,导致相对较厚毛细水带与实际场地不一致,但其研究成果对于理解高强度人类活动影响下的地下水动力学具有重要意义。

Simulação do fluxo das águas subterrâneas sob manejo de abstração e recarga em um tanque de Areia análogo a aquífero freático

Resumo

Compreender os impactos da captação e recarga manejada, por exemplo, a regulação artificial das águas subterrâneas na dinâmica do fluxo contribui para o planejamento dos recursos hídricos e para a gestão eficaz das bacias hidrográficas. Com base nas condições hidrogeológicas do aquífero na bacia do rio Tailan, noroeste da China, um modelo físico bidimensional de tanque de areia e o modelo numérico correspondente foram conceituados e desenvolvidos para investigar a influencia de tal regulação no conteúdo de umidade, padrões de fluxo das águas subterrâneas, idade das águas subterrâneas, distribuição do tempo de residência, e as direções de fluxo no reservatório de água subterrânea. Quatro cenários foram examinados em escala de laboratório. Os resultados mostraram que o fluxo das águas subterrâneas foi influenciado significativamente pela regulação artificial e que a profundidade de influência aumentou muito dependendo dos modos de regulação. A captação altera principalmente as direções de fluxo das águas subterrâneas e o conteúdo de umidade na superfície do solo na área central do cone de depressão e reduz a idade das águas subterrâneas em todo o aquífero. As linhas de fluxo subterrâneo são gradualmente separadas pela recarga artificial em diferentes profundidades. Águas subterrâneas de diferentes idades tem comportamentos diferentes sob as diferentes profundidades de recarga artificial e os modos de recarga artificial. Pontos de sela (tipo de pontos de estagnação) apareceram em diferentes localizações, que eram altamente dependentes dos modos de regulação artificial. Algumas das lições aprendidas e algumas estratégias de gestão são propostas com base nos resultados. Apesar da dimensionalidade e escala do modelo adotado, resultando em uma zona de capilaridade relativamente grande e não representativa das condições de campo, essas descobertas, no entanto, têm implicações importantes para o entendimento da dinâmica do fluxo das águas subterrâneas impactada por atividades humanas altamente intensivas.

Notes

Acknowledgements

The authors acknowledge the valuable comments from the reviewers, which led to significant improvement of the paper. All the authors participated in every step of this research. In particular, Peipeng Wu and Longcang Shu designed the study scheme and different scenarios and analyzed the experimental and numerical results. Peipeng Wu established the physical and numerical models and conducted the model calibration and verification. Changbing Yang co-designed and analyzed the physical model. Yang Xu designed and analyzed the regulation plan of the groundwater reservoir. Yongjie Zhang co-designed and analyzed the physical model and numerical simulation results

Funding information

This research was supported by the National Natural Science Foundation of China (41572210), providing financial support for the collection of data, the writing and publishing of the results.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. We declare that there are no personal circumstances or interests that may be perceived as inappropriately influencing the representation or interpretation of the reported research results.

References

  1. Abrams D (2012) Correcting transit time distributions in coarse MODFLOW-MODPATH models. Groundwater 51(3):474–478.  https://doi.org/10.1111/j.1745-6584.2012.00985.x CrossRefGoogle Scholar
  2. Abrams DM, Lobkovsky AE, Petroff AP (2009) Growth laws for channel networks incised by groundwater flow. Nat Geosci 2(3):193–196CrossRefGoogle Scholar
  3. Alley WM, Healy RW, LaBaugh JW, Thomas ER (2002) Flow and storage in groundwater systems. Science 296:1985–1990CrossRefGoogle Scholar
  4. American Water Works Association (2014) M21 groundwater. AWWA, Denver, COGoogle Scholar
  5. Andrew FBT, Steven FC, Nina DR, Maxwell RM (1999) Analysis of groundwater migration from artificial recharge in a large urban aquifer: a simulation perspective. Water Resour Res 35(10):2981–2998CrossRefGoogle Scholar
  6. Atlabachew A, Shu L, Wu P (2018) Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses. Hydrogeol J 1:1–25Google Scholar
  7. Bao ZX, Zhang JY, Wang GQ (2012) Attribution for decreasing stream flow of the Haihe River basin, northern China: climate variability or human activities. J Hydrol 460–461:117–129CrossRefGoogle Scholar
  8. Barker JLB, Hassan MM, Sultana S (2016) Numerical evaluation of community-scale aquifer storage, transfer and recovery technology: a case study from coastal Bangladesh. J Hydrol 540:861–872CrossRefGoogle Scholar
  9. Barnett TP, Pierce DW, Hidalgo HG (2008) Human-induced changes in the hydrology of the western United States. Science. 319(5866):1080–1083CrossRefGoogle Scholar
  10. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  11. Bekele E, Bradley P, Simon T (2014) Aquifer residence times for recycled water estimated using chemical tracers and the propagation of temperature signals at a managed aquifer recharge site in Australia. Hydrogeol J 22(6):1383–1401CrossRefGoogle Scholar
  12. Blair TC, McPherson JG (2009) Processes and forms of alluvial fans, chap 14. In: Parsons AJ, Abrahams AD (eds) Geomorphology of desert environments. Springer, Heidelberg, Germany, pp 413–467Google Scholar
  13. Carabin G, Dassargues A (1999) Modeling ground water with ocean and river interaction. Water Resour Res 35(8):2347–2358CrossRefGoogle Scholar
  14. Cardenas MB (2007) Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: residence time distribution analysis of Tóth flow. Geophys Res Lett 34(5):L05403.  https://doi.org/10.1029/2006GL029126 CrossRefGoogle Scholar
  15. Cardenas MB (2008) Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophys Res Lett 35:L08402.  https://doi.org/10.1029/2008GL033753 CrossRefGoogle Scholar
  16. Deng MJ (2012) Ground reservoir: a new pattern of groundwater utilization in arid North-West China: a case study in Tailan River Basin. Procedia Environ Sci 13:2210–2221CrossRefGoogle Scholar
  17. Deng HJ, Chen YN (2017) Influences of recent climate change and human activities on water storage variations in Central Asia. J Hydrol 544:46–57CrossRefGoogle Scholar
  18. Diersch H (2014) FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, BerlinGoogle Scholar
  19. Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13:313–316CrossRefGoogle Scholar
  20. Dillon P, Pavelic P, Toze S (2006) Role of aquifer storage in water reuse. Desalination 188:123–134CrossRefGoogle Scholar
  21. Ebrahim GY, Jonoski A, Al-Maktoumi A (2016) Simulation-optimization approach for evaluating the feasibility of managed aquifer recharge in the Samail Lower Catchment, Oman. J Water Resour Plan Manag 142(2).  https://doi.org/10.1061/(ASCE)WR.1943-5452.0000588
  22. Emily CE, Thomas H, Graham EF (2016) Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. J Hydrol 539:539–553CrossRefGoogle Scholar
  23. Erickson TO, Stefan HG (2009) Natural groundwater recharge response to urbanization: Vermillion River watershed, Minnesota. J Water Resour Plan Manag 135(6):512–520CrossRefGoogle Scholar
  24. Fan L, Li H, Miguezmacho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943CrossRefGoogle Scholar
  25. Frederick B, Chi HS, Joseph JD (2014) Lessons learned from aquifer storage and recovery (ASR) systems in the United States. J Water Resour Protect 6:1603–1629CrossRefGoogle Scholar
  26. Gao SD, Pan L, Pan ZK (2017) Derivation of low flow frequency distributions under human activities and its implications. J Hydrol 549:294–300CrossRefGoogle Scholar
  27. Ghaleni M, Ebrahimi K (2015) Effects of human activities and climate variability on water resources in the Saveh Plain, Iran. Environ Monit Assess 187(2):35CrossRefGoogle Scholar
  28. Gleeson T, Wada Y, Bierkens MF (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410):197–200CrossRefGoogle Scholar
  29. Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(32):289–296CrossRefGoogle Scholar
  30. Hogan JF, Phillips FM, Mills SK (2007) Geologic origins of salinization in a semi-arid river: the role of sedimentary basin brines. Geology 35(12):1063–1066CrossRefGoogle Scholar
  31. Hotta N, Tanaka N, Sawano S (2010) Changes in groundwater level dynamics after low-impact forest harvesting in steep, small watersheds. J Hydrol 385(1):120–131CrossRefGoogle Scholar
  32. Huang TM, Pang ZH, Li J (2017) Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China. Hydrogeol J 25:743–755CrossRefGoogle Scholar
  33. Jakobczyk-Karpierz S, Sitek S, Jakobsen R (2017) Geochemical and isotopic study to determine sources and processes affecting nitrate and sulphate in groundwater influenced by intensive human activity-carbonate aquifer Gliwice (southern Poland). Appl Geochem 76:168–181CrossRefGoogle Scholar
  34. Jia YW, Ding XY, Wang H (2012) Attribution of water resources evolution in the highly water-stressed Hai River basin of China. Water Resour Res 48:2513–2531CrossRefGoogle Scholar
  35. Jiang XW, Wang XS, Wan L (2011) An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resour Res 47:W01512.  https://doi.org/10.1029/2010WR009346 CrossRefGoogle Scholar
  36. Jonoski A, Zhou YX, Meijer S (1997) Model-aided design and optimization of artificial recharge-pumping systems. Hydrol Sci J 42(6):937–953CrossRefGoogle Scholar
  37. Keeler BL, Gourevitch JD, Polasky S (2016) The social costs of nitrogen. Sci Adv 2(10):e1600219.  https://doi.org/10.1126/sciadv.1600219 CrossRefGoogle Scholar
  38. Kirchner JW, Feng XH, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403(6769):524–527CrossRefGoogle Scholar
  39. Konrad M, Peter JD, Paul P (2014) Recovery of injected freshwater from a brackish aquifer with a multiwell system. Groundwater 52(4):495–502CrossRefGoogle Scholar
  40. Kralik M, Humer F, Fank J (2014) Using 18O/2H, 3H/3He, 85Kr and CFCs to determine mean residence times and water origin in the grazer and Leibnitzer Feld groundwater bodies (Austria). Appl Geochem 50:150–163CrossRefGoogle Scholar
  41. Lehmann P, Stauffer F, Hinz C, Dury O, Flühler H (1998) Effect of hysteresis on water flow in a sand column with a fluctuating capillary fringe. J Contam Hydrol 33(1):81–100CrossRefGoogle Scholar
  42. Lin LH, Wang PL, Rumble D (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314(5798):479–482CrossRefGoogle Scholar
  43. Liu H, Guo H, Xing L (2016) Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China plain. J Asian Earth Sci 117:33–51CrossRefGoogle Scholar
  44. Maliva RG, Guo W, Missimer TM (2006) Aquifer storage and recovery: recent hydrogeological advances and system performance. Water Environ Res 78:2428–2435CrossRefGoogle Scholar
  45. Maxwell RM, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1(10):665–669CrossRefGoogle Scholar
  46. Mi L, Xiao HL, Zhang JM (2016) Evolution of the groundwater system under the impacts of human activities in middle reaches of Heihe River basin (Northwest China) from 1985 to 2013. Hydrogeol J 24:971–986CrossRefGoogle Scholar
  47. Moeck C, Radny D, Popp A (2017) Characterization of a managed aquifer recharge system using multiple tracers. Sci Total Environ 609:701–714CrossRefGoogle Scholar
  48. Nakaya S, Uesugi K, Yusuke M (2007) Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers. Water Resour Res 43(9):252–258CrossRefGoogle Scholar
  49. Newcomer ME, Hubbard SS, Fleckenstein JH (2016) Simulating bioclogging effects on dynamic riverbed permeability and infiltration. Water Resour Res 52:2883–2900CrossRefGoogle Scholar
  50. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072CrossRefGoogle Scholar
  51. Oostrom M, Hayworth JS, Dane JH (1992) Behavior of dense aqueous phase leachate plumes in homogeneous porous media. Water Resour Res 28(8):2123–2134.  https://doi.org/10.1029/92WR00711 CrossRefGoogle Scholar
  52. Polizzotto ML, Kocar BD, Benner SG (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature. 454(7203):505–508CrossRefGoogle Scholar
  53. Qin DJ, Zhao ZF, Han LF (2012) Determination of groundwater recharge regime and flow path in the lower Heihe River basin in an arid area of Northwest China by using environmental tracers: implications for vegetation degradation in the Ejina oasis. Appl Geochem 27:1133–1145CrossRefGoogle Scholar
  54. Robinson C, Xin P, Li L (2014) Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions. Water Resour Res 50:165–181CrossRefGoogle Scholar
  55. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002CrossRefGoogle Scholar
  56. Sawyer AH, David CH, Famiglietti JS (2016) Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353(6300):705CrossRefGoogle Scholar
  57. Stoeckl L, Houben G (2012) Flow dynamics and age stratification of freshwater lenses: experiments and modeling. J Hydrol 458–459:9–15CrossRefGoogle Scholar
  58. Toews MW, Daughney CJ, Cornaton FJ (2016) Numerical simulation of transient groundwater age distributions assisting land and water management in the middle Wairarapa Valley, New Zealand. Water Resour Res 52:9430–9451.  https://doi.org/10.1002/2016WR019422 CrossRefGoogle Scholar
  59. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7(1):1–14.  https://doi.org/10.1007/s100400050176 CrossRefGoogle Scholar
  60. Vacher HL, Hutchings WC, Budd DA (2006) Metaphors and models: the ASR bubble in the Floridan aquifer. Ground Water 44:144–154CrossRefGoogle Scholar
  61. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  62. Wada Y, Beek L, Kempen C (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):114–122CrossRefGoogle Scholar
  63. Wada Y, Beek L, Bierkens M (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48(6):335–344CrossRefGoogle Scholar
  64. Wang GS, Xia J, Chen J (2009) Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: a case study of the Chaobai River basin in northern China. Water Resour Res 45(7):206–216Google Scholar
  65. Wang W, Li J, Feng X (2011) Evolution of stream-aquifer hydrologic connectedness during pumping-experiment. J Hydrol 402:401–414CrossRefGoogle Scholar
  66. Wang W, Li J, Wang W (2014) Estimating streambed parameters for a disconnected river. Hydrol Process 28:3627–3641CrossRefGoogle Scholar
  67. Ward JD, Simmons CT, Dillon PJ (2009) Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery. J Hydrol 370:83–99CrossRefGoogle Scholar
  68. Wilson AM, Huettel M, Klein S (2008) Grain size and depositional environment as predictors of permeability in coastal marine sands. Estuar Coast Shelf Sci 80(1):193–199CrossRefGoogle Scholar
  69. Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. US Geol Surv Prof Pap 1001:1–45Google Scholar
  70. Wörman A, Marklund L, Xu S, Dverstorp B (2007) Impact of repository depth on residence times for leaking radionuclides in land-based surface water. Acta Geophys 55(1):73–84.  https://doi.org/10.2478/s11600-006-0040-9 CrossRefGoogle Scholar
  71. Xing LN, Guo HM, Zhan YH (2013) Groundwater hydrochemical characteristics and processes along flow paths in the North China plain. J Asian Earth Sci 70–71:250–264CrossRefGoogle Scholar
  72. Yang T, Zhang Q, Wang W (2013) Review of advances in hydrologic science in China in the last decades: impact study of climate change and human activities. J Hydrol Eng 18(11):1380–1384CrossRefGoogle Scholar
  73. Zhan YH, Guo HM, Wu Y (2014) Evolution of groundwater major components in the Hebei plain: evidences from 30-year monitoring data. J Earth Sci 25(3):563–574CrossRefGoogle Scholar
  74. Zhang X, Zwiers FW, Hegerl GC (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448(7152):461–465CrossRefGoogle Scholar
  75. Zijl W, (1999) Scale aspects of groundwater flow and transport systems. Hydrogeology Journal 7 (1):139-150Google Scholar
  76. Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (H-3 and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240(3–4):187–205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peipeng Wu
    • 1
    • 2
  • Longcang Shu
    • 1
    • 2
    Email author
  • Changbing Yang
    • 3
  • Yang Xu
    • 1
    • 2
  • Yongjie Zhang
    • 1
    • 2
  1. 1.College of Hydrology and Water ResourceHohai UniversityNanjingChina
  2. 2.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringHohai UniversityNanjingChina
  3. 3.Environmental Data Techniques, lncSan AntonioUSA

Personalised recommendations