Advertisement

The fate of submarine fresh groundwater reservoirs at the New Jersey shelf, USA

  • A. T. ThomasEmail author
  • S. Reiche
  • M. Riedel
  • C. Clauser
Paper
  • 97 Downloads

Abstract

The existence of submarine fresh groundwater has been recorded at continental shelves worldwide. The dynamic preservation and lifetime of fresh groundwater in the offshore environment remains an open hydrogeological problem. The mechanisms and time scales of fresh groundwater preservation are examined using numerical simulations based on a geologically representative model of the New Jersey shelf, USA. Utilizing two-dimensional depth-migrated seismic and well data, a detailed hydrogeological model is built, with a vertical resolution of 10 m. The model captures the highly heterogeneous shelf environment and accounts for porosity compaction trends derived from core data. The results show transient coupled simulations of groundwater flow and heat and salt transport from the late Pleistocene until present day and projected 18,000 years into the future. They reveal freshwater preservation patterns and yield simulated borehole salinity profiles broadly consistent with field observations. The simulations show that freshwater intervals of a thickness of 200–300 m and lateral extent of tens of kilometers may have been preserved from the Last Glacial Maximum until today. It was found that approximately 30–45% of the initial freshwater volume remains preserved after 12,000 years, depending on the recharge boundary condition. The preserved volume ranges between 15 and 30% after 30,000 years. These results improve the understanding of submarine preservation of fresh groundwater through an interdisciplinary approach which integrates seismic imaging, hydrogeological modeling and high-performance numerical simulation.

Keywords

Facies modeling Submarine groundwater discharge Salt-water/fresh-water relations Numerical modeling USA 

Devenir de nappes d’eaux douces sous-marines, au niveau du plateau continental du New Jersey, Etats-Unis d’Amérique

Résumé

L’existence d’eaux souterraines douces sous-marines a été répertoriée dans le monde entier au droit des plateaux continentaux. La préservation dynamique et la durée de vie de ces eaux souterraines douces dans l’environnement proche du littoral reste une problématique hydrogéologique ouverte. Les mécanismes et les échelles de temps de préservation des eaux souterraines douces sont étudiés en utilisant des simulations numériques basées sur un modèle géologique représentatif du plateau continental du New Jersey, Etats-Unis d’Amérique. En utilisant des données de profils sismiques et de forages, un modèle hydrogéologique détaillé a été établi, avec une résolution verticale de 10 m. Le modèle traduit bien la forte hétérogénéité de l’environnement du plateau continental et prend en compte les tendances d’évolution de la porosité, dérivées des données des carottes de forages. Les résultats montrent des simulations transitoires couplées des écoulements d’eau souterraine et de transport de chaleur et de sel, depuis le Pléistocène tardif jusqu’à la période actuelle, et fait des projections pour les 18,000 ans à venir. Ils révèlent des schémas de préservation de l’eau douce et fournissent des profils simulés de salinité en forage largement conformes aux observations de terrain. Les simulations montrent que des intervalles d’eau douce d’une épaisseur de 200 à 300 m, et d’une extension latérale de dizaines de kilomètres, auraient été préservées depuis le dernier maximum glaciaire jusqu’à aujourd’hui. Il a été mis en évidence qu’environ 30 à 45% du volume d’eau douce initial est resté préservé après 12,000 ans, en fonction des conditions de recharge aux limites. Le volume préservé se situe entre 15 et 30% après 30,000 ans. Ces résultats améliorent la compréhension de la préservation sous-marine des eaux souterraines douces grâce à une approche interdisciplinaire intégrant l’imagerie sismique, la modélisation hydrogéologique et la simulation numérique à haute performance.

El destino de los reservorios submarinos de agua subterránea dulce en la plataforma de Nueva Jersey, EEUU

Resumen

La existencia de agua dulce subterránea submarina se ha registrado en las plataformas continentales de todo el mundo. La preservación dinámica y la vida útil de las aguas subterráneas dulces en el medio marino sigue siendo un problema hidrogeológico abierto. Los mecanismos y escalas de tiempo de la preservación de las aguas subterráneas dulces se examinan mediante simulaciones numéricas basadas en un modelo geológicamente representativo de la plataforma de Nueva Jersey, Estados Unidos. Utilizando datos de sísmica bidimensional profunda y de pozos, se construye un modelo hidrogeológico detallado, con una resolución vertical de 10 m. El modelo captura el ambiente altamente heterogéneo de la plataforma y toma en cuenta las tendencias de compactación de la porosidad derivadas de los datos centrales. Los resultados muestran simulaciones acopladas de flujo transitorio de agua subterránea y transporte de calor y sal desde el Pleistoceno tardío hasta el presente y proyectadas para 18.000 años en el futuro. Los datos revelan patrones de preservación de agua dulce y producen perfiles de salinidad simulados de los pozos de sondeo que concuerdan ampliamente con las observaciones de campo. Las simulaciones muestran que los intervalos de agua dulce de un espesor de 200–300 m y la extensión lateral de decenas de kilómetros pueden haberse preservado desde el último máximo glaciar hasta hoy. Se encontró que aproximadamente el 30–45% del volumen inicial de agua dulce permanece preservado después de 12.000 años, dependiendo de la condición límite de recarga. El volumen conservado oscila entre el 15 y el 30% después de 30.000 años. Estos resultados mejoran la comprensión de la preservación submarina del agua subterránea dulce a través de un enfoque interdisciplinario que integra imágenes sísmicas, modelos hidrogeológicos y simulación numérica de alto rendimiento.

美国新泽西州陆架海底地下淡水库的传输

摘要

在全球大陆架有存在海底地下淡水的记录。近海环境中地下淡水的动态保存和年限仍然是公开的水文地质问题。使用基于美国新泽西州陆架的地质代表性模型的数值模拟研究了地下淡水保存的机制和时间尺度。利用二维偏移深度地震和井数据建立了垂直分辨率为10米的详细水文地质模型。该模型捕获了高度非均质陆架环境,并考虑了岩心数据导致的孔隙度压缩趋势。结果显示了从晚更新世到现在的地下水流、热和盐运输的非稳定耦合模型情况,并预计了未来18,000年。模型揭示了淡水保存的模式和给出了模拟的井盐度剖面,这些结果与现场观测基本一致。模拟结果表明了自末次冰期最大值到今以来,厚度为200–300米、横向范围为数十公里的淡水区被保留。结果发现在12,000年后大约30–45%的初始淡水量保持不变,这取决于补给边界条件。30,000年后保存的淡水体积在15%到30%之间。通过综合地震成像,水文地质模拟和高性能数值模拟的跨学科方法,这些结果提高了对海底地下水淡水保护的认识。

O destino dos reservatórios subterrâneos de água doce submarinos na plataforma de Nova Jersey, EUA

Resumo

A existência de águas doces subterrâneas submarinas foi registrada nas plataformas continentais em todo o mundo. A preservação dinâmica e a vida útil das águas doces subterrâneas no ambiente marítimo continua sendo um problema hidrogeológico em aberto. Os mecanismos e escalas temporais de preservação das águas subterrâneas são examinados usando simulações numéricas baseadas em um modelo geologicamente representativo da plataforma de Nova Jersey, EUA. Utilizando dados sísmicos e de dados bidimensionais de poços com variação de profundidade, é construído um modelo hidrogeológico detalhado, com uma resolução vertical de 10 m. O modelo registra o ambiente de plataforma continental altamente heterogêneo e considera as tendências de compactação de porosidade derivadas de dados essenciais. Os resultados mostram simulações acopladas transientes do fluxo de água subterrânea e transporte de calor e de sais do final do Pleistoceno até os dias atuais e projeções de 18,000 anos no futuro. Eles revelam padrões de preservação de água doce e produzem perfis de salinidade de poços simulados consistentes com as observações de campo. As simulações mostram ocorrência de água doce em uma espessura de intervalos de 200 a 300 m e uma extensão lateral de dezenas de quilômetros podem ter sido preservados do Último Máximo Glacial até hoje. Descobriu-se que aproximadamente 30–45% do volume inicial de água doce permanece preservado após 12,000 anos, dependendo da condição de limite de recarga. O volume preservado varia entre 15 e 30% após 30,000 anos. Estes resultados melhoram a compreensão da preservação submarina de água doce subterrânea através de uma abordagem interdisciplinar que integra imagens sísmicas, modelagem hidrogeológica e simulação numérica de alto desempenho.

Notes

Acknowledgements

Simulations were performed with computing resources granted by RWTH Aachen University under project rwth0316. We would also like to thank the three anonymous reviewers and the editor for very constructive comments and suggestions that improved the content of this paper.

Funding information

Funding for this project is provided by the Deutsche Forschungsgemeinschaft (DFG) within the Priority Programme 527 – “International Ocean Discovery Program” (IODP) under grant RE-3863/2-1.

Supplementary material

10040_2019_1997_MOESM1_ESM.pdf (964 kb)
ESM 1 (PDF 964 kb)

References

  1. Aigner T, Braun S, Palermo D, Blendinger W, (2007) 3D geological modelling of a carbonate shoal complex: reservoir analogue study using outcrop data. First Break 25(1110).  https://doi.org/10.3997/1365-2397.2007022
  2. Asquith G, Krygowski D (2004) Basic relationships of well log interpretation. In: Asquith G, Krygowski D (eds) AAPG methods in exploration. AAPG Publ. 16, Tulsa, OK, pp 1–20Google Scholar
  3. Athy LF (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull 14(1):1–24Google Scholar
  4. Austin J, Fulthorpe C, Mountain G, Orange D, Field M (1996) Continental-margin seismic stratigraphy: assessing the preservation potential of heterogeneous geologic processes operating on continental shelves and slopes. Oceanography 9(3):173–177.  https://doi.org/10.5670/oceanog.1996.06 Google Scholar
  5. Austin JA, Christie-Blick N, Malone MJ (1998) Proc. ODP, Init. Rep 174A, College Station, TX (Ocean Drilling Program).  https://doi.org/10.2973/odp.proc.ir.174a.1998
  6. Bahr DB, Hutton EW, Syvitski JP, Pratson LF (2001) Exponential approximations to compacted sediment porosity profiles. Comput Geosci 27(6):691–700Google Scholar
  7. Bartlett GA (1969) Cretaceous biostratigraphy of the Grand Banks of Newfoundland. Atlantic Geol 5(1):4–14Google Scholar
  8. Bratton JF (2010) The three scales of submarine groundwater flow and discharge across passive continental margins. J Geol 118(5):565–575.  https://doi.org/10.1086/655114 Google Scholar
  9. Browning JV, Miller KG, Sugarman PJ, Kominz MA, McLaughlin PP, Kulpecz AA, Feigenson MD (2008) 100 Myr record of sequences, sedimentary facies and sea level change from Ocean Drilling Program onshore coreholes, US mid-Atlantic coastal plain. Basin Res 20(2):227–248Google Scholar
  10. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543.  https://doi.org/10.1016/j.scitotenv.2006.05.009 Google Scholar
  11. Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250Google Scholar
  12. Clauser C (2003) Numerical simulation of reactive flow in hot aquifers using SHEMAT and Processing SHEMAT. Springer, BerlinGoogle Scholar
  13. Clauser C (2011) Thermal storage and transport properties of rocks II: thermal conductivity and diffusivity. In: Gupta HK (ed) Encyclopedia of solid earth geophysics. Springer, Berlin, pp 1431–1448Google Scholar
  14. Cohen D, Person M, Wang P, Gable CW, Hutchinson D, Marksamer A, Dugan B, Kooi H, Groen K, Lizarralde D (2010) Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA. Groundwater 48(1):143–158Google Scholar
  15. Cooper HH Jr (1959) A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. J Geophys Res 64(4):461–467Google Scholar
  16. Davies CP (1997) Hydrocarbon evolution of the Bredasdorp Basin, offshore South Africa: from source to reservoir, PhD Thesis, University of Stellenbosch, Stellenbosch, South AfricaGoogle Scholar
  17. Department of Water (2017) Northern Perth Basin: geology, hydrogeology and groundwater resources. Hydrogeological Bull series, report no. HB1, Government of Western Australia, Perth. https://www.water.wa.gov.au/__data/assets/pdf_file/0011/8993/111005.pdf. Accessed Feb 2018
  18. Deutsch CV (2006) A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Comput Geosci 32(10):1669–1681Google Scholar
  19. Dinnel SP, Wiseman WJ (1986) Fresh water on the Louisiana and Texas shelf. Cont Shelf Res 6(6):765–784.  https://doi.org/10.1016/0278-4343(86)90036-1 Google Scholar
  20. Dittmar W (1884) Report on researches into the composition of ocean-water, collected by HMS Challenger: during the years 1873–1876. In: Physics and chemistry, vol 1. HM Stationery Office, London, pp 46 ppGoogle Scholar
  21. Drake CL, Ewing M, Sutton GH (1959) Continental margins and geosynclines: the east coast of North America north of Cape Hatteras. Phys Chem Earth 3:110–198Google Scholar
  22. Edelman JH (1972) Groundwater hydraulics of extensive aquifers. International Institute for Land Reclamation and Improvement, Wageningen, The NetherlandsGoogle Scholar
  23. Eltom H, Makkawi M, Abdullatif O, Alramadan K (2013) High-resolution facies and porosity models of the upper Jurassic Arab-D carbonate reservoir using an outcrop analogue, central Saudi Arabia. Arab J Geosci 6(11):4323–4335.  https://doi.org/10.1007/s12517-012-0708-1 Google Scholar
  24. Engelhart SE, Horton BP (2012) Holocene Sea level database for the Atlantic coast of the United States. Quat Sci Rev 54:12–25.  https://doi.org/10.1016/j.quascirev.2011.09.013 Google Scholar
  25. Falivene O, Cabrera L, Muñoz JA, Cazo PA, Fernández Ó, Sáez A (2007) Statistical grid-based facies reconstruction and modelling for sedimentary bodies: alluvial-palustrine and turbiditic examples. Geol Acta 5(3):199–230Google Scholar
  26. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  27. Fulthorpe CS, Austin JA Jr, Mountain GS (1999) Buried fluvial channels off New Jersey: did sea-level lowstands expose the entire shelf during the Miocene? Geology 27(3):203–206Google Scholar
  28. Glover RE (1959) The pattern of fresh-water flow in a coastal aquifer. J Geophys Res 64(4):457–459.  https://doi.org/10.1029/JZ064i004p00457 Google Scholar
  29. Greenlee SM, Schroeder FW, Vail PR (1988) Seismic stratigraphic and geohistory analysis of tertiary strata from the continental shelf off New Jersey: calculation of eustatic fluctuations from stratigraphic data. In: Sheridan RE, Grow JA (eds) The geology of North America, vol 2. The Geological Society of America, Boulder, CO, pp 437–444Google Scholar
  30. Greenlee SM, Devlin WJ, Miller KG, Mountain GS, Flemings PB (1992) Integrated sequence stratigraphy of Neogene deposits, New Jersey continental shelf and slope: comparison with the Exxon model. Geol Soc Am Bull 104(11):1403–1411Google Scholar
  31. Groen J, Velstra J, Meesters AGCA (2000) Salinization processes in paleowaters in coastal sediments of Suriname: evidence from δ37Cl analysis and diffusion modelling. J Hydrol 234(1–2):1–20.  https://doi.org/10.1016/S0022-1694(00)00235-3 Google Scholar
  32. Hart B (2008) Stratigraphically significant attributes. Lead Edge 27(3):320–324Google Scholar
  33. Hathaway JC, Poag CW, Valent PC, Miller RE, Schultz DM, Manhe FT, Kohout FA, Bothner MH, Sangi DA (1979) US Geological Survey core drilling on the Atlantic shelf. Science 206(4418):515–527Google Scholar
  34. Helland-Hansen W, Martinsen OJ (1996) Shoreline trajectories and sequences: description of variable depositional-dip scenarios. J Sediment Res 66:670–688.  https://doi.org/10.1306/D42683DD-2B26-11D7-8648000102C1865D Google Scholar
  35. Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers. In: Seawater in coastal aquifers. US Geol Surv Water Suppl Pap 1613-C, pp C70–C80Google Scholar
  36. Hodgson DM, Browning JV, Miller KG, Hesselbo SP, Poyatos-Moré M, Mountain GS, Proust J-N (2018) Sedimentology, stratigraphic context, and implications of Miocene intrashelf bottomset deposits, offshore New Jersey. Geosphere 14(1):95–114Google Scholar
  37. Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manag 21(1):35–48.  https://doi.org/10.1007/978-1-4020-5591-1_3 Google Scholar
  38. Inwood J, Lofi J, Davies S, Basile C, Bjerum C, Mountain G, Proust J-N, Otsuka H, Valppu H (2013) Statistical classification of log response as an indicator of facies variation during changes in sea level: Integrated Ocean Drilling Program Expedition 313. Geosphere 9(4):1025–1043Google Scholar
  39. Kohout FA (1967) Ground-water flow and the geothermal regime of the Floridian Plateau. Trans Gulf Coast Assoc Geol Soc 17:339–354Google Scholar
  40. Kooi H, Groen J (2001) Offshore continuation of coastal groundwater systems; predictions using sharp-interface approximations and variable-density flow modelling. J Hydrol 246(1):19–35Google Scholar
  41. Lachenbruch A, Sass JH (1977) Heat flow from the crust of the United States and the thermal regime of the crust. In: Heacock JG, Keller GV, Oliver JE, Simmons G (eds) The earth’s crust, vol 20. American Geophysical Union, Washington, DC, pp 635–675Google Scholar
  42. Lee S-Y, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Resour 30(9):1914–1932.  https://doi.org/10.1016/j.advwatres.2007.03.005 Google Scholar
  43. Lofi J, Inwood J, Proust J-N, Monteverde DH, Loggia D, Basile C, Otsuka H, Hayashi T, Stadler S, Mottl MJ et al (2013) Fresh-water and salt-water distribution in passive margin sediments: insights from Integrated Ocean Drilling Program Expedition 313 on the New Jersey margin. Geosphere 9(4):1009–1024Google Scholar
  44. Manheim FT, Hall RE (1976) Deep evaporitic strata off New York and New Jersey: evidence from interstitial water chemistry of drill cores. J Res US Geol Surv 4(6):697–702Google Scholar
  45. McAuley SD, Barringer JL, Paulachok GN, Clark JS, Zapecza OS (2001) Groundwater flow and quality in the Atlantic City 800 foot sand, New Jersey. New Jersey Geological Survey Rep GSR 41, New Jersey Geological Survey, Trenton, NJ.  https://doi.org/10.7282/T38913ZV
  46. McIver NL (1973) Stratigraphy of continental shelf, offshore Nova Scotia. AAPG Bull 57(10):2147–2148Google Scholar
  47. Meisler H, Leahy PP, Knobel LL (1984) Effect of eustatic sea-level changes on saltwater-freshwater in the northern Atlantic Coastal Plain, US Geol Surv Water Suppl Pap 2255Google Scholar
  48. Michael HA, Scott KC, Koneshloo M, Yu X, Khan MR, Li K (2016) Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophys Res Lett 43(20):10782–10791.  https://doi.org/10.1002/2016GL070863 Google Scholar
  49. Miller KG, Snyder SW (1997) Island Beach, Atlantic City, and Cape May Sites, New Jersey Coastal Plain. Proceedings of the Ocean Drilling Program, Scientific Results, 150X, College Station, TX (Ocean Drilling Program).  https://doi.org/10.2973/odp.proc.ir.150X.1994
  50. Miller KG, Sugarman P, van Fossen M, Liu C, Browning JV, Queen D, Aubry M-P, Burckle LD, Goss M, Bukry D (1994) Island beach site report. In: Miller KG, et al. (eds) Proc. ODP, Init. Reports, 150X, College Station, TX (Ocean Drilling Program).  https://doi.org/10.2973/odp.proc.ir.150x.111.1994
  51. Miller KG, Mountain GS, Leg 150 Shipboard Party (1996) Drilling and dating New Jersey Oligocene-Miocene sequences: ice volume, global sea level, and Exxon records. Science 271(5252):1092–1095.  https://doi.org/10.1126/science.271.5252.1092 Google Scholar
  52. Miller KG, Browning JV, Mountain GS, Bassetti MA, Monteverde D, Katz ME, Inwood J, Lofi J, Proust J-N (2013a) Sequence boundaries are impedance contrasts: core-seismic-log integration of Oligocene-Miocene sequences, New Jersey shallow shelf. Geosphere 9(5):1257–1285Google Scholar
  53. Miller KG, Mountain GS, Browning JV, Katz ME, Monteverde D, Sugarman PJ, Ando H, Bassetti MA, Bjerrum CJ, Hodgson D et al (2013b) Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf. Geosphere 9(5):1236–1256Google Scholar
  54. Monteverde DH, Mountain GS, Miller KG (2008) Early Miocene sequence development across the New Jersey margin. Basin Res 20(2):249–267Google Scholar
  55. Mountain G (2008) Portable HiRes Multi-Channel Seismic Shot Data from the New Jersey Slope acquired during the R/V Oceanus expedition OC270 (1995) Interdisciplinary Earth Data Alliance (IEDA).  https://doi.org/10.1594/IEDA/307762
  56. Mountain G, Proust JN, McInroy D, Cotterill C, Expedition 313 Scientists (2010) Proc. IODP, 313. Integrated Ocean Drilling Program Management Int., Tokyo.  https://doi.org/10.2204/iodp.proc.313.2010 Google Scholar
  57. OSPO (2013) Sea surface temperature contour charts (NOAA Office of Satellite and Product Operations). https://www.ospo.noaa.gov/Products/ocean/sst/contour/. Accessed 1 February 2018
  58. Payton CE (ed) (1977) Seismic stratigraphy: applications to hydrocarbon exploration. American Association of Petroleum Geologists, Tulsa, OKGoogle Scholar
  59. Person M, Dugan B, Swenson JB, Urbano L, Stott C, Taylor J, Willett M (2003) Pleistocene hydrogeology of the Atlantic continental shelf, New England. Geol Soc Am Bull 115(11):1324–1343Google Scholar
  60. Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, CambridgeGoogle Scholar
  61. Pinet PR (2013) Invitation to oceanography, 6th edn. Jones and Bartlett, Burlington, MAGoogle Scholar
  62. Poag WC (1985) Geologic evolution of the United States Atlantic margin. Reinhold, New YorkGoogle Scholar
  63. Poag CW, Sevon WD (1989) A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the US middle Atlantic continental margin. Geomorphology 2(1–3):119–157Google Scholar
  64. Poag CW, Ward LW (1993) Allostratigraphy of the US middle Atlantic continental margin; characteristics, distribution, and depositional history of principal unconformity-bounded upper Cretaceous and Cenozoic sedimentary units. US Geol Surv Prof Pap 1542,Google Scholar
  65. Post VE, Groen J, Kooi H, Person M, Ge S, Edmunds WM (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504(7478):71–78Google Scholar
  66. Povinec PP, Aggarwal PK, Aureli A, Burnett WC, Kontar EA, Kulkarni KM, Moore WS, Rajar R, Taniguchi M, Comanducci J-F, Cusimano G, Dulaiova H, Gatto L, Groening M, Hauser S, Levy-Palomo I, Oregioni B, Ozorovich YR, Privitera AMG, Schiavo MA (2006) Characterisation of submarine groundwater discharge offshore south-eastern Sicily. J Environ Radioact 89(1):81–101.  https://doi.org/10.1016/j.jenvrad.2006.03.008 Google Scholar
  67. Proust J-N, Pouderoux H, Ando H, Hesselbo SP, Hodgson DM, Lofi J, Rabineau M, Sugarman PJ (2018) Facies architecture of Miocene subaqueous clinothems of the New Jersey passive margin: results from IODP-ICDP Expedition 313. Geosphere 14(4):1564-1591.  https://doi.org/10.1130/GES01545.1
  68. Rath V, Wolf A, Bücker HM (2006) Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophys J Int 167(1):453–466Google Scholar
  69. Rider MH (1990) Gamma-ray log shape used as a facies indicator: critical analysis of an oversimplified methodology. In: Morton AC, Lovell MA, Hurst A (eds) Geological applications of wireline logs. The Geological Society, London, pp 27–37Google Scholar
  70. Riedel M, Reiche S, Aßhoff K, Buske S (2018) Seismic depth imaging of sequence boundaries beneath the New Jersey shelf. Mar Geophys Res 1–16.  https://doi.org/10.1007/s11001-018-9360-9
  71. Schlische RW, Withjack MO, Olsen PE (2013) Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance. In: Hames W, Mchone JG, Renne P, Ruppel C (eds) Insights from fragments of Pangea, vol 136. American Geophysical Union, Washington, DC, pp 33–60Google Scholar
  72. Schlumberger (2010) PETREL simulation software manuals. Schlumberger, Houston, TXGoogle Scholar
  73. Seifert D, Jensen JL (1999) Using sequential indicator simulation as a tool in reservoir description: issues and uncertainties. Math Geol 31(5):527–550.  https://doi.org/10.1023/A:1007563907124 Google Scholar
  74. Sekovski I, Newton A, Dennison WC (2012) Megacities in the coastal zone: using a driver-pressure-state-impact-response framework to address complex environmental problems. Estuar Coast Shelf Sci 96:48–59.  https://doi.org/10.1016/j.ecss.2011.07.011 Google Scholar
  75. Shepherd RG (1989) Correlations of permeability and grain size. Groundwater 27(5):633–638Google Scholar
  76. Sheridan RE (1974) Atlantic continental margin of North America. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, Berlin, pp 391–407Google Scholar
  77. Simmons GM (1992) Importance of submarine groundwater discharge (SGWD) and seawater cycling to material flux across sediment/water interfaces in marine environments. Mar Ecol Prog Ser 84(2):173–184Google Scholar
  78. Simpson MJ, Clement TP (2004) Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour Res 40(1):W01504Google Scholar
  79. Smith DE, Harrison S, Firth CR, Jordan JT (2011) The early Holocene Sea level rise. Quat Sci Rev 30(15–16):1846–1860.  https://doi.org/10.1016/j.quascirev.2011.04.019 Google Scholar
  80. Steckler MS, Mountain GS, Miller KG, Christie-Blick N (1999) Reconstruction of tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping. Mar Geol 154(1–4):399–420.  https://doi.org/10.1016/S0025-3227(98)00126-1 Google Scholar
  81. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21.  https://doi.org/10.1023/A:1014009426274 Google Scholar
  82. Strebelle SB, Journel AG (2001) Reservoir modeling using multiple-point statistics. Paper presented at the SPE Annual Technical Conference and Exhibition, 30 September-3 October, New Orleans, Louisiana, USA. Society of Petroleum Engineers.  https://doi.org/10.2118/71324-MS
  83. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans: their physics, chemistry, and general biology. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  84. Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16(11):2115–2129Google Scholar
  85. Tsandev I, Slomp CP, van Cappellen P (2008) Glacial-interglacial variations in marine phosphorus cycling: implications for ocean productivity. Glob Biogeochem Cycles 22(4):GB4004.  https://doi.org/10.1029/2007GB003054 Google Scholar
  86. Turekian KK (1968) Oceans. Foundations of Earth Science series. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  87. Vail PR (1987) Seismic stratigraphy interpretation using sequence stratigraphy. In: Bally AW (ed) AAPG studies in geology no. 27, vol 1: atlas of seismic stratigraphy. AAPG, Tulsa, OK, pp 1–10Google Scholar
  88. van der Gun J, Lipponen A (2010) Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2(11):3418–3435.  https://doi.org/10.3390/su2113418 Google Scholar
  89. Varma S, Michael K (2012) Impact of multi-purpose aquifer utilisation on a variable-density groundwater flow system in the Gippsland Basin, Australia. Hydrogeol J 20(1):119–134Google Scholar
  90. Watts AB, Steckler MS (1981) Subsidence and tectonics of Atlantic type continental margins. Proc. 26th Int. Geol. Cong., Geology of Continental Margin Symposium, Oceanology Acta, Paris, 1981, pp 143–154Google Scholar
  91. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. John Wiley & Sons, Ltd, Chichester.  https://doi.org/10.1002/9780470517277
  92. Wilson AM (2005) Fresh and saline groundwater discharge to the ocean: a regional perspective. Water Resour Res 41(2):W02016.  https://doi.org/10.1029/2004WR003399 Google Scholar
  93. Withjack MO, Schlische RW (2005) A review of tectonic events on the passive margin of eastern North America. In: Petroleum systems of divergent continental margin basins. Gulf Coast Section of SEPM, Houston, TX, pp 203–235Google Scholar
  94. Withjack MO, Schlische RW, Olsen PE (1998) Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America: an analog for other passive margins. AAPG Bull 82(5):817–835Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. T. Thomas
    • 1
    Email author
  • S. Reiche
    • 1
  • M. Riedel
    • 2
  • C. Clauser
    • 1
  1. 1.Institute for Applied Geophysics and Geothermal EnergyRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Geophysics and GeoinformaticsTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations