Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigating the hydraulic role of a large buried valley network on regional groundwater flow

Etude du rôle hydraulique d’un réseau étendu de paléovallées sur l’écoulement régional des eaux souterraines

Investigación del rol hidráulico de una gran red de valles enterrados en el flujo regional de aguas subterráneas

研究大型埋藏山谷网络对区域地下水流动的水力作用

Investigando o papel hidráulico de uma grande rede de vales soterrados no fluxo regional de águas subterrâneas

Abstract

An understanding of the three-dimensional hydrostratigraphic architecture of a buried valley network, in particular the continuity of permeable units within their fill, is needed to evaluate the resource potential and role of buried valley aquifers in regional groundwater flow. In this study, a facies modeling algorithm within the exploration and production software Petrel was used to construct a geological model of a buried valley network located in the central Peace Region in Northeast British Columbia, Canada. Facies were interpreted using resistivity inversion results from an airborne electromagnetic survey (SkyTEM) and borehole gamma-ray and lithology logs. This detailed geological model and a simplified geological model of the buried valley network were used to develop two interpretive numerical groundwater flow models in MODFLOW. Calibration was performed using baseflow estimates derived using a novel approach whereby upper and lower bounds for baseflow indices were combined with streamflow estimates from the Northeast Water Tool (NEWT), a hydrological modeling tool developed for water allocation for industrial use by the British Columbia Oil and Gas Commission. The modeling results suggest that permeable deposits exist within the buried valleys, but are not regionally connected throughout the whole network, and thus do not play a significant role in the regional groundwater flow regime. However, locally extensive permeable deposits occur within the buried valleys and may offer viable water sources for domestic use or to replace existing surface-water licenses for industrial use.

Résumé

La compréhension de l’architecture hydrostratigraphique tridimensionnelle d’un réseau de paléovallées, en particulier la continuité des unités perméables à l’intérieur de leur remplissage, est nécessaire pour évaluer le potentiel en ressource en eau et du rôle des aquifères de paléovallée dans l’écoulement régional de l’eau souterraine. Dans la présente étude, un algorithme de modélisation des faciès intégré au logiciel d’exploration et de production Petrel a été utilisé pour construire un modèle géologique du réseau de paléovallées situé au centre de la région de Peace dans le Nord-Est de la Colombie Britannique, au Canada. Les faciès ont été interprétés d’après les résultats de l’inversion de résistivité obtenus à partir d’un levé électromagnétique aéroporté (SkyTEM), d’un gamma ray en forage et des diagraphies lithologiques. Le modèle géologique détaillé et un modèle géologique simplifié du réseau de paléovallées ont été utilisés pour développer deux modèles numériques interprétatifs de l’écoulement de l’eau souterraine sous MODFLOW. Le calage a été réalisé en utilisant les estimations du débit de base dérivées d’une approche originale dans laquelle les limites supérieures et inférieures des indices d‘écoulement de base étaient combinés aux estimations de l’écoulement total du Northeast Water Tool (NEWT), un outil de modélisation hydrologique mis au point en vue de l’allocation de l’eau à usage industriel par la Commission du Pétrole et du Gaz de Colombie Britannique. Les résultats de la modélisation laissent entendre que des dépôts perméables existent à l’intérieur des paléovallées, mais qu’ils ne sont pas régionalement connectés partout dans l’ensemble du réseau et qu’ainsi ils ne jouent pas un rôle important dans le régime d’écoulement régional de l’eau souterraine. Cependant, des dépôts perméables localement étendus se rencontrent dans les paléovallées et peuvent offrir des ressources en eau viables pour les usages domestiques ou pour remplacer les autorisations d’eau de surface à usage industriel existantes.

Resumen

Para evaluar el potencial de recursos y el papel de los acuíferos de los valles enterrados en el flujo regional de aguas subterráneas es necesario conocer la arquitectura hidroestratigráfica tridimensional de la red de valles enterrados, en particular la continuidad de las unidades permeables dentro de su relleno. En este estudio, se utilizó un algoritmo de modelado de facies dentro del software de exploración y producción Petrel para construir un modelo geológico de una red de valles enterrados ubicados en la Peace Region en Northeast British Columbia, Canadá. Las facies fueron interpretadas usando los resultados de inversión de resistividad de un estudio electromagnético aerotransportado (SkyTEM) y registros de rayos gamma y de la litología de sondeos. Este modelo geológico detallado y un modelo geológico simplificado de la red de valles enterrados se utilizaron para desarrollar dos modelos numéricos interpretativos de flujo de aguas subterráneas en MODFLOW. La calibración se realizó utilizando estimaciones de flujo de base derivadas de un enfoque novedoso en el que se combinaron los límites superior e inferior de los índices de flujo de base con estimaciones de flujo de corriente de la Northeast Water Tool (NEWT), una herramienta de modelación hidrológica desarrollada para la asignación de agua para uso industrial por la British Columbia Oil and Gas Commission. Los resultados de la modelación sugieren que existen depósitos permeables dentro de los valles enterrados, pero que no están conectados regionalmente a través de toda la red, y por lo tanto no juegan un papel significativo en el régimen regional de flujo de agua subterránea. Sin embargo, depósitos permeables localmente extensos ocurren dentro de los valles enterrados y pueden ofrecer fuentes de agua confiables para uso doméstico o para reemplazar las permisos de agua superficial existentes para uso industrial.

摘要

为了评估埋藏山谷含水层在区域地下水流中的资源潜力和作用,需要了解埋藏山谷网络的三维水文地层结构,特别是其填充物中渗透的连续性。本研究采用勘探生产软件Petrel中的相模型算法构建了加拿大不列颠哥伦比亚省东北部中部和平区的埋藏山谷网络的地质模型。利用机载电磁勘探(SkyTEM)和钻孔伽马射线与岩性测井的电阻率反演结果解释了相。利用这个详细的地质模型和埋藏山谷网络的简化地质模型,开发了MODFLOW中的两个用于数据解释的地下水流数值模型。研究结合了基流上下限与为不列颠哥伦比亚油气委员会工业用水分配开发的水文模拟工具(简称东北水工具,NEWT)进行了基流量估算,并利用该新方法估算的基流量进行了模型率定。模拟结果表明,埋藏山谷中存在可渗透的沉积物,但在整个山谷网络中没有形成区域上的连通,因此在区域地下水流动系统中影响不大。然而,埋藏山谷存在局部分布的可渗透沉积物,该沉积物可以为家庭提供可利用水源或者替代现有工业用途的地表水许可证。

Resumo

Uma compreensão da arquitetura hidrostratigráfica tridimensional de uma rede de vales soterrados, em particular a continuidade de unidades permeáveis dentro de seu aterro, é necessária para avaliar os potenciais recursos e o papel de aquíferos de vales enterrados no fluxo regional de águas subterrâneas. Neste estudo, um algoritmo de modelagem de fácies dentro do software de exploração e produção Petrel foi usado para construir um modelo geológico de uma rede de vales soterrados localizada na região central da Peace, nordeste de Columbia Britânica, Canadá. As fácies foram interpretadas usando resultados de inversão de resistividade a partir de um levantamento eletromagnético aéreo (SkyTEM) e perfilagem de raios gama e litologia de furos de sondagem. Este modelo geológico detalhado e um modelo geológico simplificado da rede de vales soterrados foram usados para desenvolver dois modelos numéricos interpretativos de fluxo de águas subterrâneas em MODFLOW. A calibração foi realizada usando estimativas derivadas de fluxo de base usando uma nova abordagem, na qual os limites superior e inferior para índices de escoamento de base foram combinados com estimativas de vazão a partir da Northeast Water Tool (NEWT), uma ferramenta de modelagem hidrológica desenvolvida para alocação de água para uso industrial pela Comissão de Óleo e Gás da Columbia Britânica. Os resultados da modelagem sugerem que depósitos permeáveis existem dentro dos vales soterrados, mas não estão conectados regionalmente em toda a rede e, portanto, não desempenham um papel significativo no regime regional de fluxo de águas subterrâneas. No entanto, depósitos permeáveis localmente extensos ocorrem dentro dos vales soterrados e podem oferecer fontes de água viáveis para uso doméstico ou para substituir licenças de águas superficiais existentes para uso industrial.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aarhus Geophysics ApS (2016a) Processing and inversion of SkyTEM data: Charlie Lake Area—phase 1. Rep 2016-09b, Geoscience BC, Vancouver, 28 pp

  2. Aarhus Geophysics ApS (2016b) Processing and inversion of SkyTEM data: DOIG area—phase 1. Rep 2016-09c, Geoscience BC, Vancouver, 27 pp

  3. Aarhus Geophysics ApS (2016c) Processing and inversion of SkyTEM data: Peace River “Conoco” Area—phase 2. Rep 2016-09d, Geoscience BC, Vancouver, 33 pp

  4. Aarhus Geophysics ApS (2016d) Processing and inversion of SkyTEM data: Peace River Main Area—phase 1. Rep 2016-09a, Geoscience BC, Vancouver, 28 pp

  5. Aarhus Geophysics ApS (2016e) Processing and inversion of SkyTEM data: Peace River “Sikanni” Area—phase 2. Rep 2016-09e, Geoscience BC, Vancouver, 27 pp

  6. Aarhus Geophysics ApS and GEUS (2017) Processing and inversion of SkyTEM data: Peace River North-Western Area. Rep 2018-06, Geoscience BC, Vancouver, 40 pp

  7. Andriashek LDD (2000) Quaternary stratigraphy of the buried Birch and Willow bedrock channels, NE Alberta. EUB/AGS Earth Sciences, Rep 2000-15, Alberta Energy and Utilities Board, Edmonton, AB, 61 pp

  8. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Mech Eng 146:54–67

  9. Baye A, Rathfelder K, Wei M, Yin J (2016) Hydrostratigraphic, hydraulic and hydrogeochemical descriptions of Dawson Creek-Groundbirch areas, Northeast BC: Victoria, Province of B.C. Water Sci Ser 2016-04:58

  10. BC Ministry of Energy and Mines (2011) Diagrammatic S.W.–N.E. geologic section through Northeastern British Columbia. BC Ministry of Energy and Mines. http://www2.gov.bc.ca/gov/content/industry/natural-gas-oil/petroleum-geoscience/sedimentary-basins-of-bc/northeastern-bc-basin. Accessed May 2017

  11. BC Ministry of Environment (2017) WELLS database. BC Ministry of Environment. https://a100.gov.bc.ca/pub/wells/public/indexreports.jsp. Accessed July 2017

  12. BC Ministry of Natural Gas Development (2011) Stratigraphic correlation chart: Northeastern British Columbia and adjacent parts of Alberta, Yukon and Northwest Territories. BC Ministry of Natural Gas Development. http://www2.gov.bc.ca/gov/content/industry/natural-gas-oil/petroleum-geoscience/sedimentary-basins-of-bc/northeastern-bc-basin. Accessed May 2017

  13. BCOGC (2010) Oil and gas activities act. Drilling and production regulation. British Columbia Oil and Gas Comm, Victoria, BC

  14. BCOGC (2015) Water management for oil and gas activity: 2015 annual report. British Columbia Oil and Gas Comm, Victoria, BC, 33 pp

  15. BCOGC (2017) NEWT: Northeast Water Tool. British Columbia Oil and Gas Comm, Victoria, BC. https://water.bcogc.ca/newt. Accessed November 2017

  16. Beck HE, Van Dijk AIJM, Miralles DG, De Jeu RAM, Bruijnzeel LA, McVicar TR, Schellekens J (2013) Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resour Res 49(12):7843–7863. https://doi.org/10.1002/2013WR013918

  17. Bemex Consulting International and Quaternary Geosciences Inc (2016) Peace Area Project: well selection for testing geological model based on gamma and airborne electromagnetic (AEM) studies. Rep 2016-18, Geoscience BC, Vancouver, 42 pp

  18. Best M, Levson V (2017) Peace area project: comparison of resistivity, gamma, and geological logs with airborne EM inversions. Rep 2018-08, Geoscience BC, Vancouver, 27 pp

  19. BGC Engineering and Hemmera Envirochem (2012) Site C clean energy project: volume 2 appendix F: groundwater regime technical data report. BC Hydro Power and Authority, Vancouver, 204 pp

  20. Chapman A, Kerr B, Wilford D (2018) A water allocation decision-support model and tool for predictions in ungauged basins in northeast British Columbia. J Am Water Resour Assoc 54(3):676–693. https://doi.org/10.1111/1752-1688.12643

  21. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 328 pp

  22. Cowen A (1998) BC Peace Region groundwater initiative interim report 1998. Prairie Farm Rehabilitation Administration, Northern Alberta/BC Region, Agriculture and Agri-Food Canada, Burnaby, BC, 25 pp

  23. Cummings DI, Russell HAJ, Sharpe DR (2012) Buried-valley aquifers in the Canadian Prairies: geology, hydrogeology, and origin. Can J Earth Sci 49(9):987–1004. https://doi.org/10.1139/E2012-041

  24. Environment Canada (2017a) Fort St. John station results: climate normals 1981–2010. http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName&txtStationName=Fort+St+John&searchMethod=contains&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=1413&dispBack=1. Accessed July 2017

  25. Environment Canada (2017b) Historical hydrometric data: Halfway River above Graham River station 07FA003. https://wateroffice.ec.gc.ca/download/index_e.html?results_type=historical. Accessed July 2017

  26. Environment Canada (2017c) Historical hydrometric data: Peace River above Pine River station 07FA004. https://wateroffice.ec.gc.ca/download/index_e.html?results_type=historical. Accessed July 2017

  27. Environment Canada (2017d) Historical hydrometric data: Graham River above Colt Creek station 07FA005. https://wateroffice.ec.gc.ca/download/index_e.html?results_type=historical. Accessed July 2017

  28. Environment Canada (2017e) Historical hydrometric data: Halfway River near Farrell Creek station 07FA006. https://wateroffice.ec.gc.ca/download/index_e.html?results_type=historical. Accessed July 2017

  29. Environment Canada (2017f) Historical hydrometric data: Peace River at Hudsons Hope station 07EF001. https://wateroffice.ec.gc.ca/download/index_e.html?results_type=historical. Accessed July 2017

  30. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

  31. Government of British Columbia (2017) Water Sustainability Act. Water Sustainability Regulation, Statutes of British Columbia 2014, chap 15. http://www.bclaws.ca/civix/document/id/complete/statreg/14015#section9. Accessed December 2017

  32. Harbaugh AW (2005) MODFLOW-2005, the U.S. Geological Survey’s modular ground water flow model: the groundwater flow process. US Geol Surv Tech Methods 6-A16, 253 pp

  33. Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone, travel time, and solute-transport predictions using inverse modelling and different geological models. Hydrogeol J 11(2003):536–548. https://doi.org/10.1007/s10040-003-0276-2

  34. Hartman GMD, Clague JJ (2008) Quaternary stratigraphy and glacial history of the Peace River valley, Northeast British Columbia. Can J Earth Sci 45(5):549–564. https://doi.org/10.1139/E2012-041

  35. Hartman GMD (2005) Quaternary stratigraphy and geologic history of Charlie Lake (NTS 94A). MSc Thesis, Simon Fraser University, Burnaby, BC, Canada

  36. Hickin AS (2011) Preliminary bedrock topography and drift thickness of the Montney Play area. BC Ministry of Energy and Mines Energy Open File 2011-1, Rep 2011-07, Geoscience BC, Vancouver, 2 maps, 1:500 000

  37. Hickin AS, Best ME, Pugin A (2016) Geometry and valley-fill stratigraphic framework for aquifers in the Groundbirch paleovalley assessed through shallow seismic and ground-based electromagnetic surveys. BC Ministry Energy Mines British Columbia Geol Surv Open File 2016-5, 46 pp

  38. Holding S, Allen DM (2015) Shallow groundwater intrinsic vulnerability mapping in Northeast British Columbia. Simon Fraser University, Final report, Pacific Institute for Climate Solutions and BC Ministry of Energy and Mines, Victoria, BC, 41 pp

  39. Holland SS (1964) Landforms of British Columbia, a physiographic outline. Bull no. 48:136, British Columbia Dept. of Mines and Petroleum Resources, Victoria, BC

  40. Høyer AS, Lykke-Andersen H, Jørgensen F, Auken E (2011) Combined interpretation of SkyTEM and high-resolution seismic data. Phys Chem Earth 36(16):1386–1397. https://doi.org/10.1016/j.pce.2011.01.001

  41. Levson V (2008) Geology of Northeast British Columbia and Northwest Alberta: diamonds, shallow gas, gravel, and glaciers. Can J Earth Sci 45(5):509–512. https://doi.org/10.1139/E08-022

  42. Levson V, Best M (2017a) North-east BC sonic drilling project physical log descriptions and interpretations. Rep 2017-16, Geoscience BC, Vancouver, 35 pp

  43. Levson V, Best M (2017b) Summary report on proposed water well locations for Halfway River First Nation area. Rep 2017-17:21, Geoscience BC, Vancouver

  44. Levson VM, Hickin AS, Ferbey T, Best M (2006) Mapping high resistivity buried channel deposits with airborne electromagnetic surveys and other methods. 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2006): Geophysical Applications for Environmental and Engineering Hazards – Advances and Constraints, Environ. and Eng. Geophys. Soc. (EEGS), Denver, CO

  45. Lowen D (2011) Aquifer classification mapping in the Peace River Region for the Montney Water Project. Lowen Hydrogeology, Victoria, 51 pp

  46. Mathews WH (1978) Quaternary stratigraphy and geomorphology of Charlie Lake (94A) map area, British Columbia. Paper 76-20, Geol Surv of Canada, Ottawa, 32 pp

  47. Morgan SE (2018) Investigating the role of buried valley aquifer systems in the regional hydrogeology of the Central Peace Region in Northeast British Columbia. MSc Thesis, Simon Fraser University, Burnaby, BC, Canada, 191 pp

  48. Morgan SE, Allen DM (2018) Geoscience BC Peace Project: final report. Rep 2018-13, Geoscience BC, Vancouver, 70 pp

  49. Morris DA, Johnson AI (1967) Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the US Geological Survey. US Geol Surv Water Supply Pap 1839-D, 42 pp

  50. Mykula Y (2017) Petrophysical interpretation on six shallow wells in the Peace Region of BC. Rep 2017-18, Geoscience BC, Vancouver, 7 pp

  51. Oldenborger GA, Logan CE, Hinton MJ, Sapia V, Pugin AJM, Sharpe DR, Calderhead AI, Russell HAJ (2014) 3D hydrogeological model building using airborne electromagnetic data. Near Surface Geoscience 2014-20th European Meeting of Environmental and Engineering Geophysics. European Assoc. of Geoscientists and Engineers, Houten, The Netherlands, 5 pp

  52. Oldenborger GA, Pugin AM, Pullan SE (2013) Airborne time-domain electromagnetics, electrical resistivity and seismic reflection for regional three-dimensional mapping and characterization of the Spiritwood Valley Aquifer, Manitoba, Canada. Near Surf Geophys 2013(11):63–74

  53. Petrel Robertson Consulting Ltd. (2015) Interpretation of Quaternary sediments and depth to bedrock through data compilation and correction of gamma logs. Rep 2015-04, Geoscience BC, Vancouver, 24 pp

  54. Pollock DW (1989) Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite difference ground-water flow model. US Geol Surv Open File Rep 89-381

  55. Quartero EM, Bechtel D, Leier AL, Bentley LR (2014) Gamma-ray normalization of shallow well-log data with applications to the Paleocene Paskapoo Formation, Alberta. Can J Earth Sci 51(5):452–465

  56. Russell HAJ, Hinton MJ, van der Kamp G, Sharpe DR (2004) An overview of the architecture, sedimentology and hydrogeology of buried-valley aquifers in Canada. Geo-Engineering for Society and Its Environment, 57th Geotechnical Conference and the 5th Joint CGS-IAH Conference, Quebec, October, 2004, pp 26–33

  57. Schlumberger (2016) Petrel. Petrel 2016 for Windows, online help (not available in libraries), Schlumberger, Houston, TX

  58. Seifert D, Sonnenborg TO, Scharling P, Hinsby K (2008) Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeol J 16(4):659–674

  59. Seyoum WM, Eckstein Y (2014) Hydraulic relationships between buried valley sediments of the glacial drift and adjacent bedrock formations in northeastern Ohio, USA. Hydrogeol J 22(5):1193–1206

  60. Shaver RB, Pusc SW (1992) Hydraulic barriers in Pleistocene buried-valley aquifers. Ground Water 30(1):21–28

  61. SkyTEM Surveys AS (2015) SkyTEM survey: British Columbia, Canada, data report. Rep 2016-03, Geoscience BC, Vancouver, 62 pp

  62. Sonnenborg TO, Christensen BSB, Nyegaard P, Henriksen HJ, Refsgaard JC (2003) Transient modelling of regional groundwater flow using parameter estimates from steady-state automatic calibration. J Hydrol 273(2003):188–204. https://doi.org/10.1016/S0022-1694(02)00389-X

  63. Sørensen KI, Auken E (2004) SkyTEM: a new high-resolution helicopter transient electromagnetic system. Explor Geophys 35(3):194–202

  64. Steuer A, Siemon B, Auken E (2009) A comparison of helicopter-borne electromagnetics in frequency-and time-domain at the Cuxhaven Valley in northern Germany. J Appl Geophys 67(3):194–205

  65. Troldborg L, Refsgaard JC, Jensen KH, Engesgaard P (2007) The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system. Hydrogeol J 15(2007):843–860. https://doi.org/10.1007/s10040-007-0192-y

  66. Troost KG, Curry BB (1991) Genesis and continuity of Quaternary sand and gravel in glacigenic sediment at a proposed low-level radioactive waste disposal site in east-central Illinois. Environ Geol Water Sci 18(3):159–170

  67. USGS (2014) USGS SRTM 1 arc-second global: digital elevation model of the ground surface of the Peace Region in Northeast British Columbia (25 m resolution). https://earthexplorer.usgs.gov/. Accessed December 2015

  68. van der Kamp G, Maathuis H (2012) The unusual and large drawdown response of buried-valley aquifers to pumping. Ground Water 50(2):207–215

Download references

Acknowledgements

This study was carried out as part of Geoscience BC’s Peace Project (e.g. SkyTEM Surveys ApS 2015; Petrel Robertson Consulting Ltd. 2015; Aarhus Geophysics ApS 2016a, b, c, d, e; Bemex Consulting International and Quaternary Geosciences Inc. 2016, Levson and Best 2017a and 2017b; Best and Levson 2017; Mykula 2017; Aarhus Geophysics ApS and GEUS 2017; Morgan and Allen 2018), which was aimed at mapping shallow aquifers and contributing new information about the available groundwater resources in NEBC. This paper is based on the MSc thesis of Samantha Morgan at Simon Fraser University. The authors would like to thank Mr. Mike Wei for his review and comments on Samantha’s thesis. The authors are also very grateful to all of the partners and collaborators of the Peace Project. Much appreciation also goes to Dr. Vic Levson for his invaluable insight and feedback, and to Polina Abdrakhimova for her assistance in using MATLAB for the export of Petrel to MODFLOW.

Author information

Correspondence to Samantha E. Morgan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgan, S.E., Allen, D.M., Kirste, D. et al. Investigating the hydraulic role of a large buried valley network on regional groundwater flow. Hydrogeol J 27, 2377–2397 (2019). https://doi.org/10.1007/s10040-019-01995-0

Download citation

Keywords

  • Buried valley aquifers
  • Geophysical methods
  • Petrel
  • Groundwater modeling
  • Canada