Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2263–2278 | Cite as

Estimation of depression-focussed groundwater recharge using chloride mass balance: problems and solutions across scales

  • Igor PavlovskiiEmail author
  • Masaki Hayashi
  • Edwin E. Cey
Paper
  • 108 Downloads

Abstract

This study evaluates the applicability of the chloride mass balance (CMB) method for groundwater recharge estimation in a semi-arid region in Canada, where recharge largely occurs under topographic depressions. The CMB applicability was tested at three scales: point-scale recharge rates at different topographical positions; average recharge rates incorporating multiple topographical positions on a local scale; and an identification of spatial trends of recharge on a regional scale. Agricultural chloride inputs were shown to be a major factor affecting chloride concentrations at all three scales, where elevated chloride concentrations in the shallow subsurface affected by agricultural inputs surpassed background concentrations by an order of magnitude. The propagation depth of elevated concentrations varied among study sites from being largely confined to the unsaturated zone to extending well into the saturated zone. Lateral chloride redistribution further affected the CMB applicability for point-scale recharge rates. Specific solutions enabling the CMB application in these conditions are presented, including runoff concentration measurements for point-scale estimates, using groundwater age tracers on a local scale, and using the harmonic mean concentration of a large number of samples on a regional scale.

Keywords

Groundwater recharge Chloride mass balance Semi-arid Agriculture Unsaturated zone 

Estimation de la recharge des eaux souterraines dans des zones de dépressions à l’aide du bilan massique en chlorures: problèmes et solutions à toutes les échelles

Résumé

Cette étude évalue l’applicabilité de la méthode du bilan massique en chlorures (BMC) pour l’estimation de la recharge des eaux souterraines dans une région semi-aride du Canada, où la recharge se produit en grande partie dans des dépressions topographiques. L’applicabilité du BMC a été testée à trois échelles: taux de recharge ponctuel à différents niveaux topographiques; taux de recharge moyens incorporant plusieurs niveaux topographiques à une échelle locale; et identification des tendances spatiales de recharge à l’échelle régionale. Les apports en chlorures agricoles se sont révélés être un facteur majeur affectant les concentrations en chlorures aux trois échelles, en effet les concentrations élevées en chlorures dans le sous-sol peu profond, touché par les intrants agricoles, dépassent les concentrations naturelles d’un ordre de grandeur. La profondeur de propagation des concentrations élevées varie d’un site d’étude à l’autre, de la zone non saturée à la zone saturée. La redistribution latérale des chlorures a une incidence supplémentaire sur l’applicabilité du BMC aux taux de recharge à l’échelle ponctuelle. Des solutions spécifiques permettant l’application du BMC dans ces conditions sont présentées et comprennent des mesures de concentrations du ruissellement pour des estimations à l’échelle ponctuelle, l’utilisation des traceurs de datation des eaux souterraines à l’échelle locale, et l’utilisation de la moyenne harmonique des concentrations d’un grand nombre d’échantillons à l’échelle régionale.

Estimación de la recarga del agua subterránea concentrada en depresiones utilizando el balance de masa de cloruro: problemas y soluciones a través de distintas escalas

Resumen

Este estudio evalúa la aplicabilidad del método de balance de masa de cloruros (CMB) para la estimación de la recarga de aguas subterráneas en una región semiárida de Canadá, donde la recarga ocurre principalmente en depresiones topográficas. La aplicabilidad del CMB se probó a tres escalas: tasa de recarga a escala del sitio en diferentes posiciones topográficas; tasa de recarga promedio que incorporan múltiples posiciones topográficas a escala local; y una identificación de las tendencias espaciales de recarga a escala regional. Las entradas de cloruro de origen agrícola demostraron ser un factor importante que afecta las concentraciones de cloruro en las tres escalas, donde las concentraciones elevadas de cloruro en el subsuelo poco profundo afectado por las entradas debido a la agricultura superaron las concentraciones de fondo en un orden de magnitud. La profundidad de la propagación de las concentraciones elevadas varió entre los sitios de estudio, desde estar confinada en gran medida a la zona no saturada hasta extenderse hasta bien adentro de la zona saturada. La redistribución lateral de cloruro afectó aún más la aplicabilidad del CMB para las tasas de recarga a escala del sitio. Se presentan soluciones específicas que permiten la aplicación del CMB en estas condiciones, incluyendo mediciones de la concentración de escorrentía para estimaciones a escala del sitio, utilizando trazadores de la edad de aguas subterráneas a escala local, y utilizando la concentración media armónica de un gran número de muestras a escala regional.

基于氯质量平衡法的以洼地为目标的地下水补给量估算:跨尺度的问题和解决方案

摘要

本研究评估了氯质量平衡(CMB)方法应用于加拿大半干旱地区地下水补给量估算的适用性,其中地下水补给主要在地面洼地。在三个尺度上进行了CMB方法的适用性测试,包括:不同地形的点尺度补给率;局部地段考虑多个地形的平均补给率;区域尺度补给量空间变化趋势识别。研究表明农业氯来源是影响三个尺度氯化物浓度的主要因素,其中受农业氯来源影响的浅层地下水氯化物浓度增加值超过了背景浓度的一个数量级。高浓度氯的扩散深度随地点不同发生变化,主要在不饱和区,并且很好地扩散到饱和区。侧向氯质量的再分配进一步影响了CMB在点尺度进行地下水补给率估算的适用性。论文提出了在三种尺度下CMB方法应用的具体解决方案,包括点尺度估算时径流浓度测量,局部尺度时采用地下水年龄示踪剂,以及区域尺度上使用大量样本的调和平均浓度。

Estimativa de recarga de águas subterrâneas concentrada em depressões topográficas usando balanço de massa de cloreto: problemas e soluções em escalas

Resumo

Este estudo avalia a aplicabilidade do método do balanço de massa de cloreto (BMC) para estimativa de recarga de águas subterrâneas em uma região semiárida do Canadá, onde a recarga ocorre em grande parte em depressões topográficas. A aplicabilidade do BMC foi testada em três escalas: taxas de recarga em escala pontual em diferentes posições topográficas; taxas médias de recarga incorporando múltiplas posições topográficas em escala local; e uma identificação das tendências espaciais de recarga em escala regional. A contribuição das atividades agrícola mostrou-se o fator mais importante que afeta as concentrações de cloreto em todas as três escalas, onde concentrações elevadas do íon na parte rasa da subsuperfície superaram as concentrações de fundo em uma ordem de magnitude. A profundidade de propagação de concentrações elevadas variou entre os locais de estudo, sendo confinada em grande parte à zona não saturada, estendendo-se até a zona saturada. A redistribuição lateral de cloreto afetou ainda mais a aplicabilidade do BMC para taxas de recarga em escala pontual. Soluções específicas que possibilitam a aplicação do BMC nestas condições são apresentadas, incluindo medidas de concentração de escoamento para estimativas de escala de pontos, usando traçadores de idade das águas subterrâneas em escala local e usando a média harmônica da concentração de um grande número de amostras em escala regional.

Notes

Acknowledgements

The authors thank the Christensen and Stauffer families for allowing the installation of research equipment and sample collection on their lands; Brandon Hill, Jesse He, Laura Morgan and other members of the Groundwater Recharge in the Prairies (GRIP) project for assistance with fieldwork; Larry Bentley for helpful discussion; Farzin Malekani for assistance in sample analysis; Alberta Innovates, Alberta Agriculture and Forestry, Alberta Environment and Parks, and Alberta Energy Regulator - Alberta Geological Survey for supporting the GRIP project; and NSERC CREATE for Water Security and the Canadian Geophysical Union for providing scholarships to the lead author. Constructive suggestions by the editor and reviewers improved the clarity of the paper.

Supplementary material

10040_2019_1993_MOESM1_ESM.pdf (376 kb)
ESM 1 (PDF 376 kb)
10040_2019_1993_MOESM2_ESM.zip (124 kb)
ESM 2 (ZIP 123 kb)

References

  1. Agriculture and Agri-Food Canada (2003) A national ecological framework for Canada: GIS data. http://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html. Accessed 14 June 2016
  2. Alberta Environment and Parks (2018) Alberta water well information database. http://groundwater.alberta.ca/WaterWells/d/. Accessed June 2019
  3. Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173.  https://doi.org/10.1016/0022-1694(83)90019-7 CrossRefGoogle Scholar
  4. Bachu S (1999) Flow systems in the Alberta Basin: patterns, types and driving mechanisms. Bull Can Petrol Geol 47:455–474Google Scholar
  5. Barker AA, Riddell JTF, Slattery SR, Andriashek LD, Moktan H, Wallace S, Lyster S, Jean G, Huff GF, Stewart SA, Lemay TG (2011) Edmonton-Calgary corridor groundwater atlas. Energy Resources Conservation Board, Edmonton, ABGoogle Scholar
  6. Cartwright I, Gilfedder B, Hofmann H (2013) Transient hydrological conditions implied by chloride mass balance in southeast Australian rivers. Chem Geol 357:29–40.  https://doi.org/10.1016/j.chemgeo.2013.08.028 CrossRefGoogle Scholar
  7. Daniel J, Staricka J (2000) Frozen soil impact on ground water–surface water interaction. J Am Water Resour Assoc 36:51–60CrossRefGoogle Scholar
  8. Dettinger MD (1989) Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A. by using chloride-balance calculations. J Hydrol 106:55–78.  https://doi.org/10.1016/0022-1694(89)90166-2 CrossRefGoogle Scholar
  9. EBA Engineering Consultants (2003) Spy Hill Lands provincial aggregate operation hydrogeological assessment. EBA, Calgary, ABGoogle Scholar
  10. Environmental Protection Agency (EPA) (2016) Level III and IV ecoregions of the continental United States. https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states. Accessed 1 Jan 2016
  11. Environmental Protection Agency (EPA) (2018) Clean Air Markets Division. Clean Air Status and Trends Network (CASTNET) Annual Aggregate Deposition Data. www.epa.gov/castnet. Accessed 3 August 2018
  12. Fenton MM, Waters EJ, Pawley SM, Atkinson N, Utting DJ, Mckay K (2013) Digital data 2013–0002 Surficial Geology of Alberta, 1:1,000,000 scale (GIS data, polygon features). Alberta Geological Society, Edmonton, ABGoogle Scholar
  13. Government of Alberta (2005) Natural regions and subregions of Alberta (shapefile). http://www.albertaparks.ca/media/429607/natural_regions_subregions_of_alberta.zip. Accessed June 2019
  14. Grasby SE, Chen Z, Hamblin AP, Wozniak PRJ, Sweet AR (2008) Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Can J Earth Sci 45:1501–1516.  https://doi.org/10.1139/E08-069 CrossRefGoogle Scholar
  15. Grieef LA (2006) Establishing a groundwater monitoring network using rural wells in the West Nose Creek Watershed, Alberta. MSc Thesis, University of Calgary, Calgary, ABGoogle Scholar
  16. Harrison SM, Gentzis T, Labute G, Seifert S, Payne M (2006) Preliminary hydrogeological assessment of late Cretaceous-Tertiary Ardley coals in part of the Alberta Basin, Alberta, Canada. Int J Coal Geol 65:59–78.  https://doi.org/10.1016/j.coal.2005.04.009 CrossRefGoogle Scholar
  17. Hayashi M, van der Kamp G, Rudolph DL (1998) Water and solute transfer between a prairie wetland and adjacent uplands, 2: chloride cycle. J Hydrol 207:56–67.  https://doi.org/10.1016/S0022-1694(98)00099-7 CrossRefGoogle Scholar
  18. Hedlin RA (1995) Agriculture on the Canadian Prairies: retrospect and prospect. Can J Soil Sci 75:253–259CrossRefGoogle Scholar
  19. Huang T, Pang Z (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol J 19:177–186.  https://doi.org/10.1007/s10040-010-0643-8 CrossRefGoogle Scholar
  20. Huang T, Pang Z (2013) Groundwater recharge and dynamics in northern China: implications for sustainable utilization of groundwater. Procedia Earth Planet Sci 7:369–372.  https://doi.org/10.1016/j.proeps.2013.03.182 CrossRefGoogle Scholar
  21. International Atomic Energy Agency/World Meteorological Organisation (IAEA/WMO) (2017) Global Network of Isotopes in Precipitation. The GNIP Database. http://www.iaea.org/water. Accessed 14 April 17
  22. Joshi B, Maulé C (2000) Simple analytical models for interpretation of environmental tracer profiles in the vadose zone. Hydrol Process 14:1503–1521.  https://doi.org/10.1002/1099-1085(20000615)14:8<1503::AID-HYP990>3.0.CO;2-Z CrossRefGoogle Scholar
  23. Kao C, Bouarfa S, Zimmer D (2001) Steady state analysis of unsaturated flow above a shallow water-table aquifer drained by ditches. J Hydrol 250:122–133.  https://doi.org/10.1016/S0022-1694(01)00426-7 CrossRefGoogle Scholar
  24. Keller CK, van der Kamp G (1988) Hydrogeology of two Saskatchewan tills, II: occurrence of sulfate and implications for soil salinity. J Hydrol 101:123–144.  https://doi.org/10.1016/0022-1694(88)90031-5 CrossRefGoogle Scholar
  25. Kopáček J, Hejzlar J, Porcal P, Posch M (2014) A mass-balance study on chloride fluxes in a large central European catchment during 1900-2010. Biogeochemistry 120:319–335.  https://doi.org/10.1007/s10533-014-0002-2 CrossRefGoogle Scholar
  26. Marchildon GP, Kulshreshtha S, Wheaton E, Sauchyn D (2008) Drought and institutional adaptation in the Great Plains of Alberta and Saskatchewan, 1914–1939. Nat Hazards 45:391–411.  https://doi.org/10.1007/s11069-007-9175-5 CrossRefGoogle Scholar
  27. McKenzie RH, Pauly D (2013) Potassium fertilizer application in crop production. Agdex 542-9. Alberta Gov, Edmonton, ABGoogle Scholar
  28. Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49:163–177CrossRefGoogle Scholar
  29. Meriano M, Eyles N, Howard KWF (2009) Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. J Contam Hydrol 107:66–81.  https://doi.org/10.1016/j.jconhyd.2009.04.002 CrossRefGoogle Scholar
  30. Meyboom P (1966) Unsteady groundwater flow near a willow ring in hummocky moraine. J Hydrol 4:38–62CrossRefGoogle Scholar
  31. National atmospheric deposition program (NADP) (2018) National atmospheric deposition program. http://nadp.slh.wisc.edu/data/ntn/. Accessed 3 December 2018
  32. Niazi A, Bentley LR, Hayashi M (2017) Estimation of spatial distribution of groundwater recharge from stream baseflow and groundwater chloride. J Hydrol 546:380–392.  https://doi.org/10.1016/j.jhydrol.2017.01.032 CrossRefGoogle Scholar
  33. Panno, SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, Kelly DJO (2006) Characterization and identification of Na-Cl sources in ground water 44.  https://doi.org/10.1111/j.1745-6584.2005.00127.x. pp 176–187
  34. Parsons DF, Hayashi M, van der Kamp G (2004) Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada. Hydrol Process 18:2011–2027.  https://doi.org/10.1002/hyp.1345 CrossRefGoogle Scholar
  35. Prior GJ, Hathway B, Glombick PM, Pana DI, Banks CJ, Hay DC, Schneider CL, Grobe M, Elgr R, Weiss J (2013) Digital data 2013–0018 bedrock geology of Alberta (GIS data, polygon features). Alberta Geological Society, Edmonton, ABGoogle Scholar
  36. Quartero EM, Leier, AL, Bentley, LR, Glombick P (2015) Basin-scale stratigraphic architecture and potential Paleocene distributive fluvial systems of the Cordilleran Foreland Basin, Alberta, Canada. Sediment Geol 316:26–38.  https://doi.org/10.1016/j.sedgeo.2014.11.005
  37. Quinney A, Therrien F, Zelenitsky DK, Eberth DA (2013) Palaeoenvironmental and palaeoclimatic reconstruction of the upper Cretaceous (Late Campanian–Early Maastrichtian) Horseshoe Canyon formation, Alberta, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 371:26–44.  https://doi.org/10.1016/j.palaeo.2012.12.009 CrossRefGoogle Scholar
  38. Ridley AO, Hedlin RA (1980) Crop yields and soil management on the Canadian Prairies, past and present. Can J Soil Sci 60:393–402.  https://doi.org/10.4141/cjss80-044 CrossRefGoogle Scholar
  39. Rivett MO, Cuthbert MO, Gamble R, Connon LE, Pearson A, Shepley MG, Davis J (2016) Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters. Sci Total Environ 565:324–338.  https://doi.org/10.1016/j.scitotenv.2016.04.095 CrossRefGoogle Scholar
  40. Scanlon BR, Goldsmith RS (1997) Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour Res 33:2239.  https://doi.org/10.1029/97WR01332 CrossRefGoogle Scholar
  41. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370.  https://doi.org/10.1002/hyp.6335 CrossRefGoogle Scholar
  42. Scanlon BR, Reedy RC, Tachovsky JA (2007) Semiarid unsaturated zone chloride profiles: archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resour Res 43:1–13.  https://doi.org/10.1029/2006WR005769 Google Scholar
  43. Schmidt S, Geyer T, Marei A, Guttman J, Sauter M (2013) Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods. J Hydrol 502:177–190.  https://doi.org/10.1016/j.jhydrol.2013.08.009 CrossRefGoogle Scholar
  44. Šimůnek J, Šejna M, van Genuchten MT (2012) The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual version 2, PC Progress, Prague, Czech RepublicGoogle Scholar
  45. Somaratne N (2015) Pitfalls in application of the conventional chloride mass balance (CMB) in karst aquifers and use of the generalised CMB method. Environ Earth Sci 74:337–349.  https://doi.org/10.1007/s12665-015-4038-y CrossRefGoogle Scholar
  46. Statistics Canada (2011) Table 004–0002 Census of Agriculture, total area of farms and use of farm land, Canada and provinces, every 5 years. http://www5.statcan.gc.ca/cansim. Accessed 12 May 2017
  47. Statistics Canada (2018) Table 001–0068 Fertilizer shipments to Canadian agriculture and export markets, by product type and fertilizer year, cumulative data, annual (metric tones). CANSIM (database). http://www5.statcan.gc.ca/cansim. Accessed 19 February 2018
  48. van der Kamp G, Hayashi M (1998) The groundwater recharge function of small wetlands in the semi-arid northern prairies. Great Plains Res 8:39–56Google Scholar
  49. van der Kamp G, Hayashi M (2009) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17:203–214.  https://doi.org/10.1007/s10040-008-0367-1 CrossRefGoogle Scholar
  50. van der Kamp G, Hayashi M, Gallen D (2003) Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian Prairies. Hydrol Process 17:559–575.  https://doi.org/10.1002/hyp.1157 CrossRefGoogle Scholar
  51. Werth CJ, Cirpka OA, Grathwohl P (2006) Enhanced mixing and reaction through flow focusing in heterogeneous porous media. Water Resour Res 42:1–10.  https://doi.org/10.1029/2005WR004511 CrossRefGoogle Scholar
  52. Wood WW, Sanford WE (1995a) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:458–468.  https://doi.org/10.1111/j.1745-6584.1995.tb00302.x CrossRefGoogle Scholar
  53. Wood WW, Sanford WE (1995b) Eolian transport, saline lake basins, and groundwater solutes. Water Resour Res 31:3121–3129.  https://doi.org/10.1029/95WR02572 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Igor Pavlovskii
    • 1
    Email author
  • Masaki Hayashi
    • 1
  • Edwin E. Cey
    • 1
  1. 1.Department of GeoscienceUniversity of CalgaryCalgaryCanada

Personalised recommendations