Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2231–2244 | Cite as

Hydro-geochemical processes of the deep Ordovician groundwater in a coal mining area, Xuzhou, China

  • Pu LiuEmail author
  • Miao Yang
  • Yajun Sun
Report
  • 51 Downloads

Abstract

The Ordovician aquifer is a typical limestone aquifer associated with Pangzhuang coal mine in North China. The groundwater properties in this area have been investigated, as the aquifer is a major drinking-water source for local people. The hydro-chemical type of the water is Ca-Na-HCO3. The bicarbonate concentration (290–428 mg/L) is relatively higher than that of other major anions (SO42−, Cl and CO32−). Three reasons for the high bicarbonate concentration are proposed. Firstly, from geochemical calculations and correlation analysis, this study finds that the high-bicarbonate water results from dissolution of calcite and dolomite. Secondly, the high bicarbonate content is the result of influence from the regional hydrogeology. The study area is located in the recharge and runoff zone of the Ordovician aquifer, which outcrops in the southeastern hills, and the hydraulic connection between the upper and lower aquifers is confirmed in terms of faults and fissures developed from mining. Finally, high values of partial pressure of CO2 indicate an open carbonate system. Additionally, SO42− is confirmed as arising from the dissolution of gypsum, even though gypsum is not the major mineral in the aquifer. Inverse geochemical modeling of three cross-section lines provides additional evidence for the geochemical evolution. It also implies that more calcite is dissolved than dolomite. The coupled approach, using multiple evidence from both hydrogeological and hydro-geochemical insights, as well as geochemical modeling, is able to illustrate the groundwater hydro-geochemistry from a more intrinsic perspective.

Keywords

Hydrogeochemistry Ordovician limestone Coal mining Inverse modeling China 

Processus hydrogéochimiques dans l’aquifère profond de l’Ordovicien autour d’une mine de charbon à Xuzhou (Chine)

Résumé

L’aquifère de l’Ordovicien est un aquifère calcaire typique associé à la mine de charbon de Pangzhuang au nord de la Chine. Les propriétés des eaux souterraines ont fait l’objet d’études dans ce secteur, car l’aquifère constitue une ressource majeure pour l’alimentation en eau potable de la population locale. L’eau présente un faciès bicarbonaté calcique et sodique Ca-Na-HCO3. Les concentrations en bicarbonates (290 à 428 mg/L) sont relativement plus élevées que celles d’autres ions majeurs (SO42−, Cl et CO32−). Trois raisons sont proposées pour expliquer les concentrations élevées en bicarbonates. Tout d’abord, sur la base de calculs géochimiques et d’analyses de corrélation, la présente étude montre que le pôle bicarbonaté marqué résulte de la dissolution de calcite et de dolomite. Deuxièmement, les concentrations élevées en bicarbonates résultent de l’influence de l’hydrogéologie régionale. Le secteur d’étude se situe sur la zone d’alimentation et de ruissellement de l’aquifère de l’Ordovicien, qui affleure sur les collines au sud-est, et la connexion hydraulique entre les aquifères supérieur et inférieur est confirmée par les fractures et fissures résultant de l’activité minière. Enfin, les pressions partielles élevées en CO2 indiquent un système carbonaté ouvert. De surcroît, il est confirmé que les sulfates résultent de la dissolution de gypse, même si le gypse ne constitue pas un minéral prépondérant dans l’aquifère. La modélisation géochimique inverse de trois sections transversales fournit des preuves supplémentaires pour l’évolution géochimique. Ceci implique une plus grande dissolution de la calcite par rapport à la dolomite. L’approche couplée, utilisant plusieurs contributions issues à la fois d’approches hydrogéologiques et hydro-géochimiques, ainsi que de la modélisation géochimique, est en mesure d’illustrer l’hydrogéochimie intrinsèque des eaux souterraines.

Procesos hidrogeoquímicos de las aguas subterráneas profundas del Ordovícico en una zona minera de carbón, Xuzhou, China

Resumen

El acuífero Ordovícico es un acuífero calcáreo típico asociado con la mina de carbón de Pangzhuang en el norte de China. Se han investigado las propiedades de las aguas subterráneas en esta área, ya que el acuífero es una de las principales fuentes de agua potable para la población local. El tipo hidroquímico del agua es Ca-Na-HCO3. La concentración de bicarbonato (290–428 mg/L) es relativamente mayor que la de los otros aniones mayoritarios (SO42−, Cl and CO32−). Se proponen tres razones para la alta concentración de bicarbonato. En primer lugar, a partir de cálculos geoquímicos y análisis de correlación, este estudio encuentra que el agua con alto contenido de bicarbonato resulta de la disolución de calcita y dolomita. En segundo lugar, el alto contenido de bicarbonato es el resultado de la influencia de la hidrogeología regional. El área de estudio está ubicada en la zona de recarga y escorrentía del acuífero Ordovícico, que aflora en las colinas del sureste, y la conexión hidráulica entre los acuíferos superior e inferior está confirmada en términos de fallas y fisuras desarrolladas a partir de la minería. Finalmente, los altos valores de presión parcial de CO2 indican un sistema carbonático abierto. Además, se confirma que el SO42− surge de la disolución del yeso, aunque el yeso no es el principal mineral del acuífero. El modelado geoquímico inverso de tres líneas de sección transversal proporciona evidencia adicional para la evolución geoquímica. También implica que se disuelve más calcita que dolomita. El enfoque acoplado, que utiliza múltiples pruebas de conocimientos hidrogeológicos e hidrogeoquímicos, así como modelos geoquímicos, es capaz de ilustrar la hidrogeoquímica de las aguas subterráneas desde una perspectiva más intrínseca.

中国徐州某煤矿区影响下的奥陶系深层地下水系统水文地球化学过程

Abstract

在中国华北的庞庄矿区,奥陶系含水层是区域典型的灰岩含水层。该含水层同时是当地居民的重要饮用供水水源。经过研究发现,奥陶系含水层水的主要水化学类型是Ca-Na-HCO3。碳酸氢根浓度(290−428 mg / L)相对要高于其他主要阴离子(SO42−,Cl和CO32−)。本文通过研究提出了造成高碳酸氢根浓度的三个主要原因。首先,地球化学计算和相关性分析得到了高碳酸氢根水是由方解石和白云石的溶解引起的。其次,高碳酸氢根浓度还是区域水文地质结构影响的结果。研究区位于奥陶系含水层的补给和径流区,露头位于东南山区,上下含水层之间的水力联系通过采矿产生的断裂和裂隙得到连通。再次,水中高二氧化碳分压值证明了地下水主要是一个开放的碳酸盐系统。除此之外,SO42−被证实是由石膏风化溶解产生的,尽管石膏并不是含水层中的主要矿物。三条剖面线的反向水文地球化学模拟为其水化学演化进一步提供了证据。同时发现在其水化学特征形成过程中,灰岩含水层中的方解石溶解比白云石溶解更重要。本文从水文地质结构角度出发,采用了水文地质学与水文地球化学分析多种证据调查、以及地球化学模拟等多种耦合研究方法,从更内在的角度揭示了区域地下水系统的水文地球化学演化过程。

Processos hidrogeoquímicos de águas subterrâneas profundas do período Ordoviciano em área de mineração de carvão, Xuzhou, China

Resumo

O aquífero Ordoviciano é um típico aquífero de calcário associado à mina de carvão de Pangzhuang no norte da China. As propriedades das águas subterrâneas nessa área foram investigadas, pelo aquífero ser a maior fonte de água potável para a população local. O tipo hidroquímico da água é Ca-Na-HCO3. A concentração de bicarbonato (290–428 mg/L) é relativamente mais alta que da maioria dos ânions (SO42−, Cl e CO32−). Três razões para a alta concentração de bicarbonato foram propostas. Primeiramente, a partir de cálculos geoquímicos e análise de correlação, esse estudo encontrou que os resultados de águas com alto teor de bicarbonato provêm de dissoluções da calcita e dolomita. Segundo, o alto conteúdo de bicarbonato é resultado da influência da hidrogeologia regional. A área de estudo está localizada em uma área de recarga e escoamento do aquífero Ordoviciano, que aflora nas encostas ao sudeste, e a conexão hidráulica entre os aquíferos superiores e inferiores é confirmada em termos de falhas e fissuras desenvolvidas para mineração. Finalmente, valores altos da pressão parcial de CO2 indicam um sistema de carbonatos aberto. Adicionalmente, é SO42− confirmado como ascendente da dissolução de gipsita, mesmo que a gipsita não seja o mineral mais encontrado no aquífero. A modelagem geoquímica inversa de três linhas do corte transversal mostra evidência adicional para a evolução geoquímica. Implica-se também que mais calcita está dissolvida que dolomita. A abordagem combinada, utilizando evidências múltiplas de conhecimentos hidrogeológicos e hidrogeoquímicos, assim como a modelagem geoquímica, é capaz de ilustrar a hidrogeoquímica das águas subterrâneas a partir de uma perspectiva mais intrínseca.

Notes

Acknowledgements

Special thanks go to Prof. Sun Yajun from China University of Mining and Technology for his support with the datasets. The help from Xuzhou Coal Mining Group Ltd. with respect to profiles of the Pangzhuang coal mine is also greatly appreciated.

Funding information

The study was sponsored by: Guizhou Provincial Research Foundation for Basic Research (QKHJC[2019]1080); the Science and Technology Funding of Water Resources Department of Guizhou Province (grant number: KT201803); the Guizhou Science and Talent Project (grant number: QKHPTRC[2018]5781); and the Foundation of Civil Engineering of Guizhou Province (QYNYL[2017]0013). Special thanks go to Prof. Sun Yajun from China University of Mining and Technology for his support with the datasets. The help from Xuzhou Coal Mining Group Ltd. with respect to profiles of the Pangzhuang coal mine is also greatly appreciated.

References

  1. André L, Franceschi A, Pouchan P, Atteia O (2005) Using geochemical data and modeling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J Hydrol 305(1–4):40–62CrossRefGoogle Scholar
  2. Appelo CAJ, Postma D (2005) Geochemistry groundwater and pollution 2nd edn. Balkema, London, pp 175–205CrossRefGoogle Scholar
  3. Asta MP, Calleja ML, Perez-Lopez R, Auque LF (2015) Major hydro-geochemical processes in an acid mine drainage affected estuary. Mar Pollut Bull 91(1):295–305CrossRefGoogle Scholar
  4. Busby JF, Plummer LN, Lee RW, Hanshaw BB (1991) Geochemical evolution of water in the madison aquifer in parts of montana, South Dakota, and Wyoming. U.S. Geological Servey, USGoogle Scholar
  5. Chen L, Yin X, Gui H, Wang Q (2013) Water–rock interactions tracing and analysis of deep aquifers in mining area-using isotope and hydrogeochemistry methods. Acta Geol Sin 8(7):1021–1030Google Scholar
  6. Collon P, Fabriol R, Buès M (2006) Modelling the evolution of water quality in abandoned mines of the Lorraine Iron Basin. J Hydrol 328(3–4):620–634CrossRefGoogle Scholar
  7. Cravotta CA (2008a) Dissolved metals and associated constituents in abandoned coal mine discharges, Pennsylvania, USA: part 1, constituent quantities and correlations. Appl Geochem 23:166–202Google Scholar
  8. Cravotta CA (2008b) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA, part 2: geochemical controls on constituent concentrations. Appl Geochem 23:203–226Google Scholar
  9. Elliot T, Younger PL (2007) Hydrochemical and isotopic tracing of mixing dynamics and water quality evolution under pumping conditions in the mine shaft of the abandoned Frances colliery, Scotland. Appl Geochem 22(12):2834–2860Google Scholar
  10. Ettazarini S (2005) Processes of water-rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco. Environ Geol 49(2):293–299CrossRefGoogle Scholar
  11. Feng Q (1990) Ordovician karst strata properties in Teng-Pei coalfield (in Chinese). Coalfield Geol Explor 3:40–44Google Scholar
  12. Gammons CH, Brown A, Poulson SR, Henderson TH (2013) Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage. Appl Geochem 31:228–238CrossRefGoogle Scholar
  13. Gui H (2007) Hydro-geochemical evolution and recognition of groundwater in coal mining areas (in Chinese). Geological Publishing House, BeijingGoogle Scholar
  14. Guo H, Wang Y (2004) Hydro-geochemical processes in shallow Quaternary aquifers from the northern part of Datong Basin, China. Appl Geochem 19:19–27CrossRefGoogle Scholar
  15. Han Y, Wang G, Cravotta CA (2013) Hydro-geochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrol Process 27:2247–2257CrossRefGoogle Scholar
  16. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Suppl Pap 2254Google Scholar
  17. Huang P, Chen J (2012) Recharge sources and hydro-geochemical evolution of groundwater in the coal-mining district of Jiaozuo, China. Hydrogeol J 20(4):739–754CrossRefGoogle Scholar
  18. Jiang Z (2003) Sedimentology (in Chinese). Petroleum Industry Press, BeijingGoogle Scholar
  19. Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, Englewood Cliffs, NJ, pp 193–230Google Scholar
  20. Langmuir D (1971) The geochemistry of some carbonate ground waters in central Pennsylvania. Geochim Cosmochim 35:1023–1045CrossRefGoogle Scholar
  21. Liu P, Sun Y, Huang X, Yang M (2010) Discussion on groundwater pollution caused by abandoned mines and its controlling techniques (in Chinese). Mining Res Devel.Google Scholar
  22. Miao X, Bai H (2011) Water-resisting characteristics and distribution rule of carbonate strata in the top of Ordovician in North China. J China Coal Soc 36(2):185–193Google Scholar
  23. Nordstrom DK (2011) Hydro-geochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl Geochem 26(11):1777–1791CrossRefGoogle Scholar
  24. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259, pp 3–4Google Scholar
  25. Plummer LN, Busby JF, Roger W, R Lee, Hanshaw B (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res.  https://doi.org/10.1029/WR026i009p01981
  26. Plummer LN, Laura MB, Anderholm SK (2002) How ground-water chemistry helps us understand the aquifer. In: Bartolino JR, Cole JC (eds) Ground-water resources of the middle Rio Grande Basin. US Geol Surv Circ 1222:92–94Google Scholar
  27. Rajmohan N, Elango L (2004) Identification and evolution of hydro-geochemical processes in the groundwater environment in an area of the Palar and Cheyyar River basins, southern India. Environ Geol 46(1):47–61Google Scholar
  28. Sako A, Bamba O, Gordio A (2016) Hydrogeochemical processes controlling groundwater quality around Bomboré gold mineralized zone, central Burkina Faso. J Geochem Explor 170:58–71CrossRefGoogle Scholar
  29. Shan Y (2009) Water-rock interaction in coal-bearing strata and environmental effect of coal mine water (in Chinese). PhD Thesis, China University of Mining and Technology, Xuzhou, ChinaGoogle Scholar
  30. Shao D (2009) Study on dissolution test of Ordovician carbonate rock in North China typical coalfields, Xi’an (in Chinese). MSc Thesis, RResearch institute of China Coal Technology and Engineering Group, Xi’an, China, 88 ppGoogle Scholar
  31. Shen Z, Zhu W, Zhong Z (1999) Hydrogeochemistry basics (in Chinese). Geology Press, Beijing, pp 101–110Google Scholar
  32. Stumm W, Morgan JJ (1995) Aquatic chemistry-chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, 589 ppGoogle Scholar
  33. Voutsis N, Kelepertzis E, Tziritis E, Kelepertsis A (2015) Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. J Geochem Explor 159:79–92CrossRefGoogle Scholar
  34. Wolkersdorfer C (2006) Water management at abandoned flooded underground mines. Springer, BerlinGoogle Scholar
  35. Wu Q, Wang MY (2006) Characterization of water bursting and discharge into underground mines with multilayered groundwater flow systems in the North China coal basin. Hydrogeol J 14(6):882–893CrossRefGoogle Scholar
  36. Xuzhou Coal Mining Group. Co. (2005) Geological investigation report of Pangzhuang coal mine, chaps 1 and 5 (in Chinese). Xuzhou Coal Mining Group. Co., Xuzhou, ChinaGoogle Scholar
  37. Zhu X (1985) The investigation of clays of Xuzhou coalfield (in Chinese). Chinese J Process Eng 3:59–70Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Resource and Environmental Engineering CollegeGuizhou UniversityGuiyangPeople’s Republic of China
  2. 2.Key Laboratory of Karst Georesources and EnvironmentMinistry of EducationGuiyangPeople’s Republic of China
  3. 3.Beijing Institute of Geothermal ResearchBeijingPeople’s Republic of China
  4. 4.School of Resources and GeoscienceseChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations