Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2077–2089 | Cite as

Nitrate distribution and dynamics as indicators to characterize karst groundwater flow in a mined mineral deposit in southwestern China

  • He Huang
  • Zhihua Chen
  • Tao WangEmail author
  • Caijuan Xiang
  • Liang Zhang
  • Gaoming Zhou
  • Bangtao Sun
  • Yong Wang
Report

Abstract

Groundwater recharge source and flowpaths, along with aquifer medium characteristics, are identified based on nitrate distribution and dynamics. These are significant factors in long-term water-resources management of the Sichuan-Yunnan-Guizhou lead-zinc mining deposits, southwestern China. The results show that high nitrate concentration correlates with lower temperature and heavy isotope enrichment, indicating groundwater recharge from the eastern karst depression area (situated at higher elevation), which has intensive agriculture. Higher NO3- concentration corresponds to higher Ca/Mg ratio in the Carboniferous karst aquifer, both indicating the preferential groundwater flowpath, while the lateral nitrate distribution signifies hydraulic connection with the northern Devonian aquifer passing through the aquitard via NE–SW and N–S trending faults. Nitrate pollution has reached deep sections of the karst aquifers and generated a wide vertical distribution, with the lowest elevation of significant nitrate concentration at –28 m relative to sea level, far lower than the recharge area by over 1,500 m. The variations in groundwater temperature, electrical conductivity and partial pressure of CO2 in the early rainy season are associated with enhanced dissolution capacity of the carbonate minerals, controlled by the soil CO2 effect, hence characterizing the mining area as a fissure-dominant karst groundwater system. Under such conditions, nitrate concentration rises and recedes subsequent to recharge events, and these processes characterize nitrate leaching. Overall, the current nitrate distribution is the result of increased agricultural productivity, intensive mine dewatering works and intrinsic media heterogeneity. Nitrate functions as an artificial, stable and cost-effective tracer for groundwater-system characterization in this mining area.

Keywords

Nitrate Karst Tracers Mining China 

Distribution et dynamique du nitrate comme indicateurs pour caractériser les flux d’eau souterraine karstique d’un gisement minéral exploité dans le sud-ouest de la Chine

Résumé

Les zones de recharge et d’écoulement d’eau souterraine, parallèlement aux caractéristiques aquifères, sont identifiés par la distribution et dynamique du nitrate. Ces facteurs sont importants pour la gestion à long terme des ressources en eau des dépôts miniers de plomb et zinc du Sichuan-Yunnan-Guizhou, dans le sud-ouest de la Chine. Les résultats montrent que les fortes concentrations en nitrate sont corrélées avec les basses températures et enrichissement en isotopes lourds, indiquant une recharge des aquifères depuis la zone de dépression karstique à l’est (située à plus haute altitude), zone d’agriculture intensive. Les concentrations en NO3 les plus élevées correspondent à un rapport Ca/Mg élevé au sein de l’aquifère karstique du Carbonifère. Ces deux paramètres informent sur l’écoulement préférentiel d’eau souterraine, alors que la distribution latérale du nitrate indique une connexion hydraulique avec la partie septentrionale de l’aquifère du Dévonien passant au travers de l’aquitard via les failles d’extension NE–SW et N–S. La pollution en nitrate a atteint les parties profondes de l’aquifère karstique et a créé une large distribution verticale, avec les plus faibles concentrations en nitrate à 28m sous le niveau de la mer, bien au-dessous de la zone de recharge située à plus de 1,500 m. Les variations de température de l’aquifère, de la conductivité électrique et de la pression partielle de CO2 au début de la saison des pluies sont associées à une capacité accrue de dissolution des minéraux carbonatés, contrôlée par l’effet du CO2 des sols et caractérisant ainsi la zone minière comme un système aquifère karstique dominé par des fissures. Sous de telles conditions, les concentrations en nitrate augmentent et baissent suite aux épisodes de recharge, et ces processus caractérisent le lessivage du nitrate. Au global, la distribution actuelle du nitrate est le résultat de l’augmentation de la productivité agricole, des travaux de dénoyage intense des mines et de l’hétérogénéité intrinsèque du milieu. Le nitrate fonctionne comme un traceur artificiel, stable et économique pour caractériser le système aquifère d’une zone minière.

Distribución y dinámica de los nitratos como indicadores para caracterizar el flujo de agua subterránea cárstica en un yacimiento minero en el suroeste de China

Resumen

Las fuentes de recarga de agua subterránea y las trayectorias de los flujos, junto con las características del medio acuífero, se identifican en base a la distribución y dinámica de los nitratos. Estos son factores importantes en la gestión a largo plazo de los recursos hídricos de los yacimientos mineros de plomo-zinc de Sichuan-Yunnan-Guizhou, en el suroeste de China. Los resultados muestran que una alta concentración de nitratos se correlaciona con una temperatura más baja y un fuerte enriquecimiento de isótopos, lo que indica la recarga del agua subterránea de la zona de la depresión kárstica oriental (situada a mayor altitud), que tiene una agricultura intensiva. Una mayor concentración de NO3 corresponde a una mayor relación Ca/Mg en el acuífero cárstico carbonífero, lo que indica la trayectoria preferencial del flujo de agua subterránea, mientras que la distribución lateral de nitratos significa una conexión hidráulica con el acuífero Devónico del norte que pasa a través del acuífero a partir de las fallas de tendencia NE–SW y N–S. La contaminación por nitratos ha alcanzado secciones profundas de los acuíferos cársticos y ha generado una amplia distribución vertical, con la menor altura de una concentración significativa de nitratos a los –28 m en relación con el nivel del mar, muy por debajo del área de recarga ubicada a más de 1,500 m. Las variaciones en la temperatura del agua subterránea, la conductividad eléctrica y la presión parcial de CO2 en el inicio de la temporada de lluvias se asocian con una mayor capacidad de disolución de los minerales carbonatados, controlada por el efecto del CO2 en el suelo, por lo que se caracteriza a la zona minera como un sistema de agua subterránea de cárstica que predomina en la fisura. En tales condiciones, la concentración de nitratos aumenta y disminuye después de los eventos de recarga, y estos procesos caracterizan la lixiviación de los nitratos. En general, la distribución actual de nitratos es el resultado del aumento de la productividad agrícola, los trabajos intensivos de desagüe de minas y la heterogeneidad intrínseca del medio. El nitrato funciona como un trazador artificial, estable y rentable para la caracterización del sistema de aguas subterráneas en esta área minera.

硝酸盐分布与动态对中国西南某开采矿区岩溶地下水流特征的指示研究

摘要

本文基于地下水硝酸盐分布与动态特征识别了其补给来源、径流途径与含水介质结构特征,它们是影响中国西南地区川-滇-黔铅锌矿集区长期水资源管理的重要因素。结果表明研究区硝酸盐浓度较高的地下水同时具有低水温、富集重同位素等特征,指示地下水来源于东侧农业活动频繁、海拔相对较高的岩溶洼地区。石炭系岩溶含水层中高硝酸盐浓度对应着较高Ca/Mg比值,指示了其优先水流通道,而硝酸盐平面分布特征显示石炭系含水层与泥盆系北侧含水层经由北东向、南北向断层构成了穿越隔水层的直接水力联系。硝酸盐污染已深入岩溶含水层深部,垂向分布范围较大,最低在海拔–28 m仍可检测到显著硝酸盐浓度,与其补给区高程相差1,500 m以上。雨季初期在土壤CO2效应控制下,碳酸盐岩矿物溶解能力增强,水温、电导率及CO2分压的变化与此密切相关,均表明矿区仍是以裂隙为主的岩溶水系统。在这样的介质条件下,硝酸盐浓度随着次降雨补给升高而后下降,表现出淋滤效应的动态特征。总体而言,当前地下水硝酸盐分布是农业活动增强、矿区长期集中排水与含水介质本身非均一性的共同结果。硝酸盐作为一种人工、稳定、高效的示踪剂可以用于矿区地下水系统的识别与研究。

Distribuição e dinâmica do nitrato como indicador para caracterizar fluxo cárstico de águas subterrâneas em um depósito mineral no sudoeste da China

Resumo

A origem de recarga das águas subterrâneas e seus caminhos de fluxo, ao longo das características do meio do aquífero, são identificados com base na distribuição e dinâmica do nitrato. Esses fatores são significativos na gestão dos recursos hídricos a longo prazo nos depósitos de mineração de chumbo e zinco Sichuan-Yunnan-Guizhou, no sudoeste da China. Os resultados mostram que a alta concentração de nitrato se correlaciona com temperatura mais baixa e com o enriquecimento do isótopo pesado, indicando a recarga de água subterrânea na área de depressão cárstica oriental (situada em altitudes mais elevadas), caracterizada por agricultura intensiva. Concentração mais elevada de NO3 corresponde a maior razão Ca/Mg no aquífero cárstico Carbonífero, ambos indicando o caminho preferencial de fluxo da água subterrânea, enquanto a distribuição lateral de nitrato demonstra conexão hidráulica com o aquífero Devoniano, do norte, passando pelo aquitardo via falhas de direções NE–SW e N–S. A poluição por nitrato atingiu zonas profundas dos aquíferos cársticos e produziu uma ampla distribuição vertical, com a menor elevação da concentração nitrato significativa a –28 m em relação ao nível do mar, muito inferior à área de recarga superior por mais de 1,500 m. As variações de temperatura, condutividade elétrica e pressão parcial de CO2 na água subterrânea no início da estação chuvosa estão associadas à maior capacidade de dissolução dos minerais carbonatados, controlada pelo efeito de CO2 do solo, caracterizando a área de mineração como um sistema de águas subterrâneas cárstico fissural dominante. Sob estas condições, a concentração de nitrato aumenta e regride após os eventos de recarga, e, esses processos caracterizam a lixiviação de nitrato. Em geral, a distribuição de nitrato atual é o resultado do aumento da produtividade agrícola, operações intensivas de drenagem das minas e da heterogeneidade intrínseca do meio. O nitrato funciona como um marcador artificial, estável e econômico para a caracterização do sistema de águas subterrâneas nesta área de mineração.

Notes

Acknowledgements

We appreciate the valuable comments raised by the two reviewers and the editor. The authors are really grateful to guidance by Zihua Zhu in the field hydrogeological investigation, and the sampling assistance given by Zhongming An and Junhong Lian. We are also thankful for some of the language modifications suggested by Dr. Hamza Jakada.

Funding information

This research was funded by China University of Geosciences (Wuhan) and Yiliang Chihong Mining Co., Ltd. (No. 2016046177).

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. Balkema, Leiden, The Netherlands, 649 ppGoogle Scholar
  2. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160.  https://doi.org/10.1007/s10040-004-0402-9 CrossRefGoogle Scholar
  3. Batiot C, Emblanch C, Blavoux B (2003) Total organic carbon (TOC) and magnesium (Mg2+) two complementary tracers of residence time in karstic systems. C R Geosci 335:205–214.  https://doi.org/10.1016/S1631-0713(03)00027-0 CrossRefGoogle Scholar
  4. Celle-Jeanton H, Emblanch C, Mudry J, Charmoille A (2003) Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO3 ) to understand the role of the unsaturated zone: a case study—karst aquifers in the Doubs Valley, eastern France. Geophys Res Lett 30(6):1322.  https://doi.org/10.1029/2002GL016781
  5. Einsiedl F, Mayer B (2006) Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, southern Germany. Environ Sci Technol 40:6697–6702.  https://doi.org/10.1021/es061129x CrossRefGoogle Scholar
  6. El Gaouzi F-ZJ, Sebilo M, Ribstein P, Plagnes V, Boeckx P, Xue D, Derenne S, Zakeossian M (2013) Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Appl Geochem 35:230–243.  https://doi.org/10.1016/j.apgeochem.2013.04.015 CrossRefGoogle Scholar
  7. Fidelibus MD, Balacco G, Gioia A, Iacobellis V, Spilotro G (2017) Mass transport triggered by heavy rainfall: the role of endorheic basins and epikarst in a regional karst aquifer. Hydrol Processes 31:394–408.  https://doi.org/10.1002/hyp.11037 CrossRefGoogle Scholar
  8. Fournier M, Massei N, Bakalowicz M, Dussart-Baptista L, Rodet J, Dupont JP (2007) Using turbidity dynamics and geochemical variability as a tool for understanding the behavior and vulnerability of a karst aquifer. Hydrogeol J 15:689–704.  https://doi.org/10.1007/s10040-006-0116-2 CrossRefGoogle Scholar
  9. Fu B, Zhuang X, Jiang G, Shi J, Lu Y (2007) Environmental problems and challenges in China. Environ Sci Technol 41:7597–7602.  https://doi.org/10.1021/es072643l CrossRefGoogle Scholar
  10. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor and Francis, London, pp 9–23 & pp 112Google Scholar
  11. Gu B, Ge Y, Chang SX, Luo W, Chang J (2013) Nitrate in groundwater of China: sources and driving forces. Global Environ Change 23:1112–1121.  https://doi.org/10.1016/j.gloenvcha.2013.05.004 CrossRefGoogle Scholar
  12. Han D, Cao G, McCallum J, Song X (2015) Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China. Sci Total Environ 538:539–554.  https://doi.org/10.1016/j.scitotenv.2015.08.036 CrossRefGoogle Scholar
  13. Han D, Currell MJ, Cao G (2016) Deep challenges for China’s war on water pollution. Environ Pollut 218:1222–1233.  https://doi.org/10.1016/j.envpol.2016.08.078 CrossRefGoogle Scholar
  14. He Q, Yang P, Yuan W, Jiang W, Pu J, Yuan D, Kuang Y (2010) The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China. Hydrogeol J 18:1281–1289.  https://doi.org/10.1007/s10040-010-0594-0 CrossRefGoogle Scholar
  15. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol Isot Geosci Sect 59:87–102.  https://doi.org/10.1016/0168-9622(86)90059-X CrossRefGoogle Scholar
  16. Howard KWF (1985) Denitrification in a major limestone aquifer. J Hydrol 76:265–280.  https://doi.org/10.1016/0022-1694(85)90137-4 CrossRefGoogle Scholar
  17. Huebsch M, Fenton O, Horan B, Hennessy D, Richards KG, Jordan P, Goldscheider N, Butscher C, Blum P (2014) Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrol Earth Syst Sci 18:4423–4435.  https://doi.org/10.5194/hess-18-4423-2014 CrossRefGoogle Scholar
  18. Iqbal MZ, Krothe NC (1995) Infiltration mechanisms related to agricultural waste transport through the soil mantle to karst aquifers of southern Indiana, USA. J Hydrol 164:171–192.  https://doi.org/10.1016/0022-1694(94)02573-T CrossRefGoogle Scholar
  19. Jiang G, Guo F, Yu S (2015) Chemographs of karst water system and its new application in hydrogeological survey (in Chinese with English abstract). J Jilin Uni: Earth Sci Ed 45:899–907Google Scholar
  20. Jiang Y, Wu Y, Groves C, Yuan D, Kambesis P (2009) Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunnan, China. J Contam Hydrol 109:49–61.  https://doi.org/10.1016/j.jconhyd.2009.08.001 CrossRefGoogle Scholar
  21. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32:114–123.  https://doi.org/10.1007/s002540050200 CrossRefGoogle Scholar
  22. Li S, Liu C, Lang Y, Zhao Z, Zhou Z (2010) Tracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: a combined nitrogen isotope and water chemistry approach. Environ Earth Sci 60:1415–1423.  https://doi.org/10.1007/s12665-009-0277-0 CrossRefGoogle Scholar
  23. Liu A, Ming J, Ankumah RO (2005) Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 346:112–120.  https://doi.org/10.1016/j.scitotenv.2004.11.019 CrossRefGoogle Scholar
  24. Liu Z, Li Q, Sun H, Wang J (2007) Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: soil CO2 and dilution effect. J Hydrol 337:207–223.  https://doi.org/10.1016/j.jhydrol.2007.01.034 CrossRefGoogle Scholar
  25. Lockhart LM, King AM, Harter T (2013) Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J Contam Hydrol 151:140–154.  https://doi.org/10.1016/j.jconhyd.2013.05.008 CrossRefGoogle Scholar
  26. Long AJ, Sawyer JF, Putnam LD (2008) Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA. Hydrogeol J 16:263–280.  https://doi.org/10.1007/s10040-007-0232-7 CrossRefGoogle Scholar
  27. Luo M, Chen Z, Criss RE, Zhou H, Huang H, Han Z, Shi T (2016) Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China. Hydrogeol J 24(8):1993–2002.  https://doi.org/10.1007/s10040-016-1462-3 CrossRefGoogle Scholar
  28. Mahler BJ, Valdes D, Musgrove M, Massei N (2008) Nutrient dynamics as indicators of karst processes: comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A). J Contam Hydrol 98:36–49.  https://doi.org/10.1016/j.jconhyd.2008.02.006 CrossRefGoogle Scholar
  29. Masetti M, Poli S, Sterlacchini S, Beretta GP, Facchi A (2008) Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. J Environ Manage 86:272–281.  https://doi.org/10.1016/j.jenvman.2006.12.023 CrossRefGoogle Scholar
  30. Menció A, Mas-Pla J, Otero N, Soler A (2011) Nitrate as a tracer of groundwater flow in a fractured multilayered aquifer. Hydrol Sci J 56(1):108–222.  https://doi.org/10.1080/02626667.2010.543086 CrossRefGoogle Scholar
  31. Ministry of Health of the People’s Republic of China (2006) Standards for drinking water quality (GB 5749-2006) (in Chinese). Beijing, China, p 3Google Scholar
  32. Mudarra M, Andreo B, Barberá JA, Mudry J (2014) Hydrochemical dynamics of TOC and NO3 contents as natural tracers of infiltration in karst aquifers. Environ Earth Sci 71:507–523.  https://doi.org/10.1007/s12665-013-2593-7 CrossRefGoogle Scholar
  33. Musgrove M, Opsahl SP, Mahler BJ, Herrington C, Sample TL, Banta JR (2016) Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. Sci Total Environ 568:457–469.  https://doi.org/10.1016/j.scitotenv.2016.05.201 CrossRefGoogle Scholar
  34. Opsahl SP, Musgrove M, Slattery RN (2017) New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements. J Hydrol 546:179–288.  https://doi.org/10.1016/j.jhydrol.2016.12.038 CrossRefGoogle Scholar
  35. Parkhurst DL, Appelo CAJ (1999) User’s Guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Earth Science Information Center, Denver, COGoogle Scholar
  36. Pu J, Yuan D, He Q, Wang Z, Hu Z, Gou P (2011) High-resolution monitoring of nitrate variations in a typical subterranean karst stream, Chongqing, China. Environ Earth Sci 64:1985–1993.  https://doi.org/10.1007/s12665-011-1019-7 CrossRefGoogle Scholar
  37. Schilling KE, Helmers M (2008) Tile drainage as karst: conduit flow and diffuse flow in a tile-drained watershed. J Hydrol 349:291–301.  https://doi.org/10.1016/j.jhydrol.2007.11.014 CrossRefGoogle Scholar
  38. World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. Geneva, Switzerland, 183 ppGoogle Scholar
  39. Wick K, Heumesser C, Schmid E (2012) Groundwater nitrate contamination: factors and indicators. J Environ Manage 111:178–186.  https://doi.org/10.1016/j.jenvman.2012.06.030 CrossRefGoogle Scholar
  40. Yang P, Yuan D, Ren Y, Xie S, He Q, Hu X (2012) Nitrate storage and transport within a typical karst aquifer in the paralleled ridge-valley of east Sichuan (in Chinese with English abstract). Environ Sci 33:3124–3131Google Scholar
  41. Yang P, Yuan D, Ye X, Xie S, Chen X, Liu Z (2013) Sources and migration path of chemical compositions in a karst groundwater system during rainfall events. Chin Sci Bull 58(20):2488–2496.  https://doi.org/10.1007/s11434-013-5762-x CrossRefGoogle Scholar
  42. Yue F, Li S, Liu C, Lang Y, Ding H (2015) Sources and transport of nitrate constrained by the isotopic technique in a karst catchment: an example from Southwest China. Hydrol Processes 29:1883–1893.  https://doi.org/10.1002/hyp.10302 CrossRefGoogle Scholar
  43. Zhang Q, Sun J, Liu J, Huang G, Lu C, Zhang Y (2015) Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of South China. J Contam Hydrol 182:221–230.  https://doi.org/10.1016/j.jconhyd.2015.09.009 CrossRefGoogle Scholar
  44. Zhou G, Zhao L (2017) Study on leakage properties of suspension-type surface river (in Chinese with English abstract). Geotech Invest Surv 45(5):28–78Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • He Huang
    • 1
  • Zhihua Chen
    • 1
  • Tao Wang
    • 1
    Email author
  • Caijuan Xiang
    • 1
  • Liang Zhang
    • 1
  • Gaoming Zhou
    • 2
  • Bangtao Sun
    • 2
  • Yong Wang
    • 2
  1. 1.School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.Yiliang Chihong Mining Co., Ltd.ZhaotongChina

Personalised recommendations