Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2155–2166 | Cite as

Using transient temperature–depth profiles to assess vertical groundwater flow across semi-confining layers in the Chianan coastal plain aquifer systeme, southern Taiwan

  • Wenfu ChenEmail author
  • Victor F. Bense
Report
  • 54 Downloads

Abstract

The quantification of vertical groundwater fluxes across semi-confining layers is fundamental to evaluate groundwater recharge and discharge rates to and from aquifer systems. Methods to estimate vertical groundwater fluxes from temperature–depth profiles have been available since the 1960s. While some methodologies assume steady-state conditions, changes in land-surface temperatures as well as hydrogeological conditions can lead to transient heat flow conditions. Indeed, many studies have indicated that transient temperatures in deeper confined aquifers are widespread. A study is presented that uses transient-temperature–depth curves obtained from groundwater observation wells in the Chianan coastal plain in southern Taiwan. In this area, sedimentary aquifer systems consist of a stack of alternating sand and mud layers, over several hundred meters in thickness. Groundwater has been abstracted from these aquifers for decades, resulting in large hydraulic gradients between the shallow and deeper aquifers. Hence, vertical groundwater flow is likely enhanced across finer-grained, semi-confining units. A set of temperature–depth profiles is available from this area. Constrained by these profiles, numerical models of one-dimensional transient heat transfer were used to infer vertical fluxes of 3.3 × 10−8 to 3.9 × 10−8 m/s using thermal data from 2013 to 2016. An analytical solution was also employed that assumes steady-state conditions. Calculated fluxes using the latter approach were lower, at approximately 1.1 × 10−8 to 1.6 × 10−8 m/s. The study suggests that vertical fluxes derived from using Bredehoeft and Papadopulos’s analytical solutions result in underestimates of actual vertical seepage rates across aquitards.

Keywords

Groundwater flow Thermal condition Taiwan 

Utilisation de profils de température en fonction de la profondeur en mode transitoire pour évaluer le flux vertical d’eaux souterraines au travers de couches semi-imperméables dans le système aquifère de la Plaine côtière de Chianan, Sud de Taiwan

Résumé

La quantification des flux verticaux des eaux souterraines au travers de couches semi-imperméables est fondamentale pour évaluer la recharge et les débits vers et depuis les systèmes aquifères. Des méthodes pour estimer les flux verticaux d’eaux souterraines à partir de profils de température en fonction de la profondeur sont disponibles depuis les années 1960. Bien que certaines méthodologies supposent des conditions d’écoulement permanent, les changements dans les températures de surface terrestre ainsi que les conditions hydrogéologiques peuvent conduire à des conditions de régime transitoire des flux thermiques. En effet, de nombreuses études ont indiqué que les températures en régime transitoire dans les aquifères captifs plus profonds sont répandues. On présente une étude qui utilise des courbes de température en fonction de la profondeur et du temps obtenues à partir de puits d’observation des eaux souterraines dans la plaine côtière de Chianan dans le sud de Taïwan. Dans ce domaine, les systèmes aquifères sédimentaires consistent en une pile de couches de sable et de limon en alternance, sur plusieurs centaines de mètres d’épaisseur. Les eaux souterraines ont été exploitées à partir de ces aquifères depuis des décennies, ce qui a entraîné la mise en place de gradients hydrauliques importants entre les aquifères superficiels et les plus profonds. Par conséquent, l’écoulement vertical des eaux souterraines est probablement amélioré au sein des unités semi-imperméables à grains fins. Un ensemble de profils de température en fonction de la profondeur est disponible dans cette zone. Contraints par ces profils, des modèles numériques de transfert thermique transitoire unidimensionnel ont été utilisés pour déduire des flux verticaux de 3.3 × 10−8 à 3.9 × 10−8 m/s en utilisant des données thermiques de 2013 à 2016. Une solution analytique a également été employée qui suppose des conditions de régime permanent. Les flux calculés à l’aide de cette dernière approche étaient inférieurs, avec des valeurs approximativement comprises entre 1.1 × 10−8 et 1.6 × 10−8 m/s. L’étude suggère que les flux verticaux dérivés de profils de température en fonction de la profondeur en régime transitoire utilisant les solutions analytiques de Bredehoeft et de Papadopulos entraînent des sous-estimations des taux d’infiltration verticaux réels à travers les aquitards.

Uso de perfiles de temperatura–profundidad en régimen transitorio Para evaluar el flujo vertical de agua subterránea a través de capas semiconfinantes en el sistema acuífero de la llanura costera de Chianan, en el Sur de Taiwán

Resumen

La cuantificación de los flujos verticales de aguas subterráneas a través de capas semiconfinantes es fundamental para evaluar las tasas de recarga y descarga hacia y desde los sistemas acuíferos. Desde la década de 1960 se dispone de métodos para estimar los flujos verticales a partir de perfiles temperatura–profundidad. Mientras que algunas metodologías asumen condiciones de estado estacionario, los cambios en las temperaturas de la superficie terrestre, así como las condiciones hidrogeológicas, pueden llevar a condiciones transitorias de flujo de calor. De hecho, muchos estudios han indicado que las temperaturas transitorias en los acuíferos confinados más profundos están muy generalizadas. Se presenta un estudio que utiliza curvas de temperatura – profundidad en condiciones transitorias obtenidas de pozos de observación de aguas subterráneas en la llanura costera de Chianan, en el sur de Taiwán. En esta área, los sistemas acuíferos sedimentarios consisten en un conjunto de capas alternantes de arena y lodo, de varios cientos de metros de espesor. El agua subterránea ha sido extraída de estos acuíferos durante décadas, resultando en grandes gradientes hidráulicos entre los acuíferos someros y los más profundos. Por lo tanto, es probable que el flujo vertical de agua subterránea se incremente a través de unidades semiconfinantes de grano más fino. Un conjunto de perfiles de temperatura–profundidad está disponible en esta área. Limitados por estos perfiles, se utilizaron modelos numéricos de transferencia de calor transitorio unidimensional para inferir flujos verticales de 3.3 × 10−8 a 3.9 × 10−8 m/s utilizando datos térmicos de 2013–2016. También se empleó una solución analítica que asume condiciones de estado estacionario. Los flujos calculados que utilizaron este último método fueron menores, aproximadamente de 1.1 × 10−8 to 1.6 × 10−8 m/s. El estudio sugiere que los flujos verticales derivados de los perfiles de temperatura–profundidad en condiciones transitorias utilizando las soluciones analíticas de Bredehoeft y Papadopulos dan como resultado una subestimación de las tasas reales de filtración vertical en los acuitardos.

使用非穩態溫度深度剖面評估南台灣嘉南海岸含水層系統中半拘限層之垂直地下水流

摘要

量化評估地下水含水層系統中半拘限層之補注及流出,需要先解答地下水垂直流速之基本問題。從1960年代以來,學者已提出使用溫度深度剖面來推估地下水垂直流速的方法。有些方法需要假設溫度為穩定的狀態,然而地面溫度的改變及地下水狀態改變,常造成地下水溫度呈現非穩態。許多研究也指出,深層含水層的溫度呈現非穩態並不罕見。本研究藉由地下水觀測井的非穩態溫度深度剖面,來評估南台灣嘉南海岸平原含水層系統中半拘限層之垂直地下水流速。本研究區域之地層為砂泥互層、有數百公尺厚。數十年來抽用深層的地下水,已造成淺層與深層含水層之間存有極大的水壓差,並可能已在深淺層之間的細顆粒半拘限阻水層,引起垂直向的地下水流動。本研究藉由2013–2016年的非穩態溫度深度剖面,使用一維熱傳導數值模擬求得半拘限層的垂向流速為 3.3 × 10−8 至 3.9 × 10−8 m/s。而使用穩態解析解的垂向流速較低,其值約 1.1 × 10−8 至 1.6 × 10−8 m/s。本研究結果顯示,使用穩態解析解求算非穩態的溫度深度剖面,低估了垂向的流速。

Utilizando perfis de temperatura transiente Para avaliação de fluxo vertical de águas subterrâneas através de camadas semipermeáveis do sistema aquífero da planície costeira de Chianan, sul de Taiwan

Resumo

A quantificação de fluxo vertical de águas subterrâneas através de camadas semiconfinantes é fundamental para avaliar taxas de recarga e descarga de águas subterrâneas em sistemas aquíferos. Métodos para estimativa de fluxo vertical de águas subterrâneas utilizando perfis de temperatura e profundidade estão disponíveis desde a década de 1960. Embora algumas metodologias assumam condições em estado estacionário, mudanças na temperatura da superfície do terreno bem como nas condições hidrogeológicas podem gerar condições transientes de fluxo de calor. Na verdade, muitos estudos têm indicado que a transiência das temperaturas em aquíferos confinados mais profundos é amplamente comum. Um estudo é apresentado utilizando curvas temperatura transiente e profundidade obtidas a partir de poços de observação de águas subterrâneas na planície costeira de Chianan no sul de Taiwan. Nesta área, os sistemas aquíferos sedimentares consistem em uma sequência alternante de camadas de areia e argila por várias centenas de metros de espessura. As águas subterrâneas desses aquíferos têm sido explotadas durante décadas, resultando em grandes gradientes hidráulicos entre os aquíferos raso e mais profundo. Consequentemente, o fluxo vertical de águas subterrâneas é provavelmente aumentado através das unidades seminconfinantes de granulometria fina. Um conjunto de perfis de temperatura e profundidade está disponível para essa área. Restringidos a esses perfis, modelos numéricos unidimensionais transientes de tranferência de calor foram utilizados para inferir fluxos verticais de 3.3 × 10−8 a 3.9 × 10−8 m/s utilizando dados termais dos anos de 2013 a 2016. Uma solução analítica que assume condições em estado estacionário também foi empregada. Fluxos calculados utilizando esta última abordagem foram menores, de aproximadamente de 1.1 × 10−8 a 1.6 × 10−8 m/s. O estudo sugere que os fluxos verticais derivados de perfis de temperatura transiente e profundidade utilizando as soluções analíticas de Bredehoeft e Papadopulos resultam em subestimativas das taxas reais de infiltração através de aquitardos.

Notes

Acknowledgements

We thank the Ministry of Science and Technology of Taiwan and the Central Geological Survey for research funding and support.

References

  1. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968CrossRefGoogle Scholar
  2. Arnerich T (2007) Aqua TROLL 200 conductivity accuracy. In-Situ Web page. https://www.in-situ.com/. Accessed Jan 18, 2019
  3. Bense VF, Kurylyk BL (2017) Tracking the subsurface signal of decadal climate warming to quantify vertical groundwater flow rates. Geophys Res Lett 44:12244–12253CrossRefGoogle Scholar
  4. Bense VF, Person M, Chaudhary K, You Y, Cremer N, Simon S (2008) Thermal anomalies as indicator of preferential flow along faults in an unconsolidated sedimentary aquifer system. Geophys Res Lett 35:L24406.  https://doi.org/10.1029/2008GL036017 CrossRefGoogle Scholar
  5. Bense VF, Kurylyk BL, van Daal J, van der Ploeg MJ, Karey SK (2017) Interpreting repeated temperature–depth profiles for groundwater flow. Water Resour Res 53:8639–8647CrossRefGoogle Scholar
  6. Bredehoeft JD, Papadopulos IJ (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1(2):325–328CrossRefGoogle Scholar
  7. Castilla-Rho JC, Rojas R, Andersen MS, Holley C, Mariethoz G (2017) Social tipping points in global groundwater management. Nat Hum Behav 1(9):640CrossRefGoogle Scholar
  8. Chen WF, Chiang HT (2016) Subsurface temperature trends in response to thermal water exploitation in the Jiashi Hot Spring, northeastern Taiwan. Geothermics 60:126–133CrossRefGoogle Scholar
  9. Chen WF, Huang CC, Chang MH, Chang PY, Lu HY (2013) The impact of floods on infiltration rates in a disconnected stream. Water Resour Res 49:7887–7899CrossRefGoogle Scholar
  10. CGS (Central Geological Survey) (2018) Hydrogeological database. https://hydro.moeacgs.gov.tw/plain. Accessed May 2019
  11. Ferguson G, Bense VF (2011) Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream. Groundwater 49(3):336–347CrossRefGoogle Scholar
  12. Ferguson G, Woodbury AD (2005) The effects of climatic variability on estimates of recharge from temperature profiles. Groundwater 43(6):837–842CrossRefGoogle Scholar
  13. Ferguson G, Woodbury AD, Matile GLD (2003) Estimating deep recharge rates beneath an interlobate moraine using temperature logs. Ground Water 41(5):640–646CrossRefGoogle Scholar
  14. Hamdhan IN, Clarke BG (2010) Determination of thermal conductivity of coarse and fine sand soils. Proceedings World Geothermal Congress 2010, Bali, Indonesia, pp 25–29Google Scholar
  15. Hsu SK (1998) Plan for a groundwater monitoring network in Taiwan. Hydrogeol J 6:405–415CrossRefGoogle Scholar
  16. Irvine DJ, Cartwright I, Post VEA, Simmons CT, Banks EW (2016) Uncertainties in vertical groundwater fluxes from 1-D steady state heat transport analyses caused by heterogeneity, multidimensional flow, and climate change. Water Resour Res 52(2):813–826CrossRefGoogle Scholar
  17. Irvine DJ, Kurylyk BL, Cartwright I, Bonham M, Post VEA, Banks EW, Simmons CT (2017) Groundwater flow estimation using temperature–depth profiles in a complex environment and a changing climate. Sci Total Environ 574:272–281CrossRefGoogle Scholar
  18. JCGM (Joint Committee for Guides in Metrology) (2008) Evaluation of measurement data: guide to the expression of uncertainty in measurement. JCGM 100:2008Google Scholar
  19. Kurylyk BL, MacQuarrie KTB (2014) A new analytical solution for assessing climate change impacts on subsurface temperature. Hydrol Process 28(7):3161–3172CrossRefGoogle Scholar
  20. Kurylyk BL, Irvine DJ (2016) Analytical solution and computer program (FAST) to estimate fluid fluxes from subsurface temperature profiles. Water Resour Res 52(2):725–733.  https://doi.org/10.1002/2015WR017990 CrossRefGoogle Scholar
  21. Kurylyk BL, Irvine DJ, Bense V (2018) Theory, tools, and multi-disciplinary applications for tracing groundwater fluxes from temperature profiles. WIREs Water.  https://doi.org/10.1002/wat2.1329
  22. Lu HY, Liu TK, Chen WF, Peng TR, Wang CH, Tsai MH, Liou TS (2008) Use of geochemical modeling to evaluate the hydraulic connection of aquifers: a case study form Chianan plain, Taiwan. Hydrogeol J 16:139–154CrossRefGoogle Scholar
  23. Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32(5):1449–1453CrossRefGoogle Scholar
  24. Saar MO (2011) Review: geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hydrogeol J 19:31–52CrossRefGoogle Scholar
  25. Sengupta S, Sracek O, Jean JS, Lu HY, Wang CH, Palcsu L, Liu CC, Jen CH, Bhattacharya P (2014) Spatial variation of groundwater arsenic distribution in the Chianan plain, SW Taiwan: role of local hydrogeological factors and geothermal sources. J Hydrol 518 C:393–409CrossRefGoogle Scholar
  26. Sorey ML (1971) Measurement of vertical groundwater velocity from temperature profiles in wells. Water Resour Res 7(4):963–970CrossRefGoogle Scholar
  27. Stallman, RW (1963) Methods of collecting and interpreting ground-water data. US Geol Surv Water Suppl Pap 1544–H, pp 36–46Google Scholar
  28. Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827CrossRefGoogle Scholar
  29. Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65(9):2883–2885CrossRefGoogle Scholar
  30. Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Siakwan SD, Kawashima S (1999) Disturbances of temperature–depth profiles due to surface climate change and subsurface water flow: 1. an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. Water Resour Res 35(5):1507–1517CrossRefGoogle Scholar
  31. Tseng WP (1989) Blackfoot disease in Taiwan: a 30-year follow-up study. Angiology 40(6):547–558CrossRefGoogle Scholar
  32. Water Resource Agency Taiwan (2011) Hydrological year book of Taiwan, ROC, part III: groundwater (in Chinese). Water Resource Agency, TaiwanGoogle Scholar
  33. Water Resource Agency Taiwan (2019) Water resource GIS platform web page. https://gic.wra.gov.tw/. Accessed Jan 18, 2019
  34. Yang HJ, Lee CY, Chiang YJ, Jean JS, Shau YH, Takazawa E, Jiang WT (2016) Distribution and hosts of arsenic in a sediment core from the Chianan plain in SW Taiwan: implications on arsenic primary source and release mechanisms. Sci Total Environ 569–570:212–222CrossRefGoogle Scholar
  35. Ziagos JP, Blackwell DD (1986) A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J Volcanol Geotherm Res 27:371–397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Hot Spring IndustryChia Nan University of Pharmacy and ScienceTainanTaiwan
  2. 2.Department of Environmental SciencesWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations