Advertisement

Hydrogeology of an alpine talus aquifer: Cordillera Blanca, Peru

  • Robin GlasEmail author
  • Laura Lautz
  • Jeffrey McKenzie
  • Robert Moucha
  • Daniel Chavez
  • Bryan Mark
  • John W. LaneJr
Report

Abstract

The dramatic loss of glacial mass in low latitudes is causing shifts in downstream water availability and use during the driest months of the year. The world’s largest concentration of tropical glaciers lies in the Cordillera Blanca range of Peru, where glacial runoff is declining and regional stresses are emerging over water resources. Throughout the Cordillera Blanca, groundwater inputs from alpine meadow–talus complexes, locally known as pampas, supply proglacial streams with up to 80% of their flow during the region’s dry season. Structural knowledge of the pampa aquifers is needed to estimate their drainable groundwater storage capacity and residence time, to elucidate the role and importance of alpine groundwater storage in the regional water budget of the Cordillera Blanca. To understand the structure of these proglacial aquifers, multiple near-surface geophysical methods were implemented in a proglacial valley near dense networks of spring-fed tributaries. Geophysical results and borehole logs suggest groundwater is stored in a confined aquifer composed of buried talus deposits overlain by lacustrine clay, while deeper portions of the unit, 10–15 m in depth, are relatively clay-free and more hydraulically conductive. Based on these findings and assumptions of aquifer porosity, the pampas of the Callejon de Huaylas may store from 0.006 to 0.02 km3 of groundwater. Furthermore, these findings suggest that the talus aquifers of the Cordillera Blanca were formed in proglacial lakes, followed by infilling with fine lacustrine sediments that confine lower units and allow for groundwater discharge to springs via macropores and preferential flow.

Keywords

Alpine groundwater Peru Geophysical methods Climate change Cordillera Blanca 

Hydrogéologie d’un aquifère de talus alpin: Cordillère Blanche, Pérou

Résumé

La réduction dramatique de la masse glaciaire dans les basses latitudes entraîne des bouleversements dans la disponibilité de l’eau à l’aval et son utilisation pendant les mois les plus secs de l’année. La concentration de glaciers tropicaux la plus importante au monde se trouve dans la chaîne de la Cordillère Blanche au Pérou, où l’écoulement glaciaire diminue et où apparaissent des tensions régionales sur les ressources en eau. Dans toute la Cordillère Blanche, les apports en eau souterraine en provenance des complexes de prairies et talus alpins, localement connus sous le nom de pampas, alimentent les cours d’eau pro-glaciaires jusqu’à 80% de leur débit durant la saison sèche de la région. La connaissance de la structure des aquifères de pampa est nécessaire à l’estimation de leur capacité de stockage en eau souterraine mobilisable et du temps de résidence, afin de clarifier le rôle et l’importance du stockage des eaux souterraines alpines dans le bilan de l’eau à l’échelle régionale de la Cordillère Blanche. Pour comprendre la structure de ces aquifères pro-glaciaires, plusieurs méthodes géophysiques de proche surface ont été mises en œuvre dans une vallée pro-glaciaire à proximité de réseaux denses d’affluents alimentés par des sources. Les résultats de la géophysique et les diagraphies en forages suggèrent que les eaux souterraines sont stockées dans un aquifère captif constitué par des dépôts de pente enfouis sous des argiles lacustres, alors que les parties plus profondes de cette unité, à 10 à 15 m de profondeur, sont relativement exemptes d’argiles et plus conductrices sur le plan hydraulique. Sur la base de ces conclusions et des hypothèses sur la porosité de l’aquifère, les pampas de Callejon de Huaylas peuvent stocker de 0.006 à 0.02 km3 d’eau souterraine. Qui plus est, ces résultats semblent indiquer que les aquifères de talus de la Cordillère Blanche se sont constitués dans des lacs pro-glaciaires, remplis par la suite par des sédiments lacustres fins qui confinent les unités inférieures et orientent l’évacuation des eaux souterraines vers les sources, par la voie des macropores et des cheminements préférentiels.

Hidrogeología de un acuífero en taludes montañosos: Cordillera Blanca, Perú

Resumen

La dramática pérdida de masa glacial en latitudes bajas está causando cambios en la disponibilidad y uso del agua río abajo durante los meses más secos del año. La mayor concentración de glaciares tropicales del mundo se encuentra en la Cordillera Blanca de Perú, donde el escurrimiento glaciar está disminuyendo y están surgiendo tensiones regionales sobre los recursos hídricos. A lo largo de la Cordillera Blanca, los aportes de agua subterránea en los complejos montañosos de praderas y taludes, conocidos localmente como pampas, abastecen a los arroyos proglaciares con hasta el 80% de su caudal durante la estación seca de la región. El conocimiento estructural de los acuíferos pampa es necesario para estimar su capacidad de almacenamiento de agua subterránea drenable y el tiempo de residencia, para dilucidar el papel y la importancia del almacenamiento de agua subterránea montañosa en el balance hídrico regional de la Cordillera Blanca. Para comprender la estructura de estos acuíferos proglaciares, se implementaron múltiples métodos geofísicos cerca de la superficie en un valle proglaciar cerca de densas redes de afluentes alimentados por manantiales. Los resultados geofísicos y los registros de la perforación sugieren que el agua subterránea se almacena en un acuífero confinado compuesto de depósitos de taludes enterrados cubiertos por arcilla lacustre, mientras que las porciones más profundas de la unidad, de 10 a 15 m de profundidad, están relativamente libres de arcilla y son más conductivas hidráulicamente. Con base en estos hallazgos y supuestos de porosidad del acuífero, las pampas del Callejón de Huaylas pueden almacenar entre 0.006 y 0.02 km3 de agua subterránea. Además, estos hallazgos sugieren que los acuíferos de taludes de la Cordillera Blanca se formaron en lagos proglaciares, seguidos de un relleno con sedimentos lacustres finos que confinan las unidades inferiores y permiten la descarga de agua subterránea a los manantiales a través de macroporos y flujo preferencial.

秘鲁布兰卡山脉高山坡积含水层的水文地质

摘要

低纬度地区冰川的急剧减少导致一年中最干旱月份时下游水资源可利用性和供给发生变化。世界上最大的热带冰川位于秘鲁布兰卡山脉,那里的冰川径流正在减少,水资源供给正出现区域性压力。在整个布兰卡山脉,来自高山草甸—草原复合体(当地称为潘帕斯草原)的地下水入渗在该地区旱季提供了高达80%的冰川径流。需要对潘帕斯草原含水层进行系统了解,以估算其可开采的地下水储存能力和停留时间,从而阐明高山地下水储存在布兰卡山脉区域水均衡中的作用和重要性。为了理解冰川前缘含水层的结构,在靠近春季支流的密集河网地区的一个冰前山谷中开展了多种近地表地球物理勘查工作。地球物理结果和钻孔测井表明,地下水储存在由湖相粘土覆盖的掩埋坡积沉积物组成的承压含水层,而在10至15米的深度范围相对无粘土且更有更好的水力传导性。根据这些发现和含水层孔隙度的假设,Callejon de Huaylas的潘帕斯草原可以储存0.006至0.02 km3的地下水。此外,研究结果表明,布兰卡山脉的坡积含水层是在冰川前缘湖泊形成的,然后填充了隔离下层单元的细颗粒湖泊沉积物,并允许地下水通过大孔和优先流动向泉排泄。

Hidrogeologia de um aquífero de talude alpino: Cordillera Blanca, Peru

Resumo

A perda dramática de massa glacial em baixas latitudes está causando trocas na disponibilidade de água em fluxo descendente e utilização durante os meses mais secos do ano. A maior concentração de glaciares tropicais do mundo está na Cordillera Blanca no Peru, onde o escoamento glacial está diminuindo e os estresses regionais sobre os recursos hídricos estão aumentando. Ao longo da Cordillera Blanca, entradas de águas subterrâneas dos complexos talude-pradarias alpinas, localmente conhecidas como pampas, abastecem córregos proglaciais com até 80% do seu fluxo durante a estação seca da região. Conhecimento estrutural dos aquíferos do pampa é necessário para estimar a capacidade de armazenamento drenável das águas subterrâneas e tempo de residente, para elucidar o papel e importância do armazenamento das águas subterrâneas alpinas no balanço hídrico regional da Cordillera Blanca. Para entender a estrutura desses aquíferos proglaciais, métodos geofísicos múltiplos próximos à superfície foram implementados em um vale proglacial próximo à redes densas de tributários alimentados por nascentes. Os resultados geofísicos e registros de poços sugerem que as águas subterrâneas são armazenadas em um aquífero confinado composto por depósitos de taludes enterrados sobre argila lacustre, enquanto porções mais profundas da unidade, 10 a 15 m em profundidade, são, respectivamente, sem argila e mais condutor hidraulicamente. Baseado nessas descobertas e suposições da porosidade do aquífero, os pampas de Callejon de Huaylas pode armazenar de 0.006 à 0.02 km3 de águas subterrâneas. Além disso, essas descobertas sugerem que os aquíferos de talude da Cordillera Blanca foram formados em lagos proglaciais, seguidos de preenchimento de sedimentos lacustres finos que confinam unidades mais baixas e permitem a descarga das águas subterrâneas em nascentes via macro poros e fluxo preferencial.

Notes

Acknowledgements

The authors would like to thank Martin Briggs, Adam Emmer, William Kochtitzky, and an anonymous reviewer for improving the quality of this paper. Additionally we would like to acknowledge W. Steven Holbrook for instructional and technical support throughout the process of data collection and analysis.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Funding information

This material is based upon work supported by the National Science Foundation [Grant No. DGE-1449617 and EAR-1316429]. Research for this project was also supported by a student research grant from the Geological Society of America and by the Syracuse University EMPOWER program.

Supplementary material

10040_2019_1982_MOESM1_ESM.pdf (823 kb)
ESM 1 (PDF 823 kb)

References

  1. Abu-Hassanein ZS, Benson CH, Blotz LR (1996) Electrical resistivity of compacted clays. J Geotech Eng 122(5):397–406.  https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397) CrossRefGoogle Scholar
  2. AGI (2009) Instruction Manual for EarthImager 2D version 2.4.0. Advanced Geosciences, Inc, Austin, Texas, p 139Google Scholar
  3. Ames A (1998) A documentation of glacier tongue variations and lake development in the cordillera Blanca, Peru. Z Gletscherkd Glazialgeol 34(1):1–36Google Scholar
  4. Andersen TR, Westergaard JH, Pytlich A (2016) Delineation of fault systems on Langeland, Denmark based on AEM data and boreholes. ASEG Extended Abs 2016(1):1-6Google Scholar
  5. Baraer M, McKenzie JM, Mark BG, Bury J, Knox S (2009) Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the cordillera blanca (peru). Adv Geosci 22(22):41-49.  https://doi.org/10.5194/adgeo-22-41-2009
  6. Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150.  https://doi.org/10.3189/2012JoG11J186 CrossRefGoogle Scholar
  7. Baraer M, McKenzie J, Mark BG, Gordon R, Bury J, Condom T, Gomez J, Knox S, Fortner SK (2015) Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol Process 29(11):2561–2581.  https://doi.org/10.1002/hyp.10386 CrossRefGoogle Scholar
  8. Bard PY (2004) The SESAME project: an overview and main results. In: Proc. of 13th World Conf. on Earthquake Engineering, Vancouver, BC, August, 2004, pp 1–6Google Scholar
  9. Barker RD (1989) Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics 54(8):1031–1037.  https://doi.org/10.1190/1.1442728 CrossRefGoogle Scholar
  10. Bechtel TD, Goldscheider N (2017) Geoelectrical fingerprinting of two contrasting ecohydrological peatland types in the Alps. Wetlands.  https://doi.org/10.1007/s13157-017-0921-5
  11. Borcherdt RD, Glassmoyer G (1994) Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region. US Geol Surv Prof Pap 77Google Scholar
  12. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312(5781):1755–1756CrossRefGoogle Scholar
  13. Brand G, Pohjola V, Hooke RL (1987) Evidence for a till layer beneath Storglaciären, Sweden, based on electrical resistivity measurements. J Glaciol 33(115):311–314CrossRefGoogle Scholar
  14. Briggs MA, Lane JW, Snyder CD, White E, Johnson ZC, Nelms DL, Hitt NP (2018) Shallow mountain bedrock limits seepage-based headwater climate refugia. Limnologica.  https://doi.org/10.1016/j.limno.2017.02.005
  15. Brocher TM (2005) Compressional and shear wave velocity versus depth in the San Francisco Bay Area, California: rules for USGS Bay Area Velocity Model 05.0. 0. US Geol Surv Open File Rep 2005-1317Google Scholar
  16. Brody AG, Pluhar CJ, Stock GM, Greenwood WJ (2015) Near-surface geophysical imaging of a talus deposit in Yosemite Valley, California. Environ Eng Geosci 21(2):111–127CrossRefGoogle Scholar
  17. Burns P, Nolin A (2014) Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens Environ 140:165–178.  https://doi.org/10.1016/j.rse.2013.08.026 CrossRefGoogle Scholar
  18. Bury J, Mark BG, Carey M, Young KR, Mckenzie JM, Baraer M, French A, Polk MH (2013) New geographies of water and climate change in Peru: coupled natural and social transformations in the Santa River watershed. Ann Assoc Am Geogr 103(October 2012):363–374.  https://doi.org/10.1080/00045608.2013.754665 CrossRefGoogle Scholar
  19. Caballero Y, Jomelli V, Chevallier P, Ribstein P (2002) Hydrological characteristics of slope deposits in high tropical mountains (Cordillera Real, Bolivia). Catena 47(2):101–116.  https://doi.org/10.1016/S0341-8162(01)00179-5 CrossRefGoogle Scholar
  20. Cardarelli E, Cercato M, Cerreto A, Di Filippo G (2010) Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys Prospect 58(4):685–695CrossRefGoogle Scholar
  21. Carrivick JL, Geilhausen M, Warburton J, Dickson NE, Carver SJ, Evans AJ, Brown LE (2013) Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology 188:83–95CrossRefGoogle Scholar
  22. Chavez D (2013) Groundwater potential of pampa aquifers in two glacial watersheds, Cordillera Blanca, Peru. MSc Thesis, McGill University, MontrealGoogle Scholar
  23. Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Chang 11(1):179–187CrossRefGoogle Scholar
  24. Clow DW, Schrott L, Webb R, Campbell DH, Torizzo A, Dornblaser M (2003) Ground water occurrence and contributions to stream flow in an alpine catchment, Colorado Front Range. Groundwater 41937e950(7):937–950.  https://doi.org/10.1111/j.1745-6584.2003.tb02436.x CrossRefGoogle Scholar
  25. Dekker LW, Ritsema CJ (1996) Preferential flow paths in a water repellent clay soil with grass cover taken in close order over a distance of 195 cm at depths. Water Resour Res 32(5):1239–1249CrossRefGoogle Scholar
  26. Draebing D (2016) Application of refraction seismics in alpine permafrost studies: a review. Earth Sci Rev 155:136–152.  https://doi.org/10.1016/j.earscirev.2016.02.006 CrossRefGoogle Scholar
  27. Edwards LS (1977) A modified pseudosection for resistivity and IP. Geophysics 42(5):1020–1036CrossRefGoogle Scholar
  28. Emmer A, Klimeš J, Mergili M, Vilímek V, Cochachin A (2016) 882 lakes of the Cordillera Blanca: an inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena 147:269–279.  https://doi.org/10.1016/j.catena.2016.07.032 CrossRefGoogle Scholar
  29. Farber DL, Hancock GS, Finkel RC, Rodbell DT (2005) The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. J Quat Sci 20(7–8):759–776.  https://doi.org/10.1002/jqs.994 CrossRefGoogle Scholar
  30. Georges C (2004) 20th-century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arct Antarct Alp Res 36(1):100–107CrossRefGoogle Scholar
  31. Giovanni MK, Horton BK, Garzione CN, McNulty B, Grove M (2010) Extensional basin evolution in the Cordillera Blanca, Peru: stratigraphic and isotopic records of detachment faulting and orogenic collapse in the Andean hinterland. Tectonics 29(6):1–21.  https://doi.org/10.1029/2010TC002666 CrossRefGoogle Scholar
  32. Glas R, Lautz L, McKenzie J, Mark B, Baraer M, Chavez D, Maharaj L (2018) A review of the current state of knowledge of proglacial hydrogeology in the Cordillera Blanca, Peru. Wiley Interdiscip Rev Water 5(5):e1299CrossRefGoogle Scholar
  33. Glasser NF, Clemmens S, Schnabel C, Fenton CR, McHargue L (2009) Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10-Be dating. Quatern Sci Rev 28(27–28):3448–3458.  https://doi.org/10.1016/j.quascirev.2009.10.006 CrossRefGoogle Scholar
  34. Gordon RP, Lautz LK, McKenzie JM, Mark BG, Chavez D, Baraer M (2015) Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru. J Hydrol 522:628–644.  https://doi.org/10.1016/j.jhydrol.2015.01.013 CrossRefGoogle Scholar
  35. Haeberli W, Noetzli J, Arenson L, Delaloye R, Gärtner-Roer I, Gruber S, Isaksen K, Kneisel C, Krautblatter M, Phillips M (2010) Mountain permafrost: development and challenges of a young research field. J Glaciol 56(200):1043–1058CrossRefGoogle Scholar
  36. Haeni FP (1986) Application of seismic refraction methods in groundwater modeling studies in New England. Geophysics 51(2):236–249CrossRefGoogle Scholar
  37. Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ, Vuille M, Buytaert W, Cayan DR, Greenwood J, Mark B, Milner A, Weingartner R, Winder M (2017) Toward mountains without permanent snow and ice. Earth’s Future 5(May):418–435.  https://doi.org/10.1002/eft2.207 CrossRefGoogle Scholar
  38. Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed river systems. Nat Clim Chang 2(5):361–364.  https://doi.org/10.1038/nclimate1435 CrossRefGoogle Scholar
  39. Johnson C, Lane J (2016) Statistical comparison of methods for estimating sediment thickness from Horizontal-to-Vertical Spectral Ratio (HVSR) seismic methods: an example from Tylerville, Connecticut, USA. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems 2015. Society of Exploration Geophysicists, Tulsa, OK, pp 317–323Google Scholar
  40. Jongmans D, Bievre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109(1):45–56CrossRefGoogle Scholar
  41. Juen I, Kaser G, Georges C (2007) Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Peru). Glob Planet Chang 59(1–4):37–48.  https://doi.org/10.1016/j.gloplacha.2006.11.038 CrossRefGoogle Scholar
  42. Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Chang 22(1–4):93–103CrossRefGoogle Scholar
  43. Kaser G, Georges C (1999) On the mass balance of low latitude glaciers with particular consideration of the Peruvian Cordillera Blanca. Geogr Ann 81(4):643–651CrossRefGoogle Scholar
  44. Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press, CambridgeGoogle Scholar
  45. Klimeš J (2017) Geomorphology and natural hazards of the selected glacial valleys, cordillera blanca, peru. Auc Geographica 47(2):25–31.  https://doi.org/10.14712/23361980.2015.14
  46. Kneisel C (2004) New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2D resistivity imaging. Permafr Periglac Process 15(3):221–227CrossRefGoogle Scholar
  47. Kurtzman D, Baram S, Dahan O (2016) Soil-aquifer phenomena affecting groundwater under vertisols: a review. Hydrol Earth Syst Sci 20(1):1–12.  https://doi.org/10.5194/hess-20-1-2016 CrossRefGoogle Scholar
  48. Langston G, Bentley LR, Hayashi M, McClymont A, Pidlisecky A (2011) Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol Process 25(19):2967–2982Google Scholar
  49. Lavoie M, Paré D, Fenton N, Groot A, Taylor K (2005) Paludification and management of forested peatlands in Canada: a literature review. Environ Rev 13(2):21–50.  https://doi.org/10.1139/A05-006 CrossRefGoogle Scholar
  50. Lermo J, Chavez-Garcia FJ (1994) Are microtremors useful in site response evaluation? Bull Seismol Soc Am 84(5):1350–1364.  https://doi.org/10.1306/080700710318 Google Scholar
  51. L’Heureux JS, Long M (2016) Correlations between shear wave velocity and geotechnical parameters in Norwegian clays. In: Proceedings of the 17th Nordic Geotechnical Meeting, Reykjavik, Iceland, May 2016Google Scholar
  52. Loke MH (2000) A practical guide to 2-D and 3-D surveys. Electrical Imaging Surveys Environ Eng Studies 2000:8–10Google Scholar
  53. López-Moreno JI, Valero-Garcés B, Mark B, Condom T, Revuelto J, Azorín-Molina C, Valero-Garces B, Moran-Tejeda E, Vicente-Serrano S, Zubieta R, Alejo-Cochachin J (2016) Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). Sci Total Environ 579:272–282.  https://doi.org/10.1016/j.scitotenv.2016.11.107 CrossRefGoogle Scholar
  54. Maharaj L (2011) Investigating proglacial groundwater systems in the Quilcayhuanca and Yanamarey Pampas, Cordillera Blanca, Peru. MSc Thesis, McGill University, MontrealGoogle Scholar
  55. Mark BG, Mckenzie JM (2007) Tracing increasing tropical Andean glacier melt with stable isotopes in water. Environ Sci Technol 41(20):6955–6960.  https://doi.org/10.1021/es071099d CrossRefGoogle Scholar
  56. Mark BG, Seltzer GO (2003) Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. J Glaciol 49(165):271–281CrossRefGoogle Scholar
  57. Mark BG, McKenzie JM, Gómez J (2005) Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrol Sci J 50(6):975–988.  https://doi.org/10.1623/hysj.2005.50.6.975 CrossRefGoogle Scholar
  58. Mark BG, Bury J, McKenzie JM, French A, Baraer M (2010) Climate change and tropical Andean glacier recession: evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Ann Assoc Am Geogr 100(4):794–805.  https://doi.org/10.1080/00045608.2010.497369 CrossRefGoogle Scholar
  59. McClymont AF, Hayashi M, Bentley LR, Muir D, Ernst E (2010) Groundwater flow and storage within an alpine meadow-talus complex. Hydrol Earth Syst Sci 14:859–872.  https://doi.org/10.5194/hess-14-859-2010 CrossRefGoogle Scholar
  60. Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D, Tabbagh A (2003) Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour Res 39(5):1138.  https://doi.org/10.1029/2002WR001581
  61. Moser TJ (1991) Shortest path calculation of seismic rays. Geophysics 56(1):59–67CrossRefGoogle Scholar
  62. Muir DL, Hayashi M, McClymont AF (2011) Hydrological storage and transmission characteristics of an alpine talus. Hydrol Process 25(19):2954–2966Google Scholar
  63. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report Railway Tech Res Inst 30(1):25–30Google Scholar
  64. Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner HH, Victor N (2000) Special report on emissions scenarios (SRES), a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  65. Oldenburg DW, Li Y (1999) Estimating depth of investigation in DC resistivity and IP surveys. Geophysics 64(2):403–416CrossRefGoogle Scholar
  66. Parsekian AD, Singha K, Minsley BJ, Holbrook WS, Slater L (2015) Multiscale geophysical imaging of the critical zone. Rev Geophys 53(1):1–26.  https://doi.org/10.1002/2013RG000441.Received CrossRefGoogle Scholar
  67. Polk MH (2016) “They are drying out”: social-ecological consequences of glacier recession on mountain peatlands in Huascarán National Park, Peru. PhD Thesis, Univ. of Texas, Austin, TXGoogle Scholar
  68. Pollock DW (1989) Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite-difference ground-water flow model (No. 89-381). US Geological SurveyGoogle Scholar
  69. Pourrier J, Jourde H, Kinnard C, Gascoin S, Monnier S (2014) Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: the case of the Tapado glacier, dry Andes of Chile (30 S). J Hydrol 519:1068-1083Google Scholar
  70. Pouyaud B, Zapata M, Yerren J, Gomez J, Rosas G, Suarez W, Ribstein P (2005) On the future of the water resources from glacier melting in the Cordillera Blanca, Peru. Hydrol Sc J 50(6):999–1022.  https://doi.org/10.1623/hysj.2005.50.6.999 CrossRefGoogle Scholar
  71. Powers MH, Burton BL (2012) Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California. US Geol Surv Open-File Rep 2012-1191Google Scholar
  72. Racoviteanu AE, Arnaud Y, Williams MW, Ordoñez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54(186):499–510.  https://doi.org/10.3189/002214308785836922 CrossRefGoogle Scholar
  73. Rodbell DT, Seltzer GO (2000) Rapid ice margin fluctuations during the younger Dryas in the tropical Andes. Quat Res 338:328–338.  https://doi.org/10.1006/qres.2000.2177 CrossRefGoogle Scholar
  74. Rodbell DT, Seltzer GO, Mark BG, Smith JA, Abbott MB (2008) Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quatern Sci Rev 27(15–16):1612–1626CrossRefGoogle Scholar
  75. Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83(2):173–193.  https://doi.org/10.1016/j.still.2004.10.004 CrossRefGoogle Scholar
  76. Sauret ESG, Beaujean J, Nguyen F, Wildemeersch S, Brouyere S (2015) Characterization of superficial deposits using electrical resistivity tomography (ERT) and horizontal-to-vertical spectral ratio (HVSR) geophysical methods: a case study. J Appl Geophys 121(November):140–148.  https://doi.org/10.1016/j.jappgeo.2015.07.012 CrossRefGoogle Scholar
  77. Schauwecker S, Rohrer M, Acuña D, Cochachin A, Dávila L, Frey H, Giraldez C, Gomez J, Huggel C, Jacques-Coper M, Loarte E, Salzmann N, Vuille M (2014) Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob Planet Chang 119:85–97.  https://doi.org/10.1016/j.gloplacha.2014.05.005 CrossRefGoogle Scholar
  78. Seht MIV, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89(1):250–259Google Scholar
  79. Somers L, Gordon R, McKenzie J, Lauta L, Wigmore O, Glose A, Glas R, Aubry-Wake C, Mark B, Baraer M, Condom T (2016) Quantifying groundwater-surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol Process 2929(June):2915–2929.  https://doi.org/10.1002/hyp.10912 CrossRefGoogle Scholar
  80. Urrutia R, Vuille M (2009) Climate change projections for the tropical andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J Geophys Res Atmos 114(D2):D02108.  https://doi.org/10.1029/2008JD011021
  81. Vignoli G, Cassiani G, Rossi M, Deiana R, Boaga J, Fabbri P (2012) Geophysical characterization of a small pre-alpine catchment. J Appl Geophys 80:32–42CrossRefGoogle Scholar
  82. Vilímek V, Klimeš J, Červená L (2015) Glacier-related landforms and glacial lakes in Huascarán National Park, Peru. J Maps 5647(January):1–10.  https://doi.org/10.1080/17445647.2014.1000985 Google Scholar
  83. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev 89(3):79–96CrossRefGoogle Scholar
  84. Vuille M, Franquist E, Garreaud R, Sven W, Casimiro L, Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res Atmos.  https://doi.org/10.1002/2015JD023126
  85. Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Soruco A, Villacis M, Yarleque C, Timm O, Condom T, Salzmann N, Sicart J (2018) Rapid decline of snow and ice in the tropical Andes–impacts, uncertainties and challenges ahead. Earth Sci Rev 176:195–213CrossRefGoogle Scholar
  86. Wigmore O, Mark B (2017) Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru. Cryosphere 11(6):2463CrossRefGoogle Scholar
  87. Winkler G, Wagner T, Pauritsch M, Birk S, Kellerer-Pirklbauer A, Benischke R, ... Hergarten S (2016) Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol J 24(4):937–953Google Scholar
  88. Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108(1):16–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Robin Glas
    • 1
    Email author
  • Laura Lautz
    • 1
  • Jeffrey McKenzie
    • 2
  • Robert Moucha
    • 1
  • Daniel Chavez
    • 2
  • Bryan Mark
    • 3
  • John W. LaneJr
    • 4
  1. 1.Department of Earth SciencesSyracuse UniversitySyracuseUSA
  2. 2.Department of Earth and Planetary SciencesMcGill UniversityMontréalCanada
  3. 3.Department of GeographyThe Ohio State UniversityColumbusUSA
  4. 4.Earth System Processes DivisionU.S. Geological SurveyStorrsUSA

Personalised recommendations