Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 1949–1968 | Cite as

Characterizing scales of hydrogeological heterogeneity in ice-marginal sediments in Wisconsin, USA

  • Tara M. Harvey
  • Emmanuelle ArnaudEmail author
  • Jessica R. Meyer
  • Colby M. Steelman
  • Beth L. Parker
Paper

Abstract

Creating a geological framework for hydrogeological investigations in ice-marginal settings is challenging, as the dynamic nature of ice margins results in heterogeneous sediments and complex geometries that are difficult to characterize geologically and hydraulically. In this study, a multi-scale and multi-tool approach was used to develop a robust and hydraulically calibrated conceptual model of a site in Wisconsin (USA), which constrains the subsurface geologic and hydraulic heterogeneity onsite and can be utilized offsite and in similar settings. Facies analysis, including detailed logging of sediment cores integrated with geophysical surveys, was used to reconstruct the glacial history of the site and to identify key sedimentation styles. Depth-discrete multilevel monitoring wells were used to measure hydraulic head and to explore the relationship between hydraulic conditions and stratigraphy. Results indicate that hydraulic and geological heterogeneity do not necessarily coincide, as hydraulic head profiles of the heterogeneous sediments showed little head change with depth. The minimal observed hydraulic heterogeneity in this complex geologic system is likely due to relatively small and spatially limited differences in hydraulic conductivities, limited water-table relief, and minimal natural or induced transience to enhance local head differentials. Hydraulic data were also used to provide new insights on the style and scale of geologic heterogeneity known to influence permeability within ice-marginal sediments; this is especially relevant at the study site where fine-scale bedding (millimeters to tens of centimeters scale) and lateral continuity of units (meters to hundreds of meters scale) influence water recharge and dense nonaqueous phase liquids migration and distribution.

Keywords

Hydraulic properties Ice-marginal sediments Stratigraphic units Heterogeneity USA 

Echelles de caractérisation de l’hétérogénéité hydrogéologique dans les sédiments de marge glaciaire du Wisconsin, Etats-Unis d’Amérique (USA)

Résumé

Créer un cadre géologique pour des investigations hydrogéologiques au sein de dépôts glaciaires est ardu, du fait de la nature dynamique des marges glaciaires qui conduit à des sédiments hétérogènes et à des géométries complexes, difficiles à caractériser du point de vue géologique et hydraulique. Dans cette étude, une approche multi-échelles et multi-outils a été utilisée pour développer un modèle conceptuel robuste, calibré hydrauliquement, d’un site dans le Wisconsin (USA), qui contraint la géologie de subsurface et l’hétérogénéité hydraulique sur site et qui peut être utilisé hors site dans des conditions similaires. L’analyse des faciès, incluant des logs détaillés de carottes de sédiments et intégrant des reconnaissances géophysiques, a été utilisée pour reconstruire l’histoire glaciaire du site et pour identifier les styles de dépôts-types. Des forages de contrôle à des profondeurs multiples discrétisées ont été utilisées pour mesurer la charge hydraulique et explorer les relations entre les paramètres hydrauliques et la stratigraphie. Les résultats indiquent que les hétérogénéités hydrauliques et géologiques ne coïncident pas forcément, avec des profils de charge hydraulique des sédiments hétérogènes qui ont montré une faible variation de la charge avec la profondeur. L’hétérogénéité hydraulique minimale observée au sein de ce système géologique complexe est probablement due aux différences relativement faibles et limitées spatialement des conductivités hydrauliques, au gradient hydraulique limité et au caractère transitoire, naturel ou induit, de l’augmentation des différentiels de charge locales. Les données hydrauliques ont aussi été utilisées pour apporter de nouvelles indications sur le style et l’échelle de l’hétérogénéité géologique, connue pour influencer la perméabilité au sein des sédiments de marge glaciaire. Cela est particulièrement pertinent pour ce site d’étude, où le litage fin (à une échelle de quelques millimètres à des dizaines de centimètres) et la continuité latérale des unités (à une échelle de quelques mètres à des centaines de mètres) influencent la recharge hydraulique ainsi que la migration et la répartition des liquides denses en phase non aqueuse.

Caracterización de escalas de heterogeneidad hidrogeológica en sedimentos de hielo marginal de Wisconsin, EEUU

Resumen

La creación de un marco geológico para las investigaciones hidrogeológicas en entornos de hielo marginal es un reto, ya que la naturaleza dinámica de los márgenes de hielo da como resultado sedimentos heterogéneos y geometrías complejas que son difíciles de caracterizar geológica e hidráulicamente. En este estudio, se utilizó un enfoque multi-escala y multi-herramienta para desarrollar un modelo conceptual robusto e hidráulicamente calibrado de un sitio en Wisconsin (EEUU), que limita la heterogeneidad geológica e hidráulica del subsuelo en el sitio y puede ser utilizado fuera del sitio y en entornos similares. El análisis de facies, incluido el registro detallado de los núcleos sedimentarios integrado con los estudios geofísicos, se utilizó para reconstruir la historia glacial del sitio y para identificar los principales estilos de sedimentación. Se utilizaron pozos de monitoreo multinivel de profundidad discreta para medir la altura hidráulica y para explorar la relación entre las condiciones hidráulicas y la estratigrafía. Los resultados indican que la heterogeneidad hidráulica y geológica no necesariamente coinciden, ya que los perfiles de carga hidráulica en los sedimentos heterogéneos mostraron poco cambio de dicha carga con la profundidad. La heterogeneidad hidráulica mínima observada en este sistema geológico complejo se debe probablemente a diferencias relativamente pequeñas y espacialmente limitadas en las conductividades hidráulicas, un limitado relieve de la capa freática y una mínima transitoriedad natural o inducida para mejorar las diferencias de las cargas locales. Los datos hidráulicos también se utilizaron para proporcionar nuevos conocimientos sobre el estilo y la escala de la heterogeneidad geológica que se sabe que influye en la permeabilidad dentro de los sedimentos marginales del hielo; esto es especialmente relevante en el sitio del estudio, donde la estratificación a escala fina (escala de milímetros a decenas de centímetros) y la continuidad lateral de las unidades (escala de metros a cientos de metros) influyen en la recarga del agua y la migración y distribución de los líquidos en fase densa no acuosa.

表征美国威斯康星州冰缘沉积物水文地质异质性的尺度

摘要

因为冰缘的动态特性导致异质的沉积物和地质与水力方面难以表征的复杂几何形状,冰缘环境中创建水文地质调查的地质框架具有挑战性。在本研究中,利用多尺度和多工具方法开发了威斯康星州(美国)具有鲁棒性和经过水力校准的场地概念模型,该模型限制了现场地下地质和水力异质性,又可以被场外和类似地区使用。利用结合地球物理调查的沉积岩心详细测井的相分析,重建该场地的冰川历史并确定关键的沉积类型。利用深度离散的多级监测井测量水头并探索水力条件与地层学之间的关系。结果表明,因为非均质沉积物的水头剖面随深度变化很小,所以水力和地质异质性不一定重合。复杂地质系统中观察到的最小水力异质性可能是由于水力传导率的相对较小和空间局限性差异,有限的潜水位溢出,以及增强局部头部差异的最小的自然或诱导瞬变。水力资料还用于提供关于已知影响冰缘沉积物内渗透率的地质异质性特征和尺度的新认识;这与研究场地特别相关,其中细小的层理(毫米到几十厘米的尺度)和单位横向连续性(米到几百米的尺度)影响水补给和重质非水相液体的迁移和分布.

Caracterização de escalas de heterogeneidade hidrogeológica em sedimentos de margem de gelo de Wisconsin, EUA

Resumo

A criação de um contexto geológico para investigações hidrogeológicas em ambientes de margem de gelo é desafiador, pois a dinâmica natural de margens de gelo resulta em sedimentos heterogêneos e geometrias complexas que são difíceis de caracterizar geologicamente e hidraulicamente. Neste estudo, um método de multiescalas e multiferramentas foi usado para desenvolver um modelo conceitual robusto e hidraulicamente calibrado de um local em Wisconsin (EUA), que formam a geologia de subsuperfície e heterogeneidade hidráulica local e que pode ser utilizada fora da área e em ambientes similares. Análise de fáceis incluindo descrição detalhada de sedimentos de testemunhos integrado com avaliação geofísica, foi usado para reconstruir a história glacial do site e para identificar estilos chaves de sedimentos. Poços multiníveis com intervalos de amostragem com profundidade discreta foram usados para medir a carga hidráulica e para explorar a relação entre as condições hidráulicas e estratigrafia. Os resultados indicam que as heterogeneidades hidráulica e geológica não necessariamente coincidem, já que perfis de carga hidráulica em sedimentos heterogêneos mostraram pouca variação de carga hidráulica com a profundidade. A heterogeneidade hidráulica mínima observada neste sistema geológico complexo é provavelmente devido a diferenças de condutividade hidráulica relativamente pequenas e limitadas espacialmente, relevo limitado do nível de água, e mínimo transiente naturais ou induzidos para aumentar a diferença das cargas hidráulicas. Os dados de carga hidráulicas foram também usados para gerar novos entendimentos no estilo e escala da heterogeneidade geológicas conhecida por influenciar a permeabilidade em sedimentos de margem de gelo; isto é especialmente relevante na área de estudo em acamamentos finos (escala milimétrica a dezenas de centímetros) e continuidade lateral de unidades (escala de metros a centenas de metros) influenciam a recarga da água e migração e distribuição de líquidos densos de fase não aquosa.

Notes

Funding information

The authors gratefully acknowledge funding from Hydrite Chemical Co., a member of the University Consortium for Field-Focused Groundwater Contamination Research (https://theuniversityconsortium.org), the Natural Science and Engineering Research Council of Canada (NSERC) through an Industrial Research Chair (Parker) and an NSERC CGS-M graduate scholarship (Harvey) as well as the Ontario government for a Graduate Scholarship (Harvey). We also acknowledge the skillful field and laboratory assistance from staff and students of the G360 Institute for Groundwater Research. Detailed comments provided by two anonymous reviewers improved the manuscript and are much appreciated.

References

  1. Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geol Soc Am Bull 101:510–511CrossRefGoogle Scholar
  2. Arnaud E (2012) The paleoclimatic significance of deformation structures in Neoproterozoic successions. Sediment Geol 243–244:33–56CrossRefGoogle Scholar
  3. Arnaud E, McGill M, Trapp A, Smith JE (2017) Subsurface heterogeneity in the geological and hydraulic properties of the hummocky Paris moraine, Guelph, Ontario. Can J Earth Sci 55(Spec. Issue):768–785.  https://doi.org/10.1139/cjes-2016-0161
  4. Atkinson LA, Ross M, Stumpf AJ (2014) Three-dimensional hydrofacies assemblages in ice-contact/proximal sediments forming a heterogeneous “hybrid” hydrostratigraphic unit in central Illinois, USA. Hydrogeol J 22:1605–1624CrossRefGoogle Scholar
  5. Attig JW, Clayton L, Mickelson DM (1988) Pleistocene stratigraphic units of Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  6. Bajc AF, Dodge JEP (2011) Three-dimensional mapping of surficial deposits in the Brantford–Woodstock area, southwestern Ontario. Groundwater Resources Study 10, Ontario Geology Survey, Kingston, ON, 86 ppGoogle Scholar
  7. Benn DI, Evans DJA (1996) The interpretation and classification of subglacially-deformed materials. Quat Sci Rev 15:23–52CrossRefGoogle Scholar
  8. Benn DI, Evans DJA (2010) Glaciers and glaciation, 2nd edn. Hodder, LondonGoogle Scholar
  9. Best A, Arnaud E, Parker B, Aravena R, Dunfield K (2015) Effects of glacial sediment type and land use on nitrate patterns in groundwater. Ground Water Monit R 35:68–81CrossRefGoogle Scholar
  10. Boyce JI, Eyles N (2000) Architectural element analysis applied to glacial deposits: internal geometry of a late Pleistocene till sheet, Ontario, Canada. Geol Soc Am Bull 112:98–118CrossRefGoogle Scholar
  11. Bradbury KR, Swanson SK, Krohelski JT, Fritz AK (1999) Hydrogeology of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  12. Brennand TA (2000) Deglacial meltwater drainage and glaciodynamics: inferences from Laurentide eskers, Canada. Geomorphology 32:263–293CrossRefGoogle Scholar
  13. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166Google Scholar
  14. Cherry JA, Parker BL, Bradbury KR, Eaton TT, Gotkowitz MB, Hart DJ (2006) Contaminant transport through aquitards: a “state of the science” review. AWWA Research Foundation, Denver, COGoogle Scholar
  15. Clayton L, Attig JW (1997a) Pleistocene geology of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  16. Clayton L, Attig JW (1997b) Plate 1: Pleistocene geologic map of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  17. Clayton L, Attig JW, Ham NR, Johnson MD, Jennings CE, Syverson KM (2008) Ice-walled-lake plains: implications for the origin of hummocky glacial topography in middle North America. Geomorphology 97:237–248CrossRefGoogle Scholar
  18. Colgan PM, Mickelson DM (1997) Genesis of streamlined landforms and flow history of the Green Bay Lobe, Wisconsin, USA. Sediment Geol 111:7–25CrossRefGoogle Scholar
  19. Colgan PM, Mickelson DM, Cutler PM (2003) Ice-marginal terrestrial landsystems: Southern Laurentide Ice Sheet margin. In: Evans DJA (ed) Glacial landsystems. Arnold, London, pp 111–142Google Scholar
  20. Cummings DI, Gorrell G, Guilbault JP, Hunter JA, Logan C, Ponomarenko D, Pugin AJM, Pullan SE, Russell HAJ, Sharpe DR (2011) Sequence stratigraphy of a glaciated basin fill, with a focus on esker sedimentation. Geol Soc Am 123(7/8):1478–1496CrossRefGoogle Scholar
  21. Damgaard I, Bjerg PL, Bælum J, Scheutz C, Hunkeler D, Jacobsen CS, Tuxen N, Broholm MM (2013) Identification of chlorinated solvents degradation zones in clay till by high-resolution chemical, microbial and compound specific isotope analysis. J Contam Hydrol 146:37–50CrossRefGoogle Scholar
  22. Desloges JR, Gilbert R (1994) The record of extreme hydrological and geomorphological events inferred from glaciolacustrine sediments. In: Variability in stream erosion and sediment transport. IAHS, Wallingford, UK, pp 133–142Google Scholar
  23. Evans DJA, Phillips ER, Hiemstra JF, Auton CA (2006) Subglacial till: formation, sedimentary characteristics and classification. Earth-Sci Rev 78:115–176CrossRefGoogle Scholar
  24. Evans DJA, Hiemstra JF, Boston CM, Leighton I, Ó Cofaigh C, Rea BR (2012) Till stratigraphy and sedimentology at the margins of terrestrially terminating ice streams: case study of the western Canadian prairies and high plains. Quat Sci Rev 46:80–125CrossRefGoogle Scholar
  25. Evans DJA, Rother H, Hyatt OM, Shulmeister J (2013) The glacial sedimentology and geomorphological evolution of an outwash head/moraine-dammed lake, South Island, New Zealand. Sediment Geol 284–285:45–75CrossRefGoogle Scholar
  26. Eyles N, Clague JJ (1991) Glaciolacustrine sedimentation during advance and retreat of the cordilleran ice sheet in central British Columbia. Géogr Phys Quatern 45:317–331CrossRefGoogle Scholar
  27. Eyles CH, Eyles N (2010) Glacial deposits. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association of Canada, St. John’s, NF, pp 73–102Google Scholar
  28. Eyles N, Boyce JI, Putkinen N (2015) Neoglacial (<3000 years) till and flutes at Saskatchewan glacier, Canadian Rocky Mountains, formed by subglacial deformation of a soft bed. Sedimentology 62:182–203CrossRefGoogle Scholar
  29. Fortin G, van der Kamp G, Cherry JA (1991) Hydrogeology and hydrochemistry of an aquifer-aquitard system within glacial deposits. J Hydrol 126:265–292CrossRefGoogle Scholar
  30. Freeze RA, Witherspoon PA (1967) Theoretical analysis regional groundwater flow: effect of water-table configuration and subsurface permeability variation. Water Resour Res 3:623–634CrossRefGoogle Scholar
  31. Fritz AMK (1996) Aquifer contamination susceptibility of Dane County, Wisconsin, MS Thesis, University of Wisconsin, Madison, WI, 149 ppGoogle Scholar
  32. GeoTrans Inc. (2003) Additional characterization deep DNAPL bedrock zone Hydrite Chemical, Cottage Grove, WI, 156 ppGoogle Scholar
  33. Gerber RE, Boyce JI, Howard KW (2001) Evaluation of heterogeneity and field-scale groundwater flow regime in a leaky till aquitard. Hydrogeol J 9:60–78CrossRefGoogle Scholar
  34. Goutaland D, Winiarski T, Lassabatere L, Dubé JS, Angulo-Jaramillo R (2013) Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: application to the modeling of unsaturated flow. Eng Geol 166:127–139CrossRefGoogle Scholar
  35. Guilbeault MA, Parker BL, Cherry JA (2005) Mass and flux distributions from DNAPL zones in sandy aquifers. Ground Water 43:70–86CrossRefGoogle Scholar
  36. Hambrey M, Glasser N (2003) Glacial sediments: processes, environments and facies. In: Middleton G (ed) Encyclopedia of sediments and sedimentary rocks. Kluwer, Boston, pp 316–331Google Scholar
  37. Harland WB (1964) Critical evidence for a great infra-Cambrian glaciation. Geol Rundsch 54:45–61CrossRefGoogle Scholar
  38. Hart DJ, Schoephoester PR, Bradbury KR (2012) Groundwater recharge in Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  39. HSI GeoTrans (1998) Risk determination, Hydrite Chemical Co., Chemical Processing Facility, Cottage Grove, WIGoogle Scholar
  40. HSI GeoTrans (1999) DNAPL removal report. Hydrite Chemical, Cottage Grove, WI, 220 ppGoogle Scholar
  41. Kessler TC, Klint KES, Nilsson B, Bjerg PL (2012) Characterization of sand lenses embedded in tills. Quat Sci Rev 53:55–71CrossRefGoogle Scholar
  42. Kroetsche D, Wang C (2008) Particle size distribution. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. Canadian Society of Soil Science, Pinawa, MB, pp 713–725Google Scholar
  43. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156CrossRefGoogle Scholar
  44. Lu R, Xu Y (2014) The streambed sediment grain size analysis and empirical formula of vertical hydraulic conductivity of Wei River. J Appl Sci Eng Res.  https://doi.org/10.6088/ijaser.030200011
  45. Maizels J (1993) Lithofacies variations within Sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sediment Geol.  https://doi.org/10.1016/0037-0738(93)90090-r
  46. McKay LD, Fredericia J (1995) Distribution, origin, and hydraulic influence of fractures in clay-rich glacial deposit. Can Geotech J 32:957–975CrossRefGoogle Scholar
  47. Meriano M, Eyles N (2003) Groundwater flow through Pleistocene glacial deposits in the rapidly urbanizing Rouge River–Highland Creek watershed, City of Scarborough, southern Ontario, Canada. Hydrogeol J 11:288–303CrossRefGoogle Scholar
  48. Meyer JR, Parker BL, Cherry JA (2008) Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56:27–44CrossRefGoogle Scholar
  49. Meyer JR, Parker BL, Cherry JA (2014) Characteristics of high-resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. J Hydrol 517:493–507CrossRefGoogle Scholar
  50. Meyer JR, Parker BL, Arnaud E, Runkel AC (2016) Combining high-resolution vertical gradients and sequence stratigraphy to delineate hydrogeologic units for a contaminated sedimentary rock aquifer system. J Hydrol 534:505–523CrossRefGoogle Scholar
  51. Mickelson DM (1983) A guide to the glacial landscapes of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  52. Mickelson DM, McCartney MC (1979) Glacial geology of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WIGoogle Scholar
  53. Nelson BR, Goldstein KJ, Hobert LA (1991) Hydrogeologic evaluation of glaciolacustrine sediments: a case study. Ground Water Manag 7:865–879Google Scholar
  54. Ó Cofaigh C, Evans DJA, Hiemstra J (2008) Till sedimentology and stratigraphy on the dingle peninsula, SW Ireland: implications for Late Quaternary regional ice flow patterns. Proc Geol Assoc.  https://doi.org/10.1016/s0016-7878(08)80314-8
  55. Odong J (2008) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 4:1–6Google Scholar
  56. Oelkers E (1995) Evaluation of the correlation between glacial landforms, glacial sediments and hydraulic conductivity in Dane County. University of Wisconsin, Madison, WIGoogle Scholar
  57. Ostendorf DW, Lukas WG, Rotaru C (2015) Recharge and pumping hydraulics in a till drumlin above fractured bedrock (Massachusetts, USA). Hydrogeol J 23:741–756CrossRefGoogle Scholar
  58. Parker BL, Cherry JA, Chapman SW (2004) Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. J Contam Hydrol 74:197–230CrossRefGoogle Scholar
  59. Parker BL, Cherry JA, Swanson BJ (2006) A multilevel system for high-resolution monitoring in Rotasonic boreholes. Ground Water Monit R 26:57–73CrossRefGoogle Scholar
  60. Person M, Marksamer A, Dugan B, Sauer PE, Brown K, Bish D, Licht KJ, Willett M (2012) Use of a vertical δ18O profile to constrain hydraulic properties and recharge rates across a glacio-lacustrine unit, Nantucket Island, Massachusetts, USA. Hydrogeol J 20:325–336CrossRefGoogle Scholar
  61. Phillips E, Evans DJA, Atkinson N, Kendall A (2017) Structural architecture and glacitectonic evolution of the mud buttes cupola hill complex, southern Alberta, Canada. Quat Sci Rev 164:110–139CrossRefGoogle Scholar
  62. Pisarska-Jamroży M, Zieliński T (2014) Pleistocene Sandur rhythms, cycles and megacycles: interpretation of depositional scenarios and palaeoenvironmental conditions. Boreas 43:330–348CrossRefGoogle Scholar
  63. Quigley RM, Sethi AJ, Boonsinsuk P, Sheeran DE, Yong RN (1985) Geologic control on soil composition and properties, Lake Ojibway clay plain, Matagami, Quebec. Can Geotech J 22:491–500CrossRefGoogle Scholar
  64. Rayne TW, Bradbury KR, Mickelson DM (1996) Variability of hydraulic conductivity in uniform sandy till, Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison, WI Google Scholar
  65. Reading HG (1996) Sedimentary environments. 3rd edn. Wiley-Blackwell, Chichester, UKGoogle Scholar
  66. Rosas J, Lopez O, Missimer TM, Coulibaly KM, Dehwah AHA, Sesler K, Lugan LR, Mantilla D (2014) Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Ground Water 52:399–413CrossRefGoogle Scholar
  67. Runkel AC, Miller JF, McKay RM, Palmer AR, Taylor JF (2007) High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: the role of special conditions of cratonic interiors in development of stratal architecture. Geol Soc Am Bull 119(7-8):860–881CrossRefGoogle Scholar
  68. Salamon T (2009) Origin of Pleistocene outwash plains in various topographic settings, southern Poland. Boreas 38:362–378CrossRefGoogle Scholar
  69. Slomka JM, Eyles CH (2013) Characterizing heterogeneity in a glaciofluvial deposit using architectural elements, Limehouse, Ontario, Canada. Can J Earth Sci 50:911–929CrossRefGoogle Scholar
  70. Slomka JM, Eyles CH (2015) Architectural-landsystem analysis of a modern glacial landscape, Sólheimajökull, southern Iceland. Geomorphology 230:75–97CrossRefGoogle Scholar
  71. Steelman CM, Meyer JR, Parker BL (2017) Multidimensional investigation of bedrock heterogeneity/unconformities at a DNAPL-impacted site. Groundwater 55:532–549.  https://doi.org/10.1111/gwat.12514 CrossRefGoogle Scholar
  72. Stephenson DA, Fleming AH, Mickelson DM (1988) Glacial Deposits. In: Back W, Rosenshein JS, Seaber PR (eds) The geology of North America. Geological Society of America, Boulder, CO, pp 301–314Google Scholar
  73. Thomas GSP, Connaughton M, Dackombe RV (1985) Facies variation in a Late Pleistocene supraglacial outwash Sandur from the Isle of Man. Geol J 20:193–213CrossRefGoogle Scholar
  74. Van Dam RL (2012) Landform characterization using geophysics—recent advances, applications, and emerging tools. Geomorphology 137:57–73CrossRefGoogle Scholar
  75. Whittecar GR, Mickelson DM (1977) Sequence of till deposition and erosion in drumlins. Boreas 6: 213-217.Google Scholar
  76. Whittecar GR, Mickelson DM (1979) Composition, internal structures, and an hypothesis of formation for drumlins, Waukesha County, Wisconsin, U.S.A. J Glaciol 22:357–371CrossRefGoogle Scholar
  77. Winiarski T, Lassabatere L, Angulo-Jaramillo R, Goutaland D (2013) Characterization of the heterogeneous flow and pollutant transfer in the unsaturated zone in the Fluvio-glacial deposit. Procedia Environ Sci 19:955–964CrossRefGoogle Scholar
  78. Zhao Z, Illman WA, Berg SJ (2016) On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study. J Hydrol 542:156–171CrossRefGoogle Scholar
  79. Zheng C, Bianchi M, Gorelick SM (2011) Lessons learned from 25 years of research at the MADE site. Groundwater 49(5):649–662CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tara M. Harvey
    • 1
    • 2
  • Emmanuelle Arnaud
    • 1
    • 2
    Email author
  • Jessica R. Meyer
    • 1
    • 3
    • 4
  • Colby M. Steelman
    • 1
    • 3
  • Beth L. Parker
    • 1
    • 3
  1. 1.G360 Institute for Groundwater ResearchUniversity of GuelphGuelphCanada
  2. 2.School of Environmental SciencesUniversity of GuelphGuelphCanada
  3. 3.School of EngineeringUniversity of GuelphGuelphCanada
  4. 4.Department of Earth and Environmental SciencesUniversity of IowaIowa CityUSA

Personalised recommendations