Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2279–2297 | Cite as

Drawdown log-derived analysis for interpreting constant-rate pumping tests in inclined substratum aquifers

  • Anouck FerroudEmail author
  • Romain Chesnaux
  • Silvain Rafini
Paper
  • 90 Downloads

Abstract

Constant-rate pumping tests (CRPT) performed in aquifers having an inclined substratum (IS) cannot be interpreted using Theis-like models, due to an increasing thickness that is beyond conventional hydraulic assumptions. Using an empirical process based on numerical modelling, this study submits original tools for the detection of IS aquifers and the interpretation of their hydrodynamic responses to CRPT, using derivative [ds/dlog(t)] and flow dimension (n) analyses. It is shown that IS aquifers produce a drawdown log-derivative signal composed of two radial regimes and one spherical flow regime (n-sequence = 2–2–3). Comprehensive sensitivity analyses make it possible to constrain relationships between, on one hand, characteristic derivative responses, and on the other hand, hydraulic conditions such as pumping rate, distance from the well to the corner, substratum inclination, and aquifer properties, including anisotropic hydraulic conductivity. This study contributes to widening the array of tools available for the interpretation of pumping tests, by implementing a novel conceptual model for a specific type of nonuniform aquifer that has remained unaddressed; further, it provides another interpretation of the spherical flow regime, which has been interpreted in the petroleum literature to reflect partially penetrating/completing wells. Finally, a field application of the submitted interpretative tools to a CRPT into an IS aquifer is presented.

Keywords

Groundwater flow Hydraulic testing Radial and spherical flow dimensions (nDrawdown log-derivative [ds/dlog(t)] signal Numerical modeling 

Análisis de los registros de depresiones para interpretar los ensayos de bombeo a caudal constante en acuíferos de sustratos inclinados

Résumé

L’interprétation des essais de pompage à débit constant (EPDC) à partir de modèles theissiens s’avère impossible dans des aquifères à substratum incliné car l’augmentation d’épaisseur ne correspond pas aux hypothèses hydrauliques conventionnelles. À partir d’une approche empirique basée sur la modélisation numérique, cette étude propose des outils originaux basés sur l’analyse de la dérivée-log [ds/dlog(t)] et de la dimension d’écoulement (n) afin de détecter des aquifère à SI et d’interpréter leur réponse hydrodynamique. Il est montré que les aquifères à SI produisent un signal de la dérivée-log du rabattement composé de deux régimes d’écoulement radiaux et d’un régime d’écoulement sphérique (séquence de n = 2–2–3). Des analyses de sensibilité permettent d’établirdes relations entre, d’une part, le signal caractéristique de la dérivée-log du rabattement, et d’autre part, les conditions hydrauliques tels que le débit de pompage, la distance du puits à l’extrémité du coin, l’inclinaison du substratum et les propriétés de l’aquifère, y compris la conductivité hydraulique anisotrope. Cette étude contribue à élargir le catalogue d’outils disponibles pour l’interprétation des essais de pompage en proposant un nouveau modèle conceptuel pour un aquifère non-uniforme spécifique qui était encore non traité jusqu’à présent. De plus, cela fournit une nouvelle interprétation du régime d’écoulement sphérique qui a été, jusque-là interprétée dans la littérature pétrolière comme étant uniquement associée à des modèles d’aquifères partiellement captés. Enfin, les outils d’interprétation d’EPDC présentés dans l’article ont été appliqués à des données de terrain dans un contexte d’aquifère à SI.

Interprétation des essais de pompage à débit constant basée sur l’analyse de la dérivée logarithmique du rabattement dans des aquifères à substratum incliné

Resumen

Los ensayos de bombeo a caudal constante (CRPT) realizados en acuíferos con sustrato inclinado (IS) no pueden ser interpretados utilizando modelos similares a los de Theis, debido a un espesor creciente que va más allá de los supuestos hidráulicos convencionales. Utilizando un proceso empírico basado en modelos numéricos, este estudio presenta herramientas originales para la detección de acuíferos IS y la interpretación de sus respuestas hidrodinámicas a los CRPT, utilizando análisis derivados [ds/dlog(t)] y de dimensión de flujo (n). Se muestra que los acuíferos IS producen una señal derivada de las depresiones de la extracción compuesta de dos regímenes radiales y un régimen de flujo esférico (n-sequence = 2–2–3). Los análisis exhaustivos de sensibilidad permiten limitar las relaciones entre, por un lado, las respuestas derivadas características y, por otro, las condiciones hidráulicas tales como: caudal de bombeo, distancia del pozo, inclinación del sustrato y propiedades del acuífero, incluida la anisotropía de la conductividad hidráulica. Este estudio contribuye a ampliar la gama de herramientas disponibles para la interpretación de los ensayos de bombeo, mediante la implementación de un modelo conceptual novedoso para un tipo específico de acuífero no uniforme lo cual ha permanecido sin abordarse; además, proporciona otra interpretación del régimen de flujo esférico, que ha sido interpretado en la literatura petrolera para reflejar pozos parcialmente penetrantes/completos. Finalmente, se presenta una aplicación práctica de las herramientas interpretativas presentadas a un CRPT en un acuífero de IS.

为解译倾斜下层含水层恒定流量抽水试验根据降深记录得出的分析

摘要

在具有倾斜下层的含水层中进行的恒定流量抽水试验不能够用类泰斯模型解译,这是因为厚度增加,超出了常规的水力假定。采用基于数值模拟的经验过程,本研究利用派生[ds/dlog(t)]和水流维数分析提供了探测倾斜下层含水层以及解译其对恒定流量抽水试验的水动力响应的独创性工具。结果显示,倾斜下层含水层产生了降深记录-派生信号,该信号包括两个放射状形态和一个球状形态(n-序列 = 2–2–3)。综合灵敏度分析有可能一方面约束特征派生响应之间的关系,另一方面也能约束水力条件诸如抽水量、井到偏远处的距离、下层倾角以及包括各向异性水力传导率等含水层特性之间的关系。对仍然处于未知的特殊类型的非均一含水层采用新的概念模型,本研究有助于拓宽现有的解译抽水试验的工具;而且,还提供了曾经在石油文献中解译过反映部分穿透/完成井的球形水流状态的另一种解译结果。最后,介绍了所提出的恒定流量抽水试验解译工具在倾斜下层含水层中的野外应用情况。

Análise do rebaixamento da derivada logarítmica para interpretação de teste de bombeamento de taxa constante em aquíferos de substrato inclinado

Resumo

Testes de bombeamento com vazão constante (TBVC) realizados em aquíferos com substrato inclinado (SI) não podem ser interpretados utilizando os modelos de Theis, devido a uma crescente espessura que está além das suposições da hidráulica convencional. Utilizando um processo empírico baseado em modelagem numérica, este estudo submete ferramentas originais para detecção de aquíferos de SI e a interpretação de suas respostas hidrodinâmicas aos TBVC, utilizando a análise da derivada [ds/dlog(t)] e dimensão do fluxo (n). É mostrado que aquíferos de SI produzem um rebaixamento baseado na derivada logarítmica composto de dois regimes radiais e um regime de fluxo esférico (sequência-n = 2–2–3). Análise abrangente de sensibilidade permite restringir relações entre, de um lado, respostas derivadas características, e de outro, condições hidráulicas como taxa de bombeamento, distância do poço até o canto, inclinação do substrato, e propriedades do aquífero, incluindo a condutividade hidráulica anisotrópica. Este estudo contribui para ampliar a matriz de ferramentas disponíveis para interpretação de testes de bombeamento, através da implementação de um novo modelo conceitual para um tipo de aquífero não uniforme que tem permanecido desconhecido; além disso, ele fornece outra interpretação do regime esférico de fluxo, que tem sido interpretado na literatura do petróleo para refletir poços parcialmente em perfuração/completos. Por fim, é apresentada uma aplicação de campo da ferramenta interpretativa para um TBVC em um aquífero de SI.

Notes

Acknowledgements

We thank Dr. Therrien and Aquanty for providing the HGS code in the framework of collaborations between universities. Ms. Josée Kaufmann is thanked for editorial collaboration.

Funding Information

The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council (NSERC – federal funding) of Canada in the framework of the Individual Discovery Grant Program as well as the “Fonds de Recherche du Québec Nature et Technologies (FRQNT – provincial funding)” in the framework of the individual grant “Nouveaux-chercheurs” held by Prof. Romain Chesnaux.

References

  1. Baliga BR, Patankar SV (1980) A new finite-element formulation for convection-diffusion problems. Numer Heat Transf 3:393–409.  https://doi.org/10.1080/01495728008961767 CrossRefGoogle Scholar
  2. Barker JA (2007) Diffusion in hydrogeology. Diffus Fundam 6:50.1–50.18Google Scholar
  3. Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24:1796–1804.  https://doi.org/10.1029/WR024i010p01796 CrossRefGoogle Scholar
  4. Bourdet D (2002) Well test analysis: the use of advanced interpretation models: Handbook of petroleum exploration and production. Elsevier Science, AmsterdamGoogle Scholar
  5. Bourdet D, Whittle T, Douglas A, Picard Y (1983) A new set of types curves simplifies well test analysis. World Oil 196:95–106Google Scholar
  6. Bourdet D, Ayoub JA, Pirard YM (1989) Use of pressure derivative in well test interpretation. SPE Form Eval 4:293–302.  https://doi.org/10.2118/12777-PA CrossRefGoogle Scholar
  7. Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water 50:170–176.  https://doi.org/10.1111/j.1745-6584.2011.00882.x CrossRefGoogle Scholar
  8. Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357:218–227.  https://doi.org/10.1016/j.jhydrol.2008.05.023
  9. Chandra S, Dewandel B, Dutta S, Ahmed S (2010) Geophysical model of geological discontinuities in a granitic aquifer: analyzing small scale variability of electrical resistivity for groundwater occurrences. J Appl Geophys 71:137–148  https://doi.org/10.1016/j.jappgeo.2010.06.003 CrossRefGoogle Scholar
  10. Chow VT (1952) On the determination of transmissibility and storage coefficients from pumping test data. Eos Trans AGU 33:397–404.  https://doi.org/10.1029/TR033i003p00397
  11. Cooper HH Jr, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27:526–534.  https://doi.org/10.1029/TR027i004p00526 CrossRefGoogle Scholar
  12. Corbett PWM, Hamdi H, Gurav H (2012) Layered fluvial reservoirs with internal fluid cross flow: a well-connected family of well test pressure transient responses. Pet Geosci 18:219–229.  https://doi.org/10.1144/1354-079311-008 CrossRefGoogle Scholar
  13. de Dreuzy J-R, Davy P (2007) Relation between fractional flow models and fractal or long-range 2-D permeability fields. Water Resour Res 43.  https://doi.org/10.1029/2006WR005236
  14. de Dreuzy J-R, Davy P, Erhel J, de Brémond d’Ars J (2004) Anomalous diffusion exponents in continuous two-dimensional multifractal media. Phys Rev E 70.  https://doi.org/10.1103/PhysRevE.70.016306
  15. Doe TW (1991) Fractional dimension analysis of constant-pressure well tests. In: Society of Petroleum Engineers paper no. 22702, SPE annual technical conference and exhibition, 6–9 October 1991, Dallas, TX, SPE, Richardson, TX, pp 461–467Google Scholar
  16. Ehlig-Economides CA, Joseph JA, Ambrose RW, Norwood C (1990) A modern approach to reservoir testing (includes associated papers 22220 and 22327). J Pet Technol 42:1554–1563.  https://doi.org/10.2118/19814-PA CrossRefGoogle Scholar
  17. Ehlig-Economides CA, Hegeman P, Schlumberger OS, Vik S, Saga PAS (1994) Guidelines simplify well test interpretation. Oil and Gas Journal; (United States) 92:29Google Scholar
  18. Escobar F, Montealegre MM (2007) A complementary conventional analysis for channelized reservoirs. Cienc Tecnol Futuro 3:137–146Google Scholar
  19. Escobar FH, Saavedra N, Hernandez C, Hernandez Y, Pilataxi J, Pinto D (2004a) Pressure and pressure derivative analysis for linear homogeneous reservoirs without using type-curve matching. Society of Petroleum Engineers, Richardson, TXGoogle Scholar
  20. Escobar FH, Navarrete JM, Losada HD (2004b) Evaluation of pressure derivative algorithms for well-test analysis. Society of Petroleum Engineers, Richardson, TXGoogle Scholar
  21. Escobar FH, Corredor CM, Gomez BE, Cantillo JH, Pren LA (2012) Pressure and pressure derivative analysis for slanted and partially penetrating wells. Asian Res Publ Netw ARPN 7:932–938Google Scholar
  22. Ferroud A, Chesnaux R, Rafini S (2015) Pumping test diagnostic plots for the investigation of flow patterns in complex aquifers: numerical results. In: 42nd IAH international congress “Hydrogeology: Back to the Future”, 13–18 September 2015, RomeGoogle Scholar
  23. Ferroud A, Chesnaux R, Rafini S (2018a) Insights on pumping well interpretation from flow dimension analysis: the learnings of a multi-context field database. J Hydrol 556:449–474.  https://doi.org/10.1016/j.jhydrol.2017.10.008 CrossRefGoogle Scholar
  24. Ferroud A, Rafini S, Chesnaux R (2018b) Using flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: a review. J Hydrol.  https://doi.org/10.1016/j.hydroa.2018.100003
  25. Follin S, Ludvigson A-E, Leven J (2011) A comparison between standard well test evaluation methods used in SKB’s site investigations and the generalised radial flow concept (no. P-06-54). SKB, Stockholm, SwedenGoogle Scholar
  26. Gringarten A (2008) From straight lines to deconvolution: the evolution of the state of the art in well test analysis. SPE Reserv Eval Eng 11.  https://doi.org/10.2118/102079-PA
  27. Gringarten A, Witherspoon P (1972) A method of analyzing pump test data from fractured aquifers. Int. Soc. Rock Mechanics and Int. Assoc. Eng. Geol., Stuttgart, Germany pp 1–9Google Scholar
  28. Gringarten AC, Ramey HJ, Raghavan R (1974) Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture. Soc Pet Eng J 14:347–360.  https://doi.org/10.2118/4051-PA CrossRefGoogle Scholar
  29. Hantush MS (1962) Flow of ground water in sands of nonuniform thickness: 3. flow to wells. J Geophys Res 67:1527–1534.  https://doi.org/10.1029/JZ067i004p01527 CrossRefGoogle Scholar
  30. Kuusela-Lahtinen A, Niemi A, Luukkonen A (2003) Flow dimension as an indicator of hydraulic behavior in site characterization of fractured rock. Ground Water 41:333–341.  https://doi.org/10.1111/j.1745-6584.2003.tb02602.x
  31. Leray S, de Dreuzy J-R, Bour O, Labasque T, Aquilina L (2012) Contribution of age data to the characterization of complex aquifers. J Hydrol 464–465:54–68.  https://doi.org/10.1016/j.jhydrol.2012.06.052 CrossRefGoogle Scholar
  32. Leveinen J, Rönkä E, Tikkanen J, Karro E (1998) Fractional flow dimensions and hydraulic properties of a fracture-zone aquifer, Leppavirta, Finland. Hydrogeol J 6:327–340.  https://doi.org/10.1007/s100400050156
  33. Mattar L (1997) Derivative analysis without type curves. Society of Petroleum Engineers, Richardson, TXGoogle Scholar
  34. Mattar L (1999) Derivative analysis without type curves. J Can Pet Technol 38.  https://doi.org/10.2118/99-13-63
  35. Moncada K, Tiab D, Escobar FH, Montealegre M, Chacon A, Zamora R, Nese SL (2005) Determination of vertical and horizontal permeabilities for vertical oil and gas wells with partial completion and partial penetration using pressure and pressure derivative plots without type-curve matching. Cienc Tecnol Futuro 3:77–94Google Scholar
  36. Nastev M, Savard MM, Lapcevic P, Lefebvre R, Martel R (2004) Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada. Hydrogeol J 12:257–269.  https://doi.org/10.1007/s10040-004-0340-6 CrossRefGoogle Scholar
  37. Rafini S, Larocque M (2009) Insights from numerical modeling on the hydrodynamics of non-radial flow in faulted media. Adv Water Resour 32:1170–1179.  https://doi.org/10.1016/j.advwatres.2009.03.009 CrossRefGoogle Scholar
  38. Rafini S (2008) Comportement hydraulique des milieux faillés [The hydraulic behaviour of faulted environments]. PhD, Université du Québec à MontréalGoogle Scholar
  39. Rafini S, Larocque M (2012) Numerical modeling of the hydraulic signatures of horizontal and inclined faults. Hydrogeol J 20:337–350.  https://doi.org/10.1007/s10040-011-0812-4 CrossRefGoogle Scholar
  40. Rafini S, Chesnaux R, Dal Soglio L (2013) A numerical analysis to illustrate the usefulness of drawdown log-derivative diagnostic plots in characterizing the heterogeneity of non-Theis aquifers. In: GeoMontreal 2013, the 66th Canadian geotechnical conference and the 11th joint CGS/IAH-CNC groundwater conference, September 29–October 3 2013, Montreal, QBGoogle Scholar
  41. Renard P, Glenz D, Mejias M (2009) Understanding diagnostic plots for well-test interpretation. Hydrogeol J 17:589–600.  https://doi.org/10.1007/s10040-008-0392-0 CrossRefGoogle Scholar
  42. Sui W, Mou J, Bi L, Deng J, Ehlig-Economides CA (2007) New flow regimes for well near constant pressure boundary. Society of Petroleum Engineers, Richardson, TXGoogle Scholar
  43. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans Am Geophys Union 16:519–524.  https://doi.org/10.1029/TR016i002p00519 CrossRefGoogle Scholar
  44. Therrien R, McLaren R, Sudicky E, Panday S (2010) HydroGeoSphere, a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Univ. of Waterloo, Waterloo, ONGoogle Scholar
  45. Tiab D (2005) Analysis of pressure derivative data of hydraulically fractured wells by the Tiab’s direct synthesis technique. J Pet Sci Eng 49:1–21.  https://doi.org/10.1016/j.petrol.2005.07.001 CrossRefGoogle Scholar
  46. Tiab D, Kumar A (1980) Application of the p’D Function to interference analysis. J Pet Technol 32(1):465–1,470.  https://doi.org/10.2118/6053-PA
  47. Verbovšek T (2009) Influences of aquifer properties on flow dimensions in Dolomites. Ground Water 47:660–668.  https://doi.org/10.1111/j.1745-6584.2009.00577.x
  48. Walker DD, Roberts RM (2003) Flow dimensions corresponding to hydrogeologic conditions. Water Resour Res 39:1349CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Group R2Eau, Centre d’études sur les Ressources MinéralesUniversité du Québec à ChicoutimiQuébecCanada

Personalised recommendations