Advertisement

Effects of coal mining on the evolution of groundwater hydrogeochemistry

  • Wei QiaoEmail author
  • Wenping LiEmail author
  • Shengcai Zhang
  • Yunfei Niu
Report
  • 45 Downloads

Abstract

The mining industry, especially coal mining, may severely affect the spatial and temporal evolution of groundwater. To provide a potential model outlining the hydrogeochemical evolution of groundwater as influenced by coal mining, a multi-layer groundwater system in a coal mining area was investigated. A total of 76 groundwater samples were collected between 1964 and 2018 for hydrogeochemical analysis from boreholes, underground tunnels, and surface pits at Xinglongzhuang Coal Mine in China. Hierarchical cluster analysis and principal component analysis were used to classify four significant groundwater zones and two principal components. The results showed that mining may have caused the rock strata to sink, obstructing the path linking the Permian and lower Quaternary aquifers, and resulting in intensified ion exchange in the lower Quaternary aquifer. The concentrations of Na+ and Ca2+ in the groundwater from the lower Quaternary aquifer changed over the studied period (~54 years). The gradual increase of Na+ and decrease of Ca2+ concentration verified the action of cation exchange. The four main aquifers had relatively independent hydrogeochemistry, suggesting that the hydraulic conductivity of the natural faults is weak and the sealing properties of hydrogeological drill holes in the coal field are good. Analysis of 26 heavy metals in the mine drainage water showed that there is only minor pollution after the water has been simply treated. These data analysis methods and results could be useful in areas with long-term mining to interpret the evolution of groundwater and to promote groundwater quality management.

Keywords

Groundwater monitoring Hydrogeochemistry Mining Multivariate statistics China 

Effet de l’exploitation des mines de charbon sur l’évolution de l’hydrogéochimie des eaux souterraines

Résumé

L’industrie minière, et principalement l’exploitation du charbon, peut affecter fortement l’évolution spatiale et temporelle des eaux souterraines. Pour fournir un modèle qui permette de décrire potentiellement l’évolution hydrogéochimique des eaux souterraines, influencée par l’extraction du charbon, un système d’eaux souterraines à plusieurs couches dans une zone d’extraction du charbon a été étudiée. Un total de 76 échantillons d’eaux souterraines a été collecté entre 1964 et 2018 pour réaliser des analyses hydrogéochimiques d’échantillons provenant de forages, de galeries souterraines et de fosses en surface de la mine de charbon de Xinglongzhuang en Chine. Une analyse en composante principale et une analyse de classification hiérarchique ascendante ont été utilisées pour classer quatre zones significatives et deux composantes principales. Les résultats montrent que l’activité minière peut entrainer un affaissement des couches géologiques, obstruant les chemins d’écoulement reliant l’aquifère du Permien et celui du Quaternaire inférieur, et ayant pour résultat une intensification des échanges ioniques au sein de l’aquifère du Quaternaire inférieur. Les concentrations en Na+ et Ca2+ dans les eaux souterraines de l’aquifère du Quaternaire inférieur ont évolué durant la période d’étude (~54 ans). Une augmentation graduelle des concentrations en Na+ et une diminution des concentrations en Ca2+ confirment les processus d’échange cationique. Les quatre principaux aquifères ont une relative indépendance hydrogéochimique, suggérant que les conductivités hydrauliques au travers des failles naturelles sont faibles et que les propriétés de colmatage des trous de forage dans le charbon sont bonnes. L’analyse de 26 métaux lourds dans les eaux de drainage minier ont montré qu’il y a seulement une faible pollution après un traitement simple des eaux. Ces méthodes d’analyses de données et ces résultats pourraient être utiles dans les secteurs d’activités minières historiques pour interpréter l’évolution des eaux souterraines et pour promouvoir la gestion de la qualité des eaux souterraines.

Efectos de la minería del carbón en la evolución de la hidrogeoquímica del agua subterránea

Resumen

La industria minera, especialmente la minería del carbón puede afectar gravemente a la evolución espacial y temporal del agua subterránea. Para proporcionar un modelo potencial que esbozara la evolución hidrogeoquímica del agua subterránea influenciada por la minería del carbón, se investigó un sistema multicapa de aguas subterráneas en una zona minera del carbón. Un total de 76 muestras de agua subterránea fueron recolectadas entre 1964 y 2018 para el análisis hidrogeoquímico de pozos, túneles y pozos superficiales en la Mina de Carbón de Xinglongzhuang en China. Se utilizaron el análisis jerárquico de clústeres y el análisis de componentes principales para clasificar cuatro zonas significativas y dos componentes principales de aguas subterráneas. Los resultados mostraron que la minería puede haber causado el hundimiento de los estratos rocosos, obstruyendo la trayectoria que une los acuíferos del Pérmico y del Cuaternario inferior, y dando lugar a una intensificación del intercambio iónico en el acuífero del Cuaternario inferior. Las concentraciones de Na+ y Ca2+ en el agua subterránea del acuífero cuaternario inferior cambiaron durante el período estudiado (~54 años). El aumento gradual del Na+ y la disminución de la concentración de Ca2+ verificaron la acción del intercambio catiónico. Los cuatro acuíferos principales tenían una hidrogeoquímica relativamente independiente, lo que sugiere que la conductividad hidráulica de las fallas naturales es débil y que las propiedades de sellado en los pozos de las perforaciones hidrogeológicas en el yacimiento de carbón son buenas. El análisis de 26 metales pesados en el agua de drenaje de la mina mostró que sólo hay una contaminación menor después de que el agua haya sido simplemente tratada. Estos métodos y resultados de análisis de datos podrían ser útiles en áreas con minería a largo plazo para interpretar la evolución y promover la gestión de la calidad del agua subterránea.

采煤对地下水水文地球化学演化的影响

摘要

在矿业领域,尤其是煤炭的开发,会严重影响地下水的时空演化。本文通过建立一个描述煤矿开采对地下水水文地球化学演化影响的潜在模型,对一个煤矿区的多层地下水系统进行了调查研究。从1964年到2018年,在位于中国的兴隆庄煤矿,共采集了76份地下水样品,基于此进行地下水的水文地球化学分析。这些样品来自钻孔、井下巷道和地表塌陷坑。文中采用层次聚类分析和主成分分析方法对4个重要的地下水区域和2个主成分进行了分类。结果表明:开采可能导致地层下沉,阻碍了二叠系与第四纪底部含水层的连通通道,导致了第四纪底部含水层离子交换加剧。研究周期内(约54年),第四纪底部含水层中地下水的Na+离子和Ca2+离子浓度发生了变化。Na+离子浓度的逐渐升高和Ca2+离子浓度的逐渐降低证实了阳离子的交换作用。4个主要地下含水层具有相对独立的水文地球化学性质,表明断层在天然条件下的导水性较弱,同时也说明了煤田水文地质钻孔的封闭性较好。对矿井水中26种重金属的分析表明,经过简单处理后,矿井排水中重金属污染较轻。本文的数据分析方法和结果对解释长期开采地区的地下水演化规律和地下水水质管理具有一定的参考价值。

Efeitos da mineração de carvão na evolução da hidrogeoquímica de águas subterrâneas

Resumo

A indústria de mineração, especialmente a mineração de carvão, pode afetar gravemente a evolução espacial e temporal das águas subterrâneas. Para fornecer um modelo potencial que delineia a evolução hidrogeoquímica das águas subterrâneas, influenciada pela mineração de carvão, um sistema de águas subterrâneas multicamadas em uma área de mineração de carvão foi investigado. Um total de 76 amostras de águas subterrâneas foram coletadas entre 1964 e 2018 para análises hidrogeoquímicas de furos, túneis subterrâneos e poços de superfície na Mina de Carvão Xinglongzhuang na China. A análise hierárquica de agrupamento e a análise de componentes principais foram usadas para classificar quatro zonas significativas de águas subterrâneas e dois componentes principais. Os resultados mostraram que a mineração pode ter causado a subsidência dos estratos rochosos, obstruindo o caminho entre os aquíferos Permiano e Quaternário, e resultando na intensificação da troca iônica no aquífero Quaternário inferior. As concentrações de Na+ e Ca2+ nas águas subterrâneas do aquífero Quaternário inferior mudaram ao longo do período estudado (~54 anos). O aumento gradual de Na+ e a diminuição da concentração de Ca2+ verificaram a ação da troca de cátions. Os quatro aquíferos principais tinham hidrogeoquímica relativamente independente, sugerindo que a condutividade hidráulica das falhas naturais é fraca e que as propriedades de vedação dos furos hidrogeológicos no campo de carvão são boas. A análise de 26 metais pesados ​​na água de drenagem da mina mostrou que há apenas poluição mínima depois que a água foi tratada de forma simples. Esses métodos e resultados de análise de dados podem ser úteis em áreas com mineração de longo prazo para interpretar a evolução das águas subterrâneas e promover o gerenciamento da qualidade das águas subterrâneas.

Notes

Acknowledgements

The authors thank the reviewers for their helpful comments.

Funding information

The research was supported by the National Natural Science of China (Grant 41772302), the Fundamental Research Funds for the Central Universities (2017XKZD07), the Fundamental Research Funds for the Central Universities (2015QNB23), the Fundamental Research Funds of the State Key Program of National Natural Science of China (Grant 41430643), the State 973 Project (Grant 2015CB251601), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. Adam PJ, Paul LY (2000) Broadening the scope of mine water environmental impact assessment: a UK perspective. Environ Impact Assess Rev 20:85–96.  https://doi.org/10.1016/S0195-9255(99)00032-3 CrossRefGoogle Scholar
  2. Andreas K, Nikola R (2011) Special issue: sustainable development of energy, water and environment systems. Water Resour Manage 25:2917.  https://doi.org/10.1007/s11269-011-9888-9 CrossRefGoogle Scholar
  3. Babita N, Abhay KS, Pathak DD, Aaditya C (2017) Hydrogeochemistry of coal mine water of North Karanpura coalfields, India: implication for solute acquisition processes, dissolved fluxes and water quality assessment. Environ Earth Sci 76:489.  https://doi.org/10.1007/s12665-017-6813-4 CrossRefGoogle Scholar
  4. Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson JE, Singh N, Balfors BB (2012) Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, western Ghana. J Afr Earth Sci 66–67:72–84.  https://doi.org/10.1016/j.jafrearsci.2012.03.005
  5. Blake S, Henry T, Murray J, Flood R, Muller MR, Jones AG, Rath V (2015) Compositional multivariate statistical analysis of thermal groundwater provenance: a hydrogeochemical case study from Ireland. Appl Geochem 75:171–188.  https://doi.org/10.1016/j.apgeochem.2016.05.008 CrossRefGoogle Scholar
  6. Carucci V, Petitta M, Aravena R (2012) Interaction between shallowand deep aquifers in the Tivoli Plain (central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem 27(1):266–280.  https://doi.org/10.1016/j.apgeochem.2011.11.007 CrossRefGoogle Scholar
  7. Chen LW, Yin XX, Gui HR (2013) Water–rock interactions tracing and analysis of deep aquifers in mining area-using isotope and hydrogeochemistry methods. Acta Geol Sin 8(7):1021–1030Google Scholar
  8. Chihi H, Marsily GD, Belayouni H, Yahyaoui H (2015) Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: example of the “Jeffara de Medenine” system, south-east Tunisia. J Hydrol 4:410–430.  https://doi.org/10.1016/j.ejrh.2015.07.004 Google Scholar
  9. Cortes JE, Muñoz LF, Gonzalez CA, Niño JE, Polo A, Suspes A, Siachoque SC, Hernández A, Trujillo H (2016) Hydrogeochemistry of the formation waters in the San Francisco field, UMV basin, Colombia: a multivariate statistical approach. J Hydrol 539:113–124.  https://doi.org/10.1016/j.jhydrol.2016.05.010 CrossRefGoogle Scholar
  10. Ettazarini S (2005) Processes of water–rock interaction in the Turonian aquifer of OumEr-Rabia Basin, Morocco. Environ Geol 49(2):293–299.  https://doi.org/10.1007/s00254-005-0088-x CrossRefGoogle Scholar
  11. Gastmans D, Chang HK, Hutcheon I (2010) Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Appl Geochem 25(1):16–33.  https://doi.org/10.1016/j.apgeochem.2009.09.024 CrossRefGoogle Scholar
  12. Güler C, Thyne GD, McCray JE, Turner KA (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474.  https://doi.org/10.1007/s10040-002-0196-6 CrossRefGoogle Scholar
  13. Guo HM, Wang YX (2003) Hydro-geochemical processes in shallow Quaternary aquifers from the northern part of Datong Basin, China. Appl Geochem 19(1):19–27.  https://doi.org/10.1016/S0883-2927(03)00128-8 CrossRefGoogle Scholar
  14. Han Y, Wang GC, Cravotta CA, Hu WY, Bian YY, Zhang ZW, Liu YY (2013) Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrolo Proc 27(16):2247–2257.  https://doi.org/10.1002/hyp.9297 CrossRefGoogle Scholar
  15. Huang X, Deng H, Zheng C, Cao G (2016) Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China. Sci Total Environ 543(Pt A):357–372.  https://doi.org/10.1016/j.scitotenv.2015.10.150 CrossRefGoogle Scholar
  16. Johnson KL, Younger PL (2006) The co-treatment of sewage and mine waters in aerobic wetlands. Eng Geol 85(1–2):53–61.  https://doi.org/10.1016/j.enggeo.2005.09.026 CrossRefGoogle Scholar
  17. Kumar SK, Rammohan V, Sahayam JD, Jeevanandam M (2009) Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environ Monitor Assess 159(1–4):341–351.  https://doi.org/10.1007/s10661-008-0633-7 CrossRefGoogle Scholar
  18. Li PY, Feng W, Xue CY, Tian R, Wang S (2017) Spatiotemporal variability of contaminants in lake water and their risks to human health: a case study of the Shahu Lake tourist area, northwest China. ExpoHealth 9(3):213–225.  https://doi.org/10.1007/s12403-016-0237-3 Google Scholar
  19. Li PY, Tian R, Liu R (2018) Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province, China. Exposure Health.  https://doi.org/10.1007/s12403-018-0277-y
  20. Ministry of Health of the P. R. China, Standardization Administration of the P. R. China (2006) Standards for drinking water quality (GB 5749-2006) (in Chinese). China Standard Press, Beijing Google Scholar
  21. Morán-Ramírez J, Ledesma-Ruiz R, Mahlknecht J, Ramos-Leal JA (2016) Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling. Appl Geochem 68:79–94.  https://doi.org/10.1016/j.apgeochem.2016.03.008 CrossRefGoogle Scholar
  22. Plummer LN, Busby JF, Lee RW (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour 26:1981–2014.  https://doi.org/10.1029/WR026i009p01981 CrossRefGoogle Scholar
  23. Qiao W, Li WP, Li T, Chang JY, Wang QQ (2017) Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan Mining Area, Shaanxi, China. Mine Water Environ 36:104–113.  https://doi.org/10.1007/s10230-016-0414-4 CrossRefGoogle Scholar
  24. Rajmohan N, Elango L (2004) Identification and evolution of hydro-geochemical processes in the groundwater environment in an area of the Palar and Cheyyar river basins, southern India. Environ Geol 46(1):47–61.  https://doi.org/10.1007/s00254-004-1012-5 Google Scholar
  25. Rakotondrabe F, Ngoupayou JRN, Mfonka Z, Rasolomanana EH, Abolo AJN, Ako AA (2018) Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Sci Total Environ 610–611:831–844.  https://doi.org/10.1016/j.scitotenv.2017.08.080 CrossRefGoogle Scholar
  26. Razowska L (2001) Changes of groundwater chemistry caused by the flooding of iron mines (Czestochowa Region, southern Poland). J Hydrol 24:17–32.  https://doi.org/10.1016/S0022-1694(00)00420-0 CrossRefGoogle Scholar
  27. Sako A, Bamba O, Gordio A (2016) Hydrogeochemical processes controlling groundwater quality around Bomboré gold mineralized zone, central Burkina Faso. J Geochem Explor 170:58–71.  https://doi.org/10.1016/j.gexplo.2016.08.009 CrossRefGoogle Scholar
  28. Salmi EF, Nazem M, Karakus M (2017) Numerical analysis of a large landslide induced by coal mining subsidence. Eng Geol 217:141–152.  https://doi.org/10.1016/j.enggeo.2016.12.021 CrossRefGoogle Scholar
  29. Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigation and development. Water Research, Series-33. UNESCO, Delft, The Netherlands, pp 54–83Google Scholar
  30. Sharif MU, Davis RK, Steele KF, Kim B, Kresse TM, Fazio JA (2008) Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA). J Hydrol 350(1–2):41–55.  https://doi.org/10.1016/j.jhydrol.2007.11.027 CrossRefGoogle Scholar
  31. Towfiqul Islam ARM, Shen SH, Bodrud-Doza MD, Safiur Rahman M (2017) Assessing irrigation water quality in Faridpur district of Bangladesh using several indices and statistical approaches. Arabian J Geosci 10:418.  https://doi.org/10.1007/s12517-017-3199-2 CrossRefGoogle Scholar
  32. Unlu T, Akcin H, Yilmaz O (2013) An integrated approach for the prediction of subsidence for coal mining basins. Eng Geol 166:186–203.  https://doi.org/10.1016/j.enggeo.2013.07.014 CrossRefGoogle Scholar
  33. Voutsis N, Kelepertzis E, Tziritis E, Kelepertsis A (2015) Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. J Geochem Explor 159:79–92.  https://doi.org/10.1016/j.gexplo.2015.08.007 CrossRefGoogle Scholar
  34. WHO (2017) Guidelines for drinking-water quality, fourth edition: incorporating the first addendum. World Health Organization, GenevaGoogle Scholar
  35. Wu Q, Fan ZL, Zhang ZW, Zhou WF (2014) Evaluation and zoning of groundwater hazards in Pingshuo no. 1 underground coal mine, Shanxi Province, China. Hydrogeol J 22:1693–1705.  https://doi.org/10.1007/s10040-014-1138-9 CrossRefGoogle Scholar
  36. Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360.  https://doi.org/10.1016/j.ijrmms.2004.11.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mine Water Hazards Prevention and Controlling TechnologyChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.School of Resources and GeosciencesChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  3. 3.Xingloangzhuang Coal Mine, Yanzhou Coal Mining Company LimitedYankuang GroupJiningPeople’s Republic of China
  4. 4.Beijing Exploration Resources Technology Co.BeijingPeople’s Republic of China

Personalised recommendations