Advertisement

Adaptive optimization of a vulnerable well field

  • Yohann CousquerEmail author
  • Alexandre Pryet
  • Célestine Delbart
  • Rémi Valois
  • Alain Dupuy
Paper
  • 55 Downloads

Abstract

The contamination of groundwater resources is a challenge for drinking water supplies. To meet water quality standards, well-field operators need practical solutions to reduce the vulnerability of production wells. Strategies for several combinations of management variables such as well flow rate or water level in drains, are usually possible to satisfy the required production rate. However, these strategies may lead to contamination issues for the abstracted groundwater. A surrogate transport model was implemented in a well field vulnerable to a contaminated stream. An adaptive multi-objective optimization approach is proposed. The objective is to maximize the water production at the well field while minimizing the proportion of stream water abstracted. The optimization problem is adaptive to the stream level, which is a key parameter describing hydrological conditions. A systematic exploration of management settings is conducted and a three-dimensional Pareto front is extracted. From these optimum settings, a practical easy-to-use approach is developed. The well-field operator can adjust production settings to optimum conditions as a function of the observed stream water level and desired production rate.

Keywords

Optimization Well field Groundwater/surface-water relations Modeling 

Optimisation adaptative d’un champ captant vulnérable

Résumé

La contamination de la ressource en eaux souterraine est un défi pour l’approvisionnement en eau potable. Pour respecter les normes de qualité de l’eau potable, les exploitants ont besoin de solutions pratiques pour réduire la vulnérabilité des puits de production. La mise en place de stratégies jouant sur les schémas de gestion, telles que le débit des puits ou le niveau d’eau dans les drains, sont généralement possibles pour atteindre le débit de production requis. Cependant, ces stratégies peuvent entraîner des problèmes de contamination des eaux souterraines captées. Un modèle équivalent de transport a été mis en œuvre sur un champ captant vulnérable à un cours d’eau contaminé. Une approche d’optimisation multi-objectifs adaptative est proposée. L’objectif est de maximiser la production d’eau tout en minimisant la proportion d’eau du cours d’eau captée. Le problème d’optimisation est adaptatif au niveau du cours d’eau, paramètre clé décrivant les conditions hydrologiques. Une exploration systématique des paramètres de gestion est effectuée et un front de Pareto tridimensionnel est extrait. À partir de ces paramètres optimaux, une approche pratique et facile à utiliser est développée. L’opérateur peut ajuster les paramètres de production aux conditions optimales en fonction du niveau d’eau du cours d’eau observé et du débit de production souhaité.

Optimización adaptativa de un campo de pozos vulnerables

Resumen

La contaminación de los recursos de aguas subterráneas es un reto para el abastecimiento de agua potable. Para cumplir con los estándares de calidad del agua, los operadores de pozos necesitan soluciones prácticas para reducir la vulnerabilidad de los pozos de producción. Las estrategias para varias combinaciones de variables de manejo, tales como el caudal o el nivel de agua en los drenajes, generalmente son posibles para satisfacer la tasa de producción requerida. Sin embargo, estas estrategias pueden conducir a problemas de contaminación de las aguas subterráneas extraídas. Se implementó un modelo de transporte alternativo en un campo de pozos vulnerable a un arroyo contaminado. Se propone un enfoque adaptativo de optimización multiobjetivo. El objetivo es maximizar la producción de agua en el campo de pozos y minimizar la proporción de agua de arroyo extraída. El problema de optimización es adaptable al nivel del arroyo, que es un parámetro clave que describe las condiciones hidrológicas. Se realiza una exploración sistemática de los escenarios de manejo y se extrae un frente de óptimo de Pareto tridimensional. A partir de estos ajustes óptimos, se desarrolla un enfoque práctico y fácil de usar. El operador del campo de pozos puede ajustar los ajustes de producción a condiciones óptimas en función del nivel de agua del arroyo observado y de la tasa de producción deseada.

易受污染井群的自适应优化

摘要

地下水资源的污染是饮用供水的难点问题。为了满足水质标准,井群管理者需要制定切实可行的方案以降低生产井的易受污染概率。诸如井流量和排水水位等管理变量的几种组合方案,通常可以满足所需的开采量。但是,这些方案可能会导致抽取的地下水受到污染。针对易受污染河流影响的井群问题,开发了替代运移模型。提出了一种自适应多目标优化方法。目标是最大限度地提高井群的开采量,同时最大限度地减少河水开采的比例。优化问题适应于河流面,这是刻画水文条件的关键参数。对管理方案进行了系统探索研究,并提取了三维Pareto 前沿。从这些最佳设置中,开发出一种实用且易于使用的方法。井群管理者可以根据观察到的河流水位和期望的开采量将生产配置调整到最佳条件。

Otimização adaptativa de um campo de poços vulnerável

Resumo

A contaminação dos recursos de água subterrânea é um desafio para o abastecimento de água potável. Para atender aos padrões de qualidade da água, os operadores de campo precisam de soluções práticas para reduzir a vulnerabilidade dos poços de produção. Estratégias para várias combinações de variáveis de gerenciamento, como vazão de poço ou nível de água em drenos, geralmente são possíveis para satisfazer a taxa de produção requerida. No entanto, essas estratégias podem levar a problemas de contaminação para as águas subterrâneas abstraídas. Um modelo de transporte substituto foi implementado em um campo de poços vulnerável a um fluxo contaminado. Uma abordagem adaptativa de otimização multiobjetivo é proposta. O objetivo é maximizar a produção de água no poço, minimizando a proporção de água captada. O problema de otimização é adaptável ao nível do fluxo, que é um parâmetro chave que descreve as condições hidrológicas. Uma exploração sistemática de configurações de gerenciamento é conduzida e uma frente de Pareto tridimensional é extraída. A partir dessas configurações ótimas, é desenvolvida uma abordagem prática e fácil de usar. O operador de campo de poços pode ajustar as configurações de produção às condições ideais em função do nível de água do fluxo observado e da taxa de produção desejada.

Notes

Acknowledgments

The authors are grateful to the editor and the two anonymous reviewers for their constructive comments. We also thank Clotilde Thompson for her help in improving the English.

Funding information

This work was conducted in the framework of the Mhyqadeau project supported by Suez Environnement (LyRE) and the French Aquitaine regional council.

References

  1. Bauser G, Hendricks Franssen HJ, Kaiser HP, Kuhlmann U, Stauffer F, Kinzelbach W (2010) Real-time management of an urban groundwater well field threatened by pollution. Environ Sci Technol 44(17):6802–6807.  https://doi.org/10.1021/es100648j CrossRefGoogle Scholar
  2. Bauser G, Hendricks Franssen HJ, Stauffer F, Kaiser H-P, Kuhlman U, Kinzelbach W (2012) A comparison study of two different control criteria for the real-time management of urban groundwater works. J Environ Manag 105:21–29.  https://doi.org/10.1016/j.jenvman.2011.12.024 CrossRefGoogle Scholar
  3. Bayer P, Finkel M (2004) Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones. Water Resour Res 40(6):19Google Scholar
  4. Blasco X, Herrero JM, Sanchis J, Martínez M (2008) A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Inf Sci 178(20):3908–3924CrossRefGoogle Scholar
  5. Burrows W, Doherty J (2016) Gradient-based model calibration with proxy-model assistance. J Hydrol 533:114–127CrossRefGoogle Scholar
  6. Cabaret O (2011) Caractérisation physique et approche numérique du rôle des aquitards dans les systèmes aquifères multicouches: application au complexe tertiaire Nord-aquitain [Physical characterization and numerical approach to the role of aquitards in multilayer aquifer systems: application to the North-Aquitaine aquifer]. PhD Thesis, Université Michel de Montaigne- Bordeaux III, FranceGoogle Scholar
  7. Canik B (1968) Etude géologique et hydrogéologique du bassin versant de la Jalle de Saint-Médard [Geological and hydrogeological study of Jalle de Saint-Médard Basin]. PhD Thesis, Université de Bordeaux, FranceGoogle Scholar
  8. Carrera J, Vázquez-Suñé E, Castillo O, Sánchez-Vila X (2004) A methodology to compute mixing ratios with uncertain end-members. Water Resour Res 40(12)Google Scholar
  9. Cousquer Y (2017) Modélisation des échanges nappe-rivière à l’échelle intermédiaire: conceptualisation, calibration, simulation [Stream-aquifer interaction modeling at median-scale: conceptualization, calibration, simulation]. PhD Thesis, Université Bordeaux Montaigne, FranceGoogle Scholar
  10. Cousquer Y, Pryet A, Flipo N, Delbart C, Dupuy A (2017) Estimating river conductance from prior information to improve surface–subsurface model calibration. Groundwater 55(3):408–418CrossRefGoogle Scholar
  11. Cousquer Y, Pryet A, Atteia O, Ferré TP, Delbart C, Valois R, Dupuy A (2018) Developing a particle tracking surrogate model to improve inversion of ground water–surface water models. J Hydrol 558:356–365CrossRefGoogle Scholar
  12. Derx J, Blaschke AP, Blöschl G (2010) Three-dimensional flow patterns at the river–aquifer interface: a case study at the Danube. Adv Water Resour 33(11):1375–1387CrossRefGoogle Scholar
  13. Doppler T, Franssen HJH, Kaiser HP, Kuhlman U, Stauffer F (2007) Field evidence of a dynamic leakage coefficient for modelling river–aquifer interactions. J Hydrol 347(1–2):177–187CrossRefGoogle Scholar
  14. Engeler I, Franssen HH, Müller R, Stauffer F (2011) The importance of coupled modelling of variably saturated groundwater flow-heat transport for assessing river–aquifer interactions. J Hydrol 397(3–4):295–305CrossRefGoogle Scholar
  15. Erickson M, Mayer A, Horn J (2002) Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA). Adv Water Resour 25(1):51–65CrossRefGoogle Scholar
  16. Fienen M, Hunt R, Krabbenhoft D, Clemo T (2009) Obtaining parsimonious hydraulic conductivity fields using head and transport observations: a Bayesian geostatistical parameter estimation approach. Water Resour Res 45(8):8405CrossRefGoogle Scholar
  17. Hansen AK, Franssen HJH, Bauer-Gottwein P, Madsen H, Rosbjerg D, Kaiser HP (2013) Well field management using multi-objective optimization. Water Resour Manag 27(3):629–648CrossRefGoogle Scholar
  18. Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Chichester, UKGoogle Scholar
  19. Hughes I, Hase T (2010) Measurements and their uncertainties: a practical guide to modern error analysis. Oxford University Press, Oxford, UKGoogle Scholar
  20. Kollat JB, Reed PM (2007) A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications. Adv Water Resour 30(3):408–419CrossRefGoogle Scholar
  21. Konikow LF (2011) The secret to successful solute-transport modeling. Groundwater 49(2):144–159CrossRefGoogle Scholar
  22. Kontos YN, Katsifarakis KL (2017) Optimal management of a theoretical coastal aquifer with combined pollution and salinization problems, using genetic algorithms. Energy 136:32–44CrossRefGoogle Scholar
  23. Kurtz W, Hendricks Franssen HJ, Kaiser HP, Vereecken H (2014) Joint assimilation of piezometric heads and groundwater temperatures for improved modeling of river–aquifer interactions. Water Resour Res 50(2):1665–1688CrossRefGoogle Scholar
  24. Ledoux E, Girard G, Villeneuve JP (1984) Proposition d’un modèle couplé pour la simulation conjointe des écoulements de surface et des écoulements souterrains Sur un bassin hydrologique [A coupled model for the joint simulation of surface flows and subsurface flows in a watershed]. Houille Blanche 1–2:101–120CrossRefGoogle Scholar
  25. de Marsily G, Lavedan G, Boucher M, Fasanino G (1984) Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Geostatistics for natural resources characterization, part 2. Springer, Heidelberg, Germany, pp 831–849Google Scholar
  26. Marti BS, Bauser G, Stauffer F, Kuhlman U, Kaiser H-P, Kinzelbach W (2012) An expert system for real-time well field management. Water Sci Technol 12(5):699–706.  https://doi.org/10.2166/ws.2012.021 Google Scholar
  27. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open-File Rep 83-875Google Scholar
  28. Peralta RC (2012) Groundwater optimization handbook: flow, contaminant transport, and conjunctive management. CRC, Boca Raton, FLGoogle Scholar
  29. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference ground-water flow model. US Geol Surv Open-File Rep 94-464Google Scholar
  30. Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48(7)Google Scholar
  31. Rueedi J, Purtschert R, Beyerle U, Alberich C, Kipfer R (2005) Estimating groundwater mixing ratios and their uncertainties using a statistical multi parameter approach. J Hydrol 305(1):1–14CrossRefGoogle Scholar
  32. Valois R, Cousquer Y, Schmutz M, Pryet A, Delbart C, Dupuy A (2017) Characterizing stream-aquifer exchanges with self-potential measurements. Groundwater 56(3)437–450 Google Scholar
  33. Welter DE, Doherty JE, Hunt RJ, Mufiels CT, Tonkin MJ, Schreuder WA (2015) Approaches in highly parameterized inversion: Pest++—a parameter estimation code optimized for large environmental models. US Geol Surv Tech Methods, book 7, section C12, US Geological Survey, Reston, VA, 54, ppGoogle Scholar
  34. Woodruff M, Herman J (2013) Nondominated sorting for multi-objective problems. https://github.com/matthewjwoodruff/pareto.py. Accessed December 2018
  35. Yeh WW (2015) Optimization methods for groundwater modeling and management. Hydrogeol J 23(6):1051–1065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yohann Cousquer
    • 1
    • 2
    Email author
  • Alexandre Pryet
    • 1
  • Célestine Delbart
    • 3
  • Rémi Valois
    • 4
  • Alain Dupuy
    • 1
  1. 1.EA 4592 Georessources & Environment, Bordeaux INP and Bordeaux Montaigne University, ENSEGIDPessac CedexFrance
  2. 2.Le LyRE, SUEZ Environnement, Domaine du Haut-Carré 43TalenceFrance
  3. 3.Université François Rabelais de Tours, EA 6293 GéHCOToursFrance
  4. 4.CEAZA, Raúl Bitrán 1305, Campus Andrés Bello, Universidad de La SerenaLa SerenaChile

Personalised recommendations