Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2121–2136 | Cite as

An integrated approach for aquifer characterization and groundwater productivity evaluation in the Lake Haramaya watershed, Ethiopia

  • Haile A. ShishayeEmail author
  • Douglas R. Tait
  • Kevin M. Befus
  • Damien T. Maher
Report

Abstract

Accurate characterization of aquifers remains challenging for large-scale systems because of the spatial heterogeneity of hydraulic properties and temporal variability of hydrologic inputs. This study highlights the importance of integrating geological, hydrogeological and geophysical approaches to characterize an aquifer and evaluate groundwater productivity. Data from geological maps, drill logs, a pumping test, vertical electrical soundings (VES) and different field hydrogeological studies were combined and applied to a heavily extracted aquifer system—Lake Haramaya watershed, Ethiopia. From the geological characterization, the aquifer was found to be a single heterogeneous and anisotropic unconfined unit. Significant differences were found between the three-dimensional geological models of the aquifer developed from the drill logs and VES data; the VES data were likely affected by moisture content. The pumping-test and VES data were combined to estimate transmissivity (T; 126.5 ± 25.8 m2/day) and hydraulic conductivity (K; 4.1 ± 1.0 m/day). This combined use allowed for a reduction in uncertainty (40.1% for T and 33.3% for K) compared with values estimated from the VES data alone. The combined approach also allowed for much greater spatial coverage and a higher resolution characterization of the aquifer. The available volume of groundwater resource in the system was estimated at ~0.62 ± 0.09 km3. The groundwater extraction rate was ~30,120 m3/day, approximately double the estimated sustainable yield of the aquifer (15,720 m3/day). This showed that the current exploitation rate could exhaust groundwater resources in 27–32 years and should be reduced by 50% to ensure sustainability of the groundwater resource.

Keywords

Ethiopia Groundwater potential Hydrogeology Hydraulic properties Lithological modelling 

Une approche intégrée pour la caractérisation et l’évaluation de la productivité d’un aquifère dans le bassin versant du lac Haramaya, Ethiopie

Résumé

La caractérisation précise des systèmes aquifères reste difficile pour les grands systèmes, en raison de l’hétérogénéité spatiale des propriétés hydrauliques et de la variabilité temporelle des apports hydrologiques. Cette étude souligne l’importance d’approches intégrant la géologie, l’hydrogéologie et la géophysique pour caractériser un aquifère et évaluer sa productivité. Les données issues des cartes géologiques, des logs de forages, d’un pompage d’essai, de sondages électriques verticaux (SEV), et de différentes études hydrogéologiques de terrain ont été associées et appliquées à un système aquifère intensément exploité: le bassin versant du lac Haramaya, en Ethiopie. A partir de la caractérisation géologique, l’aquifère est apparu comme étant une unité hétérogène et anisotrope à nappe libre. Des différences significatives ont été mises en évidence entre les modèles géologiques 3D de l’aquifère, réalisés à partir des logs de forages et des données SEV; les données SEV étaient susceptibles d’être influencées par la teneur en eau. Le pompage d’essai et les données SEV ont été associées pour estimer la transmissivité (T; 126.5 ± 25.8 m2/jour) et la conductivité hydraulique (K; 4.1 ± 1.0 m/jour). Cette utilisation conjointe a permis de réduire les incertitudes (40.1 % pour T et 33.3 % pour K) en comparaison des valeurs estimées à partir des seules données SEV. Cette approche conjointe a également permis une bien meilleure couverture spatiale et une caractérisation de l’aquifère avec une plus grande résolution. Le volume disponible de ressources en eau souterraine dans le système a été estimé à environ 0.62 ± 0.09 km3. Le taux de prélèvement d’eau souterraine a été d’environ 30,120 m3/jour, soit à peu près le double de l’estimation du taux de renouvellement de l’aquifère (15,720 m3/jour). Cela a montré que le taux d’exploitation actuel pourrait épuiser les ressources en eau souterraine, d’ici 27 à 32 ans, et devrait être réduit de 50% pour assurer la durabilité de la ressource en eau souterraine.

Un enfoque integrado para la caracterización de acuíferos y la evaluación de la productividad del agua subterránea en la cuenca del Lago Haramaya, Etiopía

Resumen

La caracterización precisa de los acuíferos sigue siendo un reto para los sistemas a gran escala debido a la heterogeneidad espacial de las propiedades hidráulicas y a la variabilidad temporal de los aportes hidrológicos. Este estudio destaca la importancia de integrar métodos geológicos, hidrogeológicos y geofísicos para caracterizar un acuífero y evaluar la productividad del agua subterránea. Los datos de mapas geológicos, registros de perforación, ensayos de bombeo, sondeos eléctricos verticales (VES) y diferentes estudios hidrogeológicos de campo se combinaron y aplicaron a un sistema acuífero de gran extracción: la cuenca del Lago Haramaya, Etiopía. A partir de la caracterización geológica, se encontró que el acuífero era una sola unidad no confinada heterogénea y anisotrópica. Se encontraron diferencias significativas entre los modelos geológicos tridimensionales del acuífero desarrollados a partir de los registros de perforación y los datos VES; los datos VES probablemente se vieron afectados por el contenido de humedad. Los datos del ensayo de bombeo y de los VES se combinaron para estimar la transmisividad (T; 126.5 ± 25.8 m2/día) y la conductividad hidráulica (K; 4.1 ± 1.0 m/día). Este uso combinado permitió una reducción de la incertidumbre (40.1% para T y 33.3% para K) en comparación con los valores estimados a partir de los datos VES solamente. El enfoque combinado también permitió una cobertura espacial mucho mayor y una caracterización del acuífero de mayor resolución. El volumen disponible de recursos de agua subterránea en el sistema se estimó en ~0.62 ± 0.09 km3. La tasa de extracción de agua subterránea fue de ~30,120 m3/día, aproximadamente el doble del rendimiento sostenible estimado del acuífero (15,720 m3/día). Esto mostró que la tasa de explotación actual podría agotar los recursos de agua subterránea en 27–32 años y debería reducirse en un 50% para asegurar la sostenibilidad de los recursos de agua subterránea.

埃塞俄比亚哈拉玛雅湖流域含水层特征和地下水生产力的综合评估方法

摘要

由于水力特性的空间异质性和水文输入信息的时变性, 大区域尺度含水层系统的准确表征是难点。该研究强调了整合地质, 水文地质和地球物理方法以表征含水层和评估地下水生产力的重要性。将来自地质图, 钻探测井, 抽水试验, 垂直电测深(VES)和不同野外水文地质研究的数据综合考虑, 并将方法应用于埃塞俄比亚哈拉玛亚湖流域的高度开采含水层系统。从地质特征来看, 含水层被认为是一个单一的非均质各向异性无限含水单元。钻井记录和VES数据建立的含水层三维地质模型之间存在显著差异; VES数据可能受水分含量的影响。将抽水试验和VES数据一起考虑估计出导水系数(T; 126.5 ± 25.8 m 2 /天)和渗透系数(K; 4.1 ± 1.0m /天)。与仅从VES数据估计结果相比, 综合分析方法降低了不确定性(T为40.1%, K为33.3%)。这种综合分析方法还可考虑更大空间范围和更高分辨率的含水层特征。系统中可利用的地下水资源量估计为0.62 ± 0.09 km3。地下水开采量约为30,120立方米/天, 约为含水层可持续开采量的两倍(15,720立方米/天)。这表明目前的开采量可能会在27–32年耗尽地下水资源, 应减少50%, 以确保地下水资源利用的可持续性。

Uma abordagem integrada para caracterização de aquífero e avaliação da produtividade de água subterrânea na bacia do Lago Haramaya, Etiópia

Resumo

A caracterização precisa de um aquífero continua a ser um desafio para sistemas de grande escala devido à heterogeneidade espacial das propriedades hidráulicas e a variabilidade temporal das recargas. Este estudo destaca a importância de uma integração da abordagem geológica, hidrogeológica e geofísica para caracterizar um aquífero e avaliar a produtividade da água subterrânea. Os dados extraídos dos mapas geológicos, perfil de poços, teste de bombeamento, sondagens elétricas verticais (SEV) e diferentes estudos de campo hidrogeológicos foram associados e utilizados para uma intensa extração do sistema aquífero – bacia do Lago Haramaya, Etiópia. A partir da caracterização geológica, o aquífero foi descrito como uma única unidade heterogênea e anisotrópica não confinada. Diferenças significativas foram encontradas entre os modelos geológicos de três dimensões do aquífero desenvolvidos a partir dos perfis de poço e dos dados de SEV; os dados de SEV provavelmente foram afetados pelo teor de umidade. O teste de bombeamento e dados de SEV foram combinados para estimar a transmissividade (T; 126.5 ± 25.8 m2/dia) e condutividade hidráulica (K; 4.1 ± 1.0 m/dia). Esta combinação de dados permitiu a redução da incerteza (40.1% para T e 33.3% para K) quando comparado apenas com os valores estimados a partir dos dados de SEV. A abordagem integrada também possibilitou uma maior cobertura espacial e uma caracterização de alta resolução do aquífero. O volume disponível de água subterrânea no sistema foi estimado em aproximadamente 0.62 ± 0.09 km3. A taxa de extração de água subterrânea foi ~30,120 m3/dia, aproximadamente o dobro do valor estimado de produtividade sustentável para o aquífero (15,720 m3/dia). Isso mostrou que a atual taxa de explotação poderia exaurir o recurso hídrico subterrâneo dentro de 27–32 anos e deveria ser reduzida em 50% para assegurar a sustentabilidade deste recurso.

Notes

Acknowledgements

The authors thank two anonymous reviewers, the editor Jean-Michel Lemieux and the technical editorial advisor Sue Duncan for their insightful suggestions which greatly improved the manuscript.

Funding information

This project was funded through a Haramaya University Research grant (HURG-2015/16-01-03) with the modelling component funded by the Australian Research Council (DE180100535) and the Herman Slade Foundation.

Supplementary material

10040_2019_1956_MOESM1_ESM.pdf (482 kb)
ESM 1 (PDF 482 kb)

References

  1. Abdullahi MG, Toriman ME, Gasim MB (2014) The application of vertical electrical sounding (VES) for groundwater exploration in Tudun Wada Kano state, Nigeria. J Geol Geophys 4:1–3Google Scholar
  2. Abiola O, Enikanselu PA, Oladapo MI (2009) Groundwater potential and aquifer protective capacity of overburden units in Ado-Ekiti, southwestern Nigeria. Int J Phys Sci 4(3):120–132Google Scholar
  3. Adeoti L, Alile OM, Uchegbulam O, Adegbola RB (2012) Geo-electrical investigation of the groundwater potential in Mowe, Ogun state, Nigeria. Br J Appl Sci 2:58–71Google Scholar
  4. Alakayleh Z, Clement TP, Fang X (2018) Understanding the changes in hydraulic conductivity values of coarse and fine-grained porous media mixtures. Water 10:1–13Google Scholar
  5. Alemayehu T, Wagari F, Dagnachew L (2006) Impact of water overexploitation on highland lakes of eastern Ethiopia. Environ Geol 52:147–154Google Scholar
  6. Alexander M, Berg SJ, Illman WA (2011) Field study of hydrogeologic characterization methods in a heterogeneous aquifer. Ground Water 49(3):365–382Google Scholar
  7. Anomohanran O (2013) Geophysical investigation of groundwater potential in Ukelegbe, Nigeria. J Appl Sci 13(1):119–125Google Scholar
  8. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146(01):54–62Google Scholar
  9. Barackman M, Brusseau ML (2003) Groundwater sampling. Poll Eng 35(5):16–18Google Scholar
  10. Blue Marble Geographics (2018) Getting started guide: GlobalMapper. Blue Marble Geographics, Hallowell, ME, 26 ppGoogle Scholar
  11. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142Google Scholar
  12. Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modeling to assess sustainability of groundwater resources in the North China plain. Water Resour Res 49:159–175Google Scholar
  13. Chatterjee R, Gupta BK, Mohiddin SK, Singh PN, Shekhar S, Purohit R (2009) Dynamic groundwater resources of National Capital Territory, Delhi: assessment, development and management options. Environ Earth Sci 59:669–686Google Scholar
  14. Chebet C (2012) Estimating water table elevations by spatial interpolation: a case study of Kamariny division, Keiyo North District, Kenya. J Emerg Trends Educ Res Policy Stud 3(5):741–774Google Scholar
  15. Demlie M, Titus R (2015) Hydrogeological and hydrogeochemical characteristics of the Natal Group sandstone, South Africa. S Afr J Geol 118(1):33–44Google Scholar
  16. Doerfliger N, Jeannin PY, Zwahlen F (1998) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tool. Environ Geol 39(2):2–10Google Scholar
  17. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. John Wiley and Sons, New York, pp 824Google Scholar
  18. Ezeh CC (2012) Hydro-geophysical studies for the delineation of potential groundwater zones in Enugu state, Nigeria. Res Inst J Geol Min 2(5):103–112Google Scholar
  19. Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  20. Frohlich RK, Kelly WE (1988) Estimates of specific yield with the geoelectric resistivity method in glacial aquifers. J Hydrol 97(1–2):33–44Google Scholar
  21. Gleeson TL, Smith ML, Manning AH (2011) Classifying the water table at regional to continental scales. Geophys Res Lett 38:1–6Google Scholar
  22. Gonzalez-Alvarez I, Ley-Cooper AY, Salama W (2016) A geological assessment of airborne electromagnetics for mineral exploration through deeply weathered profiles in the southeast Yilgarn Cratonic margin, western Australia. Ore Geol Rev 73:522–539Google Scholar
  23. Greenlee DD (1987) Raster and vector processing for scanned linework. Photogramm Eng Remote Sens 53(10):1383–1387Google Scholar
  24. Haitjema HM, Mitchell-Bruker S (2005) Are water tables a subdued replica of the topography? Ground Water 43(6):781–786Google Scholar
  25. Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model: the ground-water flow process. In: Modeling techniques, book 6, section A, Ground water. US Geological Survey, Reston, VA, 253 ppGoogle Scholar
  26. Henriet JP (1976) Direct application of Dar Zarrouk parameters in groundwater surveys. Geophys Prospect 24(2):344–353Google Scholar
  27. Herckenrath D, Legaz-Gazoty A, Fiandaca G, Auken E, Christensen M, Balicki M, Bauer GP (2012) Sequential and coupled hydro-geophysical inversion of a groundwater model using geo-electric and transient electromagnetic data. J Hydrol 123–137Google Scholar
  28. Hunkeler D (2010) Geological and hydrogeological characterization of subsurface. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  29. Hwang HT, Jeen SW, Suleiman AA, Lee KK (2017) Comparison of saturated hydraulic conductivity estimated by three different methods. Water 9(942):1–15Google Scholar
  30. Ifabiy IP, Ashaolu ED, Omotosho O (2016) Hydrogeological characteristics of groundwater yield in shallow wells of the regolith aquifer: a study from Ilorin, Nigeria. Momona Ethiopian J Sci 8(1):23–36Google Scholar
  31. Ibuot JC, Akpabio GT, George NJ (2013) A survey of the repository of groundwater potential and distribution using geoelectrical resistivity method in Itu local government area, Akwa Ibom state, southern Nigeria. Cent Eur J Geosci 5(4):538–547Google Scholar
  32. Israde-Alcantara I, Buenrostro DO, Carrillo CA (2005) Geological characterization and environmental implications of the placement of the Morelia dump, Michoacán, central Mexico. J Air Waste Manag Assoc 55(6):755–764Google Scholar
  33. Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54(11):1593–1600Google Scholar
  34. Kebede S (2013) Groundwater in Ethiopia: features, numbers and opportunities. Springer, Heidelberg, GermanyGoogle Scholar
  35. Khalid P, Ullah S, Faird A (2018) Application of electrical resistivity inversion to delineate salt and freshwater interfaces in Quaternary sediments of northwest Himalaya, Pakistan. Arab J Geosci 11(112):1–10Google Scholar
  36. Korowe MO, Nyadawa MO, Singh VS, Ratnakar D (2011) Hydrogeophysical parameter estimation for aquifer characterization in hard rock environments: a case study from Jangaon sub-watershed, India. J Oceanogr Mar Sci 2(3):50–62Google Scholar
  37. Koster JW (2005) Effects of water saturation on a resistivity survey of an unconfined fluvial aquifer in Columbus, Colorado State University, Department of Geosciences. Hydrology Days (2005):111–120Google Scholar
  38. Kurniawan A (2009) Basic IP2WIN tutorial: basic principles in using IP2 Win Software. Hydrogeology World, 32 pp. http://www.academia.edu/7756576/Basic_IP2_Win_Tutorial. Accessed February 2019
  39. Lomberg K (2014) Best practice sampling methods, assay techniques, and quality control with reference to the platinum group elements (PGEs). J South Afr Inst Min Metall 114:53–62Google Scholar
  40. Marchant AP, Banks VJ, Royse K, Quigley SP, Wealthall GP (2011) An initial screening tool for water resource contamination due to development in the Olympic Park 2012 site, London. Environ Earth Sci 64(2):483–495Google Scholar
  41. Marechal J, Vouillamoz J, Kumar MS, Dewandel B (2010) Estimating aquifer thickness using multiple pumping tests. Hydrogeol J 18:1787–1796Google Scholar
  42. Martin-Rosales W, Gisbert J, Pulido-Bosch A, Vallejos A, Fernandez-Cortes A (2007) Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environ Geol 52:985–995Google Scholar
  43. Masvopo TH (2008) Evaluation of the groundwater potential of the Malala alluvial aquifer, lower Mzingwane River, Zimbabwe. MSc Thesis, University of Zimbabwe, Harare, Zimbabwe, pp 29–65Google Scholar
  44. Meijerink AM (1996) Remote sensing applications to hydrology: groundwater. Hydrol Sci J 41(4):549–561Google Scholar
  45. Neuman SP, Blattstein A, Riva M, Tartakovsky DM, Guadagnini A, Ptak T (2007) Type curve interpretation of late-time pumping test data in randomly heterogeneous aquifers. Water Resour Res 43:1–15Google Scholar
  46. Nwosu LI, Ekine AS, Nwankwo CN (2013) Evaluation of groundwater potential from pumping test analysis and vertical electrical sounding results: case study of Okigwe District of Imo state Nigeria. Pac J Sci Technol 14(1):536–548Google Scholar
  47. Obiora DN, Ajala AE, Ibuot JC (2015) Evaluation of aquifer protective capacity of overburden unit and soil corrosivity in Makurdi, Benue state, Nigeria, using electrical resistivity method. J Earth Syst Sci 124(1):125–135Google Scholar
  48. Okiongbo KS, Akpofure E (2012) Determination of aquifer properties and groundwater vulnerability mapping using geo-electric method in Yenagoa City and its environs in Bayelsa state, South Nigeria. J Water Resour Protect 4:354–362Google Scholar
  49. Omeiza AJ, Dary DM (2018) Aquifer vulnerability to surface contamination: a case of the new millennium city, Kaduna, Kaduna state Nigeria. World J Appl Phys 3(1):1–12Google Scholar
  50. Oni TE, Omosuyi GO, Akinlalu AA (2017) Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, southwestern Nigeria. NRIAG J Astron Geophys 6:452–458Google Scholar
  51. Paola MA, Margiotta S, Mazzone F, Negri S (2005) An integrated geological, hydrogeological and geophysical approach to the characterization of the aquifer in a contaminated site. Hydrol Earth Syst Sci Discuss 2:229–263Google Scholar
  52. Rockworks (2017) RockWorks 17 training manual. Rockware, Colorado Springs, CO, pp 521–2500Google Scholar
  53. Sabet M (1975) Vertical electrical resistivity soundings to locate ground water resources: a feasibility study. Virginia Water Resources Research Center Bull 73. Virginia Polytechnic Institute and State University, Blacksburg, VA, pp 3–51Google Scholar
  54. Salem HS, Chilingarian GV (1999) The cementation factor of Archie’s equation for shaly sandstone reservoirs. J Pet Sci Eng 23:83–93Google Scholar
  55. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39Google Scholar
  56. Schlumberger Water Services (2015) AquiferTest pro user manual. Waterloo Hydrogeologic, Waterloo, 300 ppGoogle Scholar
  57. Shishaye HA, Nagari A (2016) Hydrogeochemical analysis and evaluation of the groundwater in the Haramaya well field, eastern Hararghe zone, Ethiopia. J Hydrogeol Hydrol Eng 5(4):1–15Google Scholar
  58. Shishaye HA (2015) Technical note: groundwater flow modeling in coastal aquifers: the influence of submarine groundwater discharge on the position of the saltwater–freshwater interface. Hydrol Earth Syst Sci Discuss 12:3753–3785Google Scholar
  59. Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Chania. J Hydrol 338:122–131Google Scholar
  60. Tadesse N, Abdulaziz M (2009) Water balance of Haramaya watershed, Oromia regional, eastern Ethiopia. Int J Earth Sci Eng 2:484–498Google Scholar
  61. Tartarello MC, Plaisant A, Bigi S, Beaubien SE, Graziani S, Lombardi S, Ruggiero L, Angelis D, Sacco P, Maggio E (2017) Preliminary results of geological characterization and geochemical monitoring of Sulcis Basin (Sardinia), as a potential CCS site. Energy Procedia 125:549–555Google Scholar
  62. Thomsen R, Sondergaard VH, Sorensen KI (2004) Hydrological mapping as a basis for establishing site-specific groundwater protection zones in Denmark. Hydrogeol J 12:550–562Google Scholar
  63. Turk J, Malard A, Jeannin P, Petric M, Gabrovsek F, Ravbar N, Vouillamoz J, Slabe T, Sordet V (2015) Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kaninmassif, Julian Alps). Hydrol Process 29:1986–1998Google Scholar
  64. Wang L, Tye A, Hughes A (2010) Riverine floodplain groundwater flow modelling: the case of Shelford (UK). British Geological Survey, Nottingham, UK, 28 ppGoogle Scholar
  65. Warren LP, Church PE, Turtora M (1996) Comparison of hydraulic conductivities for a sand and gravel aquifer in southeastern Massachusetts, estimated by three methods. US Geol Surv Water Resour Invest Rep 95-4160, 20 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haile A. Shishaye
    • 1
    Email author
  • Douglas R. Tait
    • 1
  • Kevin M. Befus
    • 2
  • Damien T. Maher
    • 1
  1. 1.Southern Cross GeoscienceSouthern Cross UniversityLismoreAustralia
  2. 2.Civil and Architectural EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations