Advertisement

Temporal variations in groundwater nitrogen under intensive groundwater/surface-water interaction

  • Shuai Shen
  • Teng MaEmail author
  • Yao Du
  • Kewen Luo
  • Yamin Deng
  • Zongjie Lu
Paper
  • 25 Downloads

Abstract

Nitrogen (N) pollution in shallow groundwater within the Jianghan Plain—a depositional basin along the Yangtze River in China—is a serious issue affecting the local water supply. There is little concern regarding temporal variation patterns of groundwater N in regions with intensive groundwater/surface-water interactions thus far. In this study, a 2-year field monitoring program and a set of incubation experiments were jointly applied to characterize the seasonal variation mechanisms of groundwater N. Groundwater monitoring suggested that temporal N variations in monitoring wells of 25 and 10-m depth were correlated with fluctuations in water levels, with lower NH4-N and higher NO3-N concentrations corresponding to groundwater discharge during the dry season, and with higher NH4-N and lower NO3-N concentrations corresponding to groundwater recharge during the wet season. Batch sediment incubation experiments showed that buried organic carbon in sediments from the field site could not promote NH4-N release, but exogenous organic carbon and oxidant input could catalyze organic N mineralization, resulting in NH4-N release. Nevertheless, NO3-N release was limited in all incubations. Thus, the temporal variation patterns could be divided into (1) groundwater N in type-1 wells (25 and 10 m), controlled by the annual reversal of groundwater flow gradient, which determined whether there was input of exogenous organic carbon or oxidants, ultimately affecting organic N mineralization, denitrification and other transformation processes, and (2) groundwater N in type-2 wells (<4 m depth), which showed no significant seasonal variation, implying the process is mainly controlled by surface inputs in the shallower subsurface.

Keywords

Nitrogen Temporal variations Groundwater monitoring Mobilization China 

Variations temporelles de l’azote des eaux souterraines sous forte interaction entre les eaux souterraines et les eaux de surface

Résumé

La pollution d’azote (N) dans les aquifères superficiels de la plaine de Jianghan, un bassin sédimentaire le long de la rivière Yangtze en Chine, est un problème sérieux affectant l’alimentation locale en eau potable. Les modalités de variation temporelle de N dans les eaux souterraines dans les régions avec de fortes interactions entre les eaux souterraines et les eaux superficielles ne suscitent que peu d’intérêt jusqu’à présent. Dans cette étude, un programme de suivi sur le terrain de deux ans et une série d’expériences d’incubation ont été réalisés conjointement afin de caractériser les mécanismes de variation saisonnière de l’azote dans les eaux souterraines. Le suivi des eaux souterraines montre que les variations temporelles d’azote dans les puits surveillés de 25 et 10 m de profondeur sont corrélées avec les niveaux d’eau, avec de basses concentrations en NH4-N et de hautes concentrations en NO3-N correspondant à la recharge durant la saison sèche et de hautes concentrations en NH4-N et de basses concentrations en NO3-N correspondant à la recharge de la saison humide. Les expérimentations d’incubation de sédiments en batch montrent que le carbone organique enfoui dans les sédiments du site ne peut pas favoriser la libération de NH4-N, mais que le carbone organique exogène et l’apport oxydant peut catalyser la minéralisation de l’azote organique, résultant en une libération du NH4-N. Néanmoins, la libération de NO3-N est limité pour toutes les incubations. Ainsi, les modalités des variations temporelles peuvent être divisées en (1) azote des eaux souterraines des forages de type I (25 et 10 m de profondeur), contrôlé par l’inversion annuelle des gradients des écoulements d’eaux souterraines, qui déterminent s’il y a apport de carbone organique exogène o d’oxydants, affectant premièrement la minéralisation de l’azote organique, la dénitrification et les autres processus de transformations et (2) azote des eaux souterraines des puits de type II (<4 m de profondeur), qui ne montre pas de variation saisonnière significative, indiquant que le processus est principalement contrôlé par les apports de surface à faibles profondeurs.

Variaciones temporales del nitrógeno en el agua subterránea bajo una intensiva interacción agua subterránea/agua superficial

Resumen

La contaminación por nitrógeno (N) en el agua subterránea poco profunda de la llanura de Jianghan—una cuenca sedimentaria a lo largo del río Yangtzé en China—es un problema grave que afecta el suministro local de agua. Hasta ahora, existe poca preocupación con respecto a los patrones de variación temporal del N en el agua subterránea en las regiones con intensivas interacciones agua subterránea / agua superficial. En este estudio, un programa de monitoreo de campo de 2 años y un conjunto de experimentos de incubación fueron aplicados conjuntamente para caracterizar los mecanismos de variación estacional del N en el agua subterránea. El monitoreo del agua subterránea sugirió que las variaciones temporales de N en los pozos de monitoreo de 25 m y 10 m de profundidad estaban correlacionadas con las fluctuaciones en los niveles del agua, con concentraciones más bajas de NH4-N y concentraciones más altas de NO3-N correspondientes a la descarga de agua subterránea durante la estación seca, y con concentraciones más altas de NH4-N y más bajas de NO3-N correspondientes a la recarga del agua subterránea durante la estación húmeda. Los experimentos de incubación de sedimentos por lotes mostraron que el carbono orgánico enterrado en los sedimentos del sitio de campo no podía promover la liberación de NH4-N, pero el carbono orgánico exógeno y el aporte de oxidantes podían catalizar la mineralización de N orgánico, lo que resultaba en la liberación de NH4-N. Sin embargo, la liberación de NO3-N fue limitada en todas las incubaciones. Así, los patrones de variación temporal podrían dividirse en (1) N en el agua subterránea en pozos tipo 1 (25 y 10 m), controlados por la inversión anual del gradiente de flujo de agua subterránea, que determinó si había entrada de carbono u oxidantes orgánicos exógenos, lo que en última instancia afectó la mineralización de N orgánico, la desnitrificación y otros procesos de transformación, y (2) N en el agua subterránea en pozos tipo 2 (<4 m de profundidad), que no mostraron ninguna variación estacional significativa, lo que implica que el proceso está controlado principalmente por las entradas de agua superficial en la subsuelo menos profunda.

强烈的地下水—地表水相互作用下地下水氮的季节性变化

摘要

江汉平原位于中国长江流域,浅层地下水氮(N)污染问题正严重影响着当地供水安全。迄今为止,在地下水—地表水相互作用强烈的地区,人们还未足够关注地下水中氮季节性变化模式的研究。本研究采用2年实地监测与室内培养试验相结合的方法,对地下水氮的季节性变化机制进行了研究。地下水监测表明,25 m和10 m深度的监测井中地下水氮的季节性变化与水位波动有关。枯水期(地下水向地表水排泄)地下水铵氮含量较低,硝态氮含量较高;丰水期(地表水补给地下水)地下水铵氮含量较高,硝态氮含量较低。沉积物培养试验表明,试验场沉积物中的埋藏有机碳不能促进铵氮的释放,而外源有机碳和氧化剂的输入可以催化有机氮的矿化作用,导致铵氮的释放。然而,在所有的培养试验中,硝态氮的释放都受到限制。因此,试验场地下水氮的季节性变化模式可以分为:(1)1型井(25和10 m)中的地下水氮受年际反转的地下水流梯度控制,其决定了是否有外源有机碳和氧化剂输入,最终影响有机氮矿化作用,反硝化作用及其他转化过程;(2)2型井(<4 m)中的地下水氮未展现出明显的季节性变化,暗示了在浅地表,其主要受表层输入控制。关键词: 氮 · 季节性变化 · 地下水监测 · 迁移转化 · 中国。

Variação temporal do nitrogênio nas águas subterrâneas sob intensa interação água subterrânea/água superficial

Resumo

A poluição por nitrogênio (N) em águas subterrâneas rasas na Planície de Jianghan - uma bacia deposicional ao longo do Rio Yangtze na China - é uma questão séria que afeta o abastecimento de água local. Há pouca preocupação em relação ao padrão de variação temporal do N nas águas subterrâneas em regiões com intensa interação água subterrânea/água superficial até o momento. Neste estudo, um programa de monitoramento de campo durante 2 anos e um conjunto de experimentos de incubação foram realizados em conjunto para caracterizar os mecanismos de variação sazonal do N nas águas subterrâneas. O monitoramento das águas subterrâneas sugeriu que variações temporais de N em poços de monitoramento de 25 e 10-m estavam relacionados com flutuações nos níveis de água, com concentrações menores de NH4-N e maiores de NO3-N correspondendo a descargas das águas subterrâneas durante a estação seca, e com concentrações maiores de NH4-N e menores de NO3-N correspondendo a recarga das águas subterrâneas durante a estação úmida. Experimentos de incubação de bancada com sedimentos mostraram que o carbono orgânico enterrado nos sedimentos da área de estudo não era capaz de promover a liberação de NH4-N, embora a entrada de carbono orgânico e oxidantes exógenos poderiam catalisar a mineralização do N orgânico, resultado na liberação de NH4-N. Não obstante, a liberação de NO3-N foi limitada em todos os ensaios de incubação. Dessa forma, os padrões de variação temporal poderiam ser divididos em: (1) poços (25 e 10 m) com N nas águas subterrâneas tipo 1, controlado pela inversão anual do gradiente de fluxo da águas subterrâneas, que determina se houve entrada de carbono orgânico ou oxidantes exógenos, finalmente afetando a mineralização de N orgânico, a denitrificação e outros processos de transformação, e (2) poços (<4 m de profundidade) com N nas águas subterrâneas tipo 2, que não apresentaram variações sazonais significativas, implicando que o processo é controlado principalmente por entrada de águas superficiais na porção mais rasa do aquífero.

Notes

Acknowledgements

The authors thank Qi Li, Lun Liu, Haobo Niu, Shuang Liu for their assistance in the field work. We also wish to thank the editors and anonymous reviewers for their insightful comments on the manuscript.

Funding information

The research work was supported by 1:50,000 Hydrogeological Survey in the Key Area of Jianghan Plain (12120114069301), 1:50,000 Environmental Geology Survey of Earth Critical Zone in Downstream Area of Han River (121201001000150121), National Natural Science Foundation of China (No. 41630318, No. 41521001, No. 41372252) and Regional Guiding Special of China University of Geosciences (CUGQYZX1711).

Supplementary material

10040_2019_1952_MOESM1_ESM.pdf (221 kb)
ESM 1 (PDF 220 kb)

References

  1. Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345.  https://doi.org/10.1016/0009-2541(94)90062-0 CrossRefGoogle Scholar
  2. Aksever F, Davraz A, Karagüzel R (2015) Relations of hydrogeologic factors and temporal variations of nitrate contents in groundwater, Sandıklı basin, Turkey. Environ Earth Sci 73:2179–2196.  https://doi.org/10.1007/s12665-014-3569-y CrossRefGoogle Scholar
  3. Brunet RC, Astin KB, Dartiguelongue S, Brunet P (2008) The mineralisation of organic nitrogen: relationship with variations in the water-table within a floodplain of the River Adour in Southwest France. Water Resour Manag 22:277–289.  https://doi.org/10.1007/s11269-007-9159-y CrossRefGoogle Scholar
  4. Baily A, Rock L, Watson CJ, Fenton O (2011) Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in South-East Ireland: insights from stable isotope data. Agric Ecosyst Environ 144:308–318.  https://doi.org/10.1016/j.agee.2011.09.007 CrossRefGoogle Scholar
  5. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  6. Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849.  https://doi.org/10.1016/j.envint.2006.05.002 CrossRefGoogle Scholar
  7. Chen XM, Ma T, Cai HS, Wang YY (2013) Regional control of groundwater nitrogen contamination (in Chinese). Geol Sci Technol Inf 32(130–143):149Google Scholar
  8. Chen C, Wen Z, Liang X, Li X (2017) Estimation of hydrogeological parameters for representative aquifers in Jianghan plain (in Chinese). Earth Sci 42:727–733.  https://doi.org/10.3799/dqkx.2017.060 Google Scholar
  9. Caschetto M, Robertson W, Petitta M, Aravena R (2018) Partial nitrification enhances natural attenuation of nitrogen in a septic system plume. Sci Total Environ 625:801–808.  https://doi.org/10.1016/j.scitotenv.2017.12.329 CrossRefGoogle Scholar
  10. Deng YM, Li HJ, Wang YX, Duan YH, Gan YQ (2014) Temporal variability of groundwater chemistry and relationship with water-table fluctuation in the Jianghan plain, Central China. Procedia Earth Planet Sci 10:100–103.  https://doi.org/10.1016/j.proeps.2014.08.018 CrossRefGoogle Scholar
  11. Du Y, Ma T, Deng YM, Shen S, Lu ZJ (2017) Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan plain, Central China. Environ Sci-Proc Imp 19:161–172.  https://doi.org/10.1039/c6em00531d Google Scholar
  12. Du Y, Ma T, Deng YM, Shen S, Lu ZJ (2018) Characterizing groundwater-surface water interactions in the interior of Jianghan plain, Central China. Hydrogeol J 26:1047–1059.  https://doi.org/10.1007/s10040-017-1709-7 CrossRefGoogle Scholar
  13. Duan YH (2016) Seasonal variations of groundwater Arsenic concentration in shallow aquifers at Jianghan Plain. PhD Thesis, China University of Geosciences, Wuhan, ChinaGoogle Scholar
  14. Duan YH, Gan YQ, Wang YX, Deng YM, Guo XX, Dong CJ (2015) Temporal variation of groundwater level and arsenic concentration at Jianghan plain, Central China. J Geochem Explor 149:106–119.  https://doi.org/10.1016/j.gexplo.2014.12.001 CrossRefGoogle Scholar
  15. Gan YQ, Wang YX, Duan YH, Deng YM, Guo XX, Ding XF (2014) Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan plain, Central China. J Geochem Explor 138:81–93.  https://doi.org/10.1016/j.gexplo.2013.12.013 CrossRefGoogle Scholar
  16. Gan YQ, Zhao K, Deng YM, Liang X, Ma T, Wang YX (2018) Groundwater flow and hydrogeochemical evolution in the Jianghan plain, Central China. Hydrogeol J 26:1–15.  https://doi.org/10.1007/s10040-018-1778-2 CrossRefGoogle Scholar
  17. Glessner JJG, Roy WR (2009) Paleosols in Central Illinois as potential sources of ammonium in groundwater. Ground Water Monit R 29:56–64.  https://doi.org/10.1111/j.1745-6592.2009.01257.x CrossRefGoogle Scholar
  18. Gooddy DC, Macdonald DMJ, Lapworth DJ, Bennett SA, Griffiths KJ (2014) Nitrogen sources, transport and processing in peri-urban floodplains. Sci Total Environ 494:28–38.  https://doi.org/10.1016/j.scitotenv.2014.06.123 CrossRefGoogle Scholar
  19. Groeschke M, Kumar P, Winkle A, Grützmacher G, Schneider M (2016) The role of agricultural activity for ammonium contamination at a riverbank filtration site in Central Delhi (India). Environ Earth Sci 75:1–14.  https://doi.org/10.1007/s12665-015-4977-3 CrossRefGoogle Scholar
  20. Groeschke M, Frommen T, Taute T, Schneider M (2017) The impact of sewage-contaminated river water on groundwater ammonium and arsenic concentrations at a riverbank filtration site in Central Delhi, India. Hydrogeol J 25:2185–2197.  https://doi.org/10.1007/s10040-017-1605-1 CrossRefGoogle Scholar
  21. Gu BJ, Ge Y, Chang SX, Luo WD, Chang J (2013) Nitrate in groundwater of China: sources and driving forces. Glob Environ Chang 23:1112–1121.  https://doi.org/10.1016/j.gloenvcha.2013.05.004 CrossRefGoogle Scholar
  22. Guo XX (2014) Arsenic mobilization and transport in shallow aquifer systems of Jianghan Plain, Central China. PhD Thesis, China University of Geosciences, Wuhan, ChinaGoogle Scholar
  23. Hill AR, Shackleton M (1989) Soil N mineralization and nitrification in relation to nitrogen solution chemistry in a small forested watershed. Biogeochemistry 8:167–184.  https://doi.org/10.1007/BF00001319 CrossRefGoogle Scholar
  24. Huang XP, Huang LM, Yue WZ (2003) The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar Pollut Bull 47:30–36.  https://doi.org/10.1016/S0025-326X(02)00474-5 CrossRefGoogle Scholar
  25. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20.  https://doi.org/10.1016/j.hal.2008.08.015 CrossRefGoogle Scholar
  26. He B, Kanae S, Oki T, Hirabayashi Y, Yamashiki Y, Takara K (2011) Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Res 45:2573–2586.  https://doi.org/10.1016/j.watres.2011.02.011 CrossRefGoogle Scholar
  27. Hinkle SR, Tesoriero AJ (2014) Nitrogen speciation and trends, and prediction of denitrification extent, in shallow US groundwater. J Hydrol 509:343–353.  https://doi.org/10.1016/j.jhydrol.2013.11.048 CrossRefGoogle Scholar
  28. Huang SP, Wang YX, Ma T, Wang YY, Zhao L (2016) Fluorescence spectroscopy reveals accompanying occurrence of ammonium with fulvic acid-like organic matter in a fluvio-lacustrine aquifer of Jianhan plain. Environ Sci Pollut R 23:8508–8517.  https://doi.org/10.1007/s11356-016-6092-8 CrossRefGoogle Scholar
  29. Jiang WJ, Wang GC, Sheng YZ, Zhao D, Liu CL, Guo YH (2016) Enrichment and sources of nitrogen in groundwater in the Turpan-Hami area, northwestern China. Expos Health 8:389–400.  https://doi.org/10.1007/s12403-016-0209-7 CrossRefGoogle Scholar
  30. Jiao JJ, Wang Y, Cherry JA, Wang XS, Zhi BF, Du HY, Wen DG (2010) Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Environ Sci Technol 44:7470–7475.  https://doi.org/10.1021/es1021697 CrossRefGoogle Scholar
  31. Kurosawa K, Nguyen Hai D, Huu Thanh N, Thi Lam Tra H, Thi Le Ha T, Tat Canh N, Egashira K (2006) Temporal and spatial variations of inorganic nitrogen levels in surface and groundwater around Hanoi, Vietnam. Commun Soil Sci Plan 37:403–415.  https://doi.org/10.1080/00103620500447025 CrossRefGoogle Scholar
  32. Lewandowski J, Nützmann G (2010) Nutrient retention and release in a floodplain’s aquifer and in the hyporheic zone of a lowland river. Ecol Eng 36:1156–1166.  https://doi.org/10.1016/j.ecoleng.2010.01.005 CrossRefGoogle Scholar
  33. Lingle DA, Kehew AE, Krishnamurthy RV (2017) Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA. Appl Geochem 78:334–342.  https://doi.org/10.1016/j.apgeochem.2017.01.004 CrossRefGoogle Scholar
  34. Lu P, Mei K, Zhang Y, Liao L, Long B, Dahlgren RA, Zhang M (2011) Spatial and temporal variations of nitrogen pollution in Wen-Rui Tang River watershed, Zhejiang, China. Environ Monit Assess 180:501–520.  https://doi.org/10.1007/s10661-010-1802-z CrossRefGoogle Scholar
  35. Lu ZJ, Deng YM, Du Y, Shen S, Ma T (2017) EEMS characteristics of dissolved organic matter and their implication in high arsenic groundwater of Jianghan plain (in Chinese). Earth Sci 42:771–782.  https://doi.org/10.3799/dqkx.2017.065 Google Scholar
  36. McClain ME, Richey JE, Pimentel TP (1994) Groundwater nitrogen dynamics at the terrestrial-lotic interface of a small catchment in the Central Amazon Basin. Biogeochemistry 27:113–127.  https://doi.org/10.1007/BF00002814 CrossRefGoogle Scholar
  37. Martin C, Aquilina L, Gascuel-Odoux C, Molenat J, Faucheux M, Ruiz L (2004) Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments. Hydrol Process 18:1237–1254.  https://doi.org/10.1002/hyp.1395 CrossRefGoogle Scholar
  38. Mayer PM, Groffman PM, Striz EA, Kaushal SS (2010) Nitrogen dynamics at the groundwater–surface water interface of a degraded urban stream. J Environ Qual 39:810–823.  https://doi.org/10.2134/jeq2009.0012 CrossRefGoogle Scholar
  39. McArthur JM, Sikdar PK, Hoque MA, Ghosal U (2012) Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Sci Total Environ 437:390–402.  https://doi.org/10.1016/j.scitotenv.2012.07.068 CrossRefGoogle Scholar
  40. Neill C (1995) Seasonal flooding, nitrogen mineralization and nitrogen utilization in a prairie marsh. Biogeochemistry 30:171–189.  https://doi.org/10.1007/BF02186412 CrossRefGoogle Scholar
  41. Niu BB, Wang HH, Loáiciga HA, Hong S, Shao W (2017) Temporal variations of groundwater quality in the western Jianghan plain, China. Sci Total Environ 578:542–550.  https://doi.org/10.1016/j.scitotenv.2016.10.225
  42. Norrman J, Sparrenbom CJ, Berg M, Dang DN, Jacks G, Harms-Ringdahl P, Pham QN, Rosqvist H (2015) Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15 N) values. Appl Geochem 61:248–258.  https://doi.org/10.1016/j.apgeochem.2015.06.009 CrossRefGoogle Scholar
  43. PRC Ministry of Health and Standardization Administration (2006) Standards for drinking water quality (GB 5749–2006) (in Chinese). China Standard Press, Beijing, ChinaGoogle Scholar
  44. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232.  https://doi.org/10.1016/j.watres.2008.07.020 CrossRefGoogle Scholar
  45. Rozemeijer JC, Broers HP, Van Geer FC, Bierkens MFP (2009) Weather-induced temporal variations in nitrate concentrations in shallow groundwater. J Hydrol 378:119–127.  https://doi.org/10.1016/j.jhydrol.2009.09.011 CrossRefGoogle Scholar
  46. Sanchez-Pérez JM, Vervier P, Garabétian F, Sauvage S, Loubet M, Rol JL, Bariac T, Weng P (2003) Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol Earth Syst Sci Discuss 7:97–107CrossRefGoogle Scholar
  47. Schaefer MV, Ying SC, Benner SG, Duan YH, Wang YX, Fendorf S (2016) Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River basin. Environ Sci Technol 50:3521–3529.  https://doi.org/10.1021/acs.est.5b04986 CrossRefGoogle Scholar
  48. Schaefer MV, Guo XX, Gan YQ, Benner SG, Griffin AM, Gorski CA, Wang YX, Fendorf S (2017) Redox controls on arsenic enrichment and release from aquifer sediments in Central Yangtze River basin. Geochim Cosmochim Acta 204:104–119.  https://doi.org/10.1016/j.gca.2017.01.035 CrossRefGoogle Scholar
  49. Schilling KE (2002) Occurrence and distribution of ammonium in Iowa groundwater. Water Environ Res 74:177–186.  https://doi.org/10.2175/106143002X139893 CrossRefGoogle Scholar
  50. Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136.  https://doi.org/10.1146/annurev-environ-100809-125342 CrossRefGoogle Scholar
  51. Shen S, Ma T, Du Y, Deng YM, Yu HT, Luo KW (2017) Dynamic variations of nitrogen in groundwater under influence of seasonal hydrological condition in typical area of Jianghan plain (in Chinese). Earth Sci 42:674–684.  https://doi.org/10.3799/dqkx.2017.055 Google Scholar
  52. Shen S, Ma T, Du Y, Yu HT, Deng YM, Luo KW (2018) The spatial distribution characteristic and genesis of nitrogen of shallow groundwater in the east of Jianghan plain (in Chinese). Environ Sci Technol 41:47–56.  https://doi.org/10.19672/j.cnki.1003-6504.2018.02.008 Google Scholar
  53. Storey RG, Williams DD, Fulthorpe RR (2004) Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry 69:285–313.  https://doi.org/10.1023/B:BIOG.0000031049.95805.ec CrossRefGoogle Scholar
  54. Takatert N, Sanchez-Pérez JM, Trémolières M (1999) Spatial and temporal variations of nutrient concentration in the groundwater of a floodplain: effect of hydrology, vegetation and substrate. Hydrol Process 13:1511–1526.  https://doi.org/10.1002/(SICI)1099-1085(199907)13:10<1511::AID-HYP828>3.0.CO;2-F CrossRefGoogle Scholar
  55. Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Collinge SK, Dobson AP, Epstein PR, Holland EA, Keeney DR, Mallin MA, Rogers CA, Wayne P, Wolfe AH (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1:240–246. https://doi.org/10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2Google Scholar
  56. Tong M (2015) Activation of O2 by Fe (II) in subsurface environments for reactive oxygen species production and arsenic remove. PhD Thesis, China University of Geosciences, Wuhan, ChinaGoogle Scholar
  57. Van Drecht G, Bouwman AF, Knoop JM, Beusen AHW, Meinardi CR (2003) Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Global Biogeochem Cycles 17:1115.  https://doi.org/10.1029/2003GB002060 Google Scholar
  58. Yeasmin S, Islam AKMM, Islam AKMA (2012) Nitrogen fractionation and its mineralization in paddy soils: a review. J Agric Technol 8:775–793Google Scholar
  59. Zhang WL, Tian ZX, Zhang N, Li XQ (1996) Nitrate pollution of groundwater in northern China. Agric Ecosyst Environ 59:223–231.  https://doi.org/10.1016/0167-8809(96)01052-3 CrossRefGoogle Scholar
  60. Zhao DJ (2005) The three-dimensional numerical simulation for groundwater system in Jianghan plain (in Chinese). MSc Thesis, China University of Geosciences, Wuhan, ChinaGoogle Scholar
  61. Zhang JW, Liang X, Ge Q, Li H, Zhu B (2017) Calculation method about hydraulic conductivity of quaternary aquitard in Jianghan plain (in Chinese). Earth Sci 42:761–770.  https://doi.org/10.3799/dqkx.2017.064 Google Scholar
  62. Zhang L, Chen ZY, Nie ZL, Liu FL, Jia YK, Zhang XY (2008) Correlation between δ18O in precipitation and surface air temperature on different time-scale in China (in Chinese). Nucl Sci Tech 31:715–720Google Scholar
  63. Zheng SH, Hou FG, Ni BL (1983) The studies of hydrogen and oxygen stable isotopes in atmospheric precipitation in China (in Chinese). Chin Sci Bull 13:801–806Google Scholar
  64. Zhou NQ, Zhao S, Shen XP (2014) Nitrogen cycle in the hyporheic zone of natural wetlands. Chin Sci Bull 59:2945–2956.  https://doi.org/10.1007/s11434-014-0224-7 CrossRefGoogle Scholar
  65. Zhou Y, Wang YX, Li YL, Zwahlen F, Boillat (2013) Hydrogeochemical characteristics of central Jianghan plain, China. Environ Earth Sci 68:765–778.  https://doi.org/10.1007/s12665-012-1778-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuai Shen
    • 1
    • 2
  • Teng Ma
    • 1
    • 2
    Email author
  • Yao Du
    • 1
    • 2
  • Kewen Luo
    • 1
    • 2
  • Yamin Deng
    • 3
  • Zongjie Lu
    • 3
  1. 1.School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  3. 3.Geological SurveyChina University of GeosciencesWuhanChina

Personalised recommendations