Advertisement

Hydrogeology Journal

, Volume 27, Issue 4, pp 1439–1457 | Cite as

Paleoclimate variations and impact on groundwater recharge in multi-layer aquifer systems using a multi-tracer approach (northern Aquitaine basin, France)

  • Marc SaltelEmail author
  • Romain Rebeix
  • Bertrand Thomas
  • Michel Franceschi
  • Bernard Lavielle
  • Pascal Bertran
Report

Abstract

The northern Aquitaine basin (southwest France) is a large multi-layer aquifer system that contains groundwater with strong residence-time variability ranging from years to tens of thousands of years. This system constitutes an archive of paleoclimate variations. A multi-parameter approach involving isotopic tracers (14C, 18O, 2H) was used to determine the residence time of groundwater and to document climate fluctuations, while dissolved noble gases were used to estimate mean annual temperatures (noble gas recharge temperatures, NGRT) at the water table. Near-surface ground temperature reconstruction from 40 ka cal BP to the present was made using data collected from five aquifers. The coldest temperatures are recorded for late Marine Isotopic Stage (MIS) 3 and MIS 2, i.e. between 36 and 18 ka cal BP. The mean NGRT for the period 27–18 ka cal BP is estimated at 5.9 ± 0.9 °C, and a strong increase towards modern values (11–13 °C) is observed after 15 ka cal BP. The temperature change between the Holocene and the Last Glacial ranges from 5 to 7 °C, in agreement with previous NGRT studies in Europe. Since mean near-surface ground temperatures during the glacial were well above 0 °C, long-term presence of permafrost in northern Aquitaine is unlikely. However, a possible warm bias in reconstructed temperatures during the coldest events lies in the fact that NGRTs in cold regions do not reflect annual means but rather the ground temperature during the thaw months.

Keywords

Stable isotopes Groundwater age Paleohydrology Groundwater recharge France 

Variations paléoclimatiques et leurs impacts sur la recharge d’un système aquifère multicouches à partir d’une approche multi-traceurs (Bassin nord Aquitain, France)

Résumé

Le bassin Nord Aquitain (sud-ouest de la France) est un vaste système aquifère multicouches contenant des eaux souterraines avec des temps de résidence très variables allant de plusieurs années à des dizaines de milliers d’années. Ce système constitue une archive des variations paléo-climatiques. Une approche multi paramètres impliquant des traceurs isotopiques (14C, 18O, 2H) a été utilisée pour déterminer le temps de résidence des eaux souterraines et étudier les fluctuations climatiques, tandis que les gaz rares ont servi à estimer les températures annuelles moyennes au niveau de la nappe phréatique (températures de recharge de gaz rares, NGRT). La reconstruction des paléotemperatures près de la surface du sol de 40 ka cal BP jusqu’au nos jours a été effectuée à l’aide de données recueillies auprès de cinq aquifères. Les températures les plus froides sont enregistrées pour la fin du stade isotopique marin (MIS) 3 et le MIS 2, c’est-à-dire entre 36 et 18 ka cal BP. Le NGRT moyen pour la période de 27–18 ka cal BP est estimé à 5.9 ± 0.9 °C, tandis qu’une forte augmentation pour atteindre les valeurs modernes (11–13 °C) est observée après 15 ka cal BP. Le changement de température constaté dans cette étude entre l’Holocène et le dernier glaciaire est de 5 à 7 °C, en accord avec les précédentes études NGRT en Europe. Étant donné que les températures moyennes du sol près de la surface pendant la période glaciaire étaient bien supérieures à 0 °C, la présence à long terme du pergélisol dans le nord de l’Aquitaine est peu probable. Toutefois, un éventuel biais dans les températures reconstruites durant les événements les plus froids est probable du fait que les NGRT dans les régions froides ne reflètent pas les moyennes annuelles mais plutôt la température du sol pendant les mois de dégel.

Variaciones paleoclimáticas e impacto sobre la recarga de las aguas subterráneas en sistemas acuíferos multicapas mediante un método de trazadores múltiples (cuenca del norte de Aquitania, Francia)

Resumen

La cuenca septentrional de Aquitania (suroeste de Francia) es un gran sistema acuífero multicapa que contiene aguas subterráneas con una fuerte variabilidad en el tiempo de residencia que va desde años hasta decenas de miles de años. Este sistema constituye un archivo de variaciones paleoclimáticas. Se utilizó un método multiparamétrico con trazadores isotópicos (14C, 18O, 2H) para determinar el tiempo de residencia de las aguas subterráneas y documentar las fluctuaciones climáticas, mientras que los gases nobles disueltos se utilizaron para estimar las temperaturas medias anuales (temperaturas de recarga de gases nobles, NGRT) en el nivel freático. La reconstrucción de la temperatura del terreno cerca de la superficie desde 40 ka cal BP hasta el presente se realizó utilizando los datos recogidos de cinco acuíferos. Las temperaturas más frías se registran en las fases isotópicas marinas tardías (MIS) 3 y MIS 2, es decir, entre 36 y 18 kcal BP. La NGRT media para el período 27–18 ka cal BP se estima en 5.9 ± 0.9 °C, y se observa un fuerte aumento hacia los valores modernos (11–13 °C) después de 15 ka cal BP. El cambio de temperatura entre el Holoceno y el Último Glaciar oscila entre 5 y 7 °C, de acuerdo con estudios previos de la NGRT en Europa. Dado que las temperaturas medias del terreno próximas a la superficie durante el período glacial eran muy superiores a 0 °C, es improbable que se produzca una presencia prolongada de permafrost en el norte de Aquitania. Sin embargo, un posible sesgo cálido en las temperaturas reconstruidas durante los eventos más fríos radica en el hecho de que las NGRTs en las regiones frías no reflejan los medios anuales, sino más bien la temperatura del terreno durante los meses de deshielo.

利用多种示踪剂方法研究(法国阿基坦流域北部)古气候变化以及对对曾含水层系统地下水补给的影响

摘要

(法国西南部)的阿基坦流域北部是一个大的多层含水层系统, 其中的地下水滞留时间变化很大, 从几年到几万年不等。这个系统构成了古气候变化的档案。利用涉及到同位素示踪剂(14C, 18O, 2H)的多重参数方法确定了地下水的滞留时间, 记载了气候的波动情况, 还利用溶解的惰性气体估算了年平均温度(惰性气体补给温度)。采用从五个含水层收集到的数据, 重建了40 ka BP到目前的近地表温度。最低的温度在海洋同位素阶段晚期MIS3和MIS2, 即36至18ka BP之间。27–18ka BP期间的平均惰性气体补给温度估计为5.9 ± 0.9 °C, 15ka BP后观测到的温度大幅上升, 接近现代温度(11–13 °C)。全新世到末冰期的温度变化范围在5到7 °C, 与先前在欧洲进行的惰性气体补给温度研究结果一致。由于冰期期间平均近地表温度大大超过0 °C, 所以阿基坦北部的冻土不可能长期存在。然而, 最冷事件期间重建温度中的可能的温暖偏见在于这一事实, 即寒冷地区的惰性气体补给温度并不反映年平均值, 而是反映融化月份期间的地表温度。

Variações paleoclimáticas e impacto na recarga de águas subterrâneas em sistemas aquíferos multicamadas usando uma abordagem multitraçador (bacia setentrional da Aquitânia, França)

Resumo

A bacia setentrional da Aquitânia (sudoeste da França) é um grande sistema aquífero multicamadas que contém águas subterrâneas com uma forte variabilidade de tempo de residência, que varia de anos a dezenas de milhares de anos. Este sistema constitui-se um arquivo de variações paleoclimáticas. Uma abordagem multitraçador envolvendo traçadores isotópicos (14C, 18O, 2H) foi usada para se determinar o tempo de residência das águas subterrâneas e documentar as flutuações climáticas, enquanto gases nobres dissolvidos foram usados ​​para estimar as temperaturas médias anuais (temperaturas de recarga de gás nobre, TRGN) no lençol freático. A reconstrução da temperatura do solo próximo à superfície de 40 ka cal AP até o presente foi feita usando dados coletados de cinco aquíferos. As temperaturas mais baixas são registadas para o último Estágio Isotópico Marinho (EIM) 3 e EIM 2, entre 36 e 18 ka cal AP. A TRGN média para o período 27–18 ka cal AP é estimado em 5.9 ± 0.9 °C, e um forte aumento em direção aos valores modernos (11–13 °C) é observado após 15 ka cal AP. A mudança de temperatura entre o Holoceno e a última glaciação foi de 5 a 7 °C, de acordo com estudos anteriores de TRGN na Europa. Uma vez que as temperaturas médias do solo próximas da superfície durante o período glacial estavam bem acima de 0 °C, a presença a longo prazo de pergelissolos no norte da Aquitânia é improvável. No entanto, um possível erro de aquecimento nas temperaturas reconstruídas durante os eventos mais frios reside no fato de que as TRGNs em regiões frias não refletem médias anuais, mas sim a temperatura do solo durante os meses de descongelamento.

Notes

Acknowledgements

The sampling campaign has been realized with the help of the Conseil départemental de la Gironde and SUEZ Environment who gave us access to their wells.

Funding information

This work was financed by Adour-Garonne Water Agency and OASU (Observatoire Aquitain des Sciences de l’Univers) through the Special Program “Organics and Inorganics Contaminants”.

References

  1. Aeschbach-Hertig W, Solomon D (2013) Noble gas thermometry in groundwater hydrology. In: Burnard P (ed) The noble gases as geochemical tracers. Springer, Heidelberg, Germany, pp 81–122Google Scholar
  2. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35(9):2779–2792CrossRefGoogle Scholar
  3. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405(6790):1040–1044CrossRefGoogle Scholar
  4. Aggarwal P, Araguas-Araguas L, Gröning M, Kulkami K, Kuritas T, Newman B, Tanweer A (2009) Laser spectroscopic analysis of liquid water samples for stable hydrogen and oxygen isotopes. Training course 35, IAEA, Geneva, pp 1–35Google Scholar
  5. Andrews JN, Wilson GB, Youngman MJ, Goldbrunner JE, Darling WG, Hooker PJ, Eichinger L, Rauert W, Stichler W (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse Basin of Upper Austria. Earth Planetary Sci Lett 73(2–4):317–332CrossRefGoogle Scholar
  6. Andrieux E, Bertran P, Saito K (2016) Spatial analysis of the French Pleistocene permafrost by a GIS database. Permafr Periglac Process 27:16–30CrossRefGoogle Scholar
  7. Antoine P, Goval E, Jamet G, Coutard S, Moine O, Hérisson D, Robert V (2014) Les séquences lœssiques Pléistocène supérieur d’Havrincourt (Pas-de-Calais, France): stratigraphie, paléoenvironnements, géochronologie et occupations paléolithiques [The upper Pleistocene loessic sequences of Havrincourt (Pas-de-Calais, France): stratigraphy, paleoenvironments, geochronology and Palaeolithic settlement]. Quaternaire 25(4):321–368Google Scholar
  8. Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15(6):791–805CrossRefGoogle Scholar
  9. Bath A, Edmunds W, Andrews J (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. International Atomic Energy Agency, ViennaGoogle Scholar
  10. Bath AH, McCartney RA, Richards HG, Metcalfe R, Crawford MB (1996) Groundwater chemistry in the Sellafield area; a preliminary interpretation. Q J Eng Geol 29:39–57CrossRefGoogle Scholar
  11. Bertleff B, Ellwanger D, Szenkler C, Eichinger L, Trimborn P, Wolfendale N (1993) Interpretation of hydrochemical and hydroisotopical measurements on palaeogroundwaters in Oberschwaben, South German Alpine foreland, with focus on quaternary geology. International Atomic Energy Agency, ViennaGoogle Scholar
  12. Bertran P, Andrieux E, Antoine P, Coutard S, Deschodt L, Gardère P, Hernandez M, Legentil C, Lenoble A, Liard M, Mercier N, Moine O, Sitzia L, Van Vliet-Lanoë B (2014) Distribution and chronology of Pleistocene permafrost features in France: database and first results. Boreas 43(3):699–711CrossRefGoogle Scholar
  13. Beyerle U (1999) Groundwater dynamics, paleoclimate and noble gases. Swiss Federal Institute of Technology, ZurichGoogle Scholar
  14. Beyerle U, Purtschert R, Aeschbach-Hertig W, Imboden DM, Loosli HH, Wieler R, Kipfer R (1998) Climate and groundwater recharge during the last glaciation in an ice-covered region. Science 282:731–734CrossRefGoogle Scholar
  15. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34:2042–2050CrossRefGoogle Scholar
  16. Blaser PC, Kipfer R, Loosli HH, Walraevens K, Van Camp M, Aeschbach-Hertig W (2010) A 40 ka record of temperature and permafrost conditions in northwestern Europe from noble gases in the Ledo-Paniselian aquifer (Belgium). J Quat Sci 25(6):1038–1044CrossRefGoogle Scholar
  17. Blavoux B, Dray M, Fehri A, Olive P, Groning M, Sonntag C, Hauquin JP, Pelissier G, Pouchan P (1993) Paleoclimatic and hydrodynamic approach to the Aquitaine basin deep aquifer (France) by means of environmental isotopes and noble gases. Proc. on applications of isotopes techniques in studying past and current environmental changes in the hydrosphere and the atmosphere. IAEA-SM-329/60, IAEA, Vienna, pp 293–305Google Scholar
  18. Bonnery H, Peyrol L, Sourisseau B (1994) Étude du potentiel aquacole des nappes d’eau souterraines salées de la Pointe de Grave en Gironde [Study of the aquacultural potential of saline groundwaters near the “Pointe de Grave” area, Gironde Department]. BRGM/RR-38074-FR, Technical report, BRGM, Orléans, FranceGoogle Scholar
  19. BRGM (2018) Recherchez, visualisez et exploitez les données sur les eaux souterraines [Research, visualization and use of groundwater data]. www.ades.eaufrance.fr. Accessed December 2018
  20. Celle-Jeanton H, Huneau F, Travi Y, Edmunds W (2009) Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: impacts on baseline water quality. Appl Geochem 24(7):1198–1213CrossRefGoogle Scholar
  21. Chery L (1993) Interprétation des résultats des analyses isotopiques: etudes de la salinité verticale de l’Éocène moyen dans la zone Bordelaise (Gironde) [Result interpretation of the isotopic analyses: studies of the vertical salinity of the middle Eocene aquifer near Bordeaux area (Gironde department)]. BRGM/RR-37732-FR, Technical report, BRGM, Orléans, FranceGoogle Scholar
  22. Chery L, Gadalia A (2001) Aide à la définition du périmètre de protection de la source de Fontbanne à Budos (33): interprétation des résultats d’analyses chimiques et isotopiques [Assistance to the definition of the protection perimeter of the spring of Fontbanne near Budos (Gironde Department): interpretation of the results of chemical analyses and isotopic]. EAU/GRI no. 2001/32, Technical report, BRGM, Orléans, FranceGoogle Scholar
  23. Chery L, Dusseau P, Sourisseau B (1994) Diagnostic de l’accroissement de la salinité des nappes profondes de l’Éocène moyen en Gironde [Diagnosis of the increase in the salinity of the deep groundwaters of the middle Eocene in the Gironde Department]. BRGM/RR-37998-FR, Technical report, BRGM, Orléans, FranceGoogle Scholar
  24. Coope RG (2002) Changes in the thermal climate in northwestern Europe during marine isotope oxygen stage 3, estimated from fossil insect assemblages. Quat Res 57:401–408CrossRefGoogle Scholar
  25. Corcho Alvarado JA, Leuenberger M, Kipfer R, Paces T, Purtschert R (2011) Reconstruction of past climate conditions over Central Europe from groundwater data. Quat Sci Rev 30:3423–3429CrossRefGoogle Scholar
  26. Darling W (2004) Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quat Sci Rev 23:743–770CrossRefGoogle Scholar
  27. Darling WG; Edmunds WM; Smedley PL (1997) Isotopic evidence for palaeowaters in the British Isles. Applied Geochemistry,12 (6). 813–829.  https://doi.org/10.1016/S0883-2927(97)00038-3
  28. Deák J, Stute M, Rudolph J, Sonntag C (1987) Determination of the flow regime of Quaternary and Pliocene layers in the Great Hungarian Plain (Hungary) by D, 18O, 14C and noble gas measurements. Isotope techniques in Water Resources Development. Proceedings IAEA Symposium, Vienna, IAEA Proceedings Series STI/PUB/757), IAEA, Vienna, pp 335–350Google Scholar
  29. Deines P, Langmuir D, Harmon R (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwater. Geochim Cosmochim Acta 38:1147–1164CrossRefGoogle Scholar
  30. Dray M, Ferhi A, Jusserand C, Olive P (1997) Paleoclimatic indicators deduced from isotopic data in the main French deep aquifers. Isot Tech Study Environ Change (349/45):683–692Google Scholar
  31. Edmunds WM, Milne CJ (eds) (2001) Palaeowaters in coastal Europe: evolution of groundwater since the late Pleistocene. Geol Soc Lond Spec Publ 189Google Scholar
  32. Eichinger L (1983) A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25:347–356CrossRefGoogle Scholar
  33. Evans GV, Otlet RL, Downing RA, Monkhouse RA, Rae G (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. International Atomic Energy Agency, IAEA, ViennaGoogle Scholar
  34. Eynaud F, Malaizé B, Zaragosi S, de Vernal A, Scourse J, Pujol C, Cortijo E, Grousset FE, Penaud A, Toucanne S, Turon JL, Auffret G (2012) New constraints on European glacial freshwater releases to the North Atlantic Ocean. Geophys Res Lett 39:L15601CrossRefGoogle Scholar
  35. Fletcher WJ; Goñi MFS, Allen JRM, Cheddadi R, Combourieu-Nebout N, Huntley B, Lawson I, Londeix L, Magri D, Margari V, Müller UC, Naughton F, Novenko E, Roucoux K, Tzedakis P (2010) Millennial-scale variability during the last glacial in vegetation records from Europe, Quaternary Science Reviews (29): 2839–2864Google Scholar
  36. Fontes JC (1992) Chemical and isotopic constraints on 14C dating of groundwater. In: Taylor R, Long A, Kra R (eds) Radiocarbon after four decades. Springer, New York, pp 242–261Google Scholar
  37. Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of total dissolved carbon: a review of existing models and a new approach. Water Resour Res 15:399–413CrossRefGoogle Scholar
  38. Fontes JC, Stute M, Schlosser P, Broecker WS (1993) Aquifers as archives of paleoclimate. Eos Trans AGU 74(2):21–22CrossRefGoogle Scholar
  39. Ford DC (1993) Karst in cold environments. In: French HM, Slaymaker O (eds) Canada’s cold environments. McGill-Queen’s University Press, Montreal, pp 199–222Google Scholar
  40. Franceschi M (2005) Analyses isotopiques - Forages de reconnaissances médocains [Isotope Analysis - exploratory borehole in the medoc area] Technical report, EGIDGoogle Scholar
  41. French HM (2007) The periglacial environment, 3rd edn. Wiley, Chichester, UK, 478 ppCrossRefGoogle Scholar
  42. Gély J, Sztrakos K (2000) L’évolution paléogéographique et géodynamique du Bassin aquitain au Paléogène: enregistrement et datation de la tectonique pyrénéenne [Paleogeographic and geodynamic evolution of the Aquitaine Basin during the Paleogene: recording and dating of Pyrenean tectonics]. Géol Fr 2:31–57Google Scholar
  43. Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S (2003) Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421(6925):833–837CrossRefGoogle Scholar
  44. Genty D, Blamart D, Ghaleb B, Plagnes V, Causse C, Bakalowicz M, Zouari K, Chkir N, Hellstrom J, Wainer K, Bourges F (2006) Timing and dynamics of the last deglaciation from European and north African δ 13C stalagmite profiles: comparison with Chinese and south hemisphere stalagmites. Quat Sci Rev 25:2118–2142CrossRefGoogle Scholar
  45. Genty D, Combourieu-Nebout N, Peyron O, Blamart D, Wainer K, Mansuri F, Ghaleb B, Isabello L, Dormoy I, Von Grafenstein U, Bonelli S, Landais A, Brauer A (2010) Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quat Sci Rev 29:2799–2820CrossRefGoogle Scholar
  46. Geyer S, Wolf M, Wassenaar LI, Fritz P, Buckau G, Kim JI (1993) Isotope investigations on fractions of dissolved organic carbon for 14C groundwater dating. International Atomic Energy Agency, ViennaGoogle Scholar
  47. Geyh MA, Backhaus G, Andres G, Rudolph J, Rath HK (1984) Isotope study on the Keuper Sandstone Aquifer with a leaky cover layer. In: Proceedings of IAEA-SM-270 Symposium, IAEA, Vienna, pp 499–513Google Scholar
  48. Gombert P (1988) Étude des phénomènes de consolidation des aquifères et des désordres associés à l’exploitation des eaux souterraines: essai d’évaluation de l’influence de ces processus dans la région de Bordeaux [Study of the phenomena of consolidation of the aquifers and disorders associated with the exploitation of groundwaters: test of evaluation of the influence of these processes in the area of Bordeaux]. PhD Thesis Univ. Bordeaux 3, France, 319 ppGoogle Scholar
  49. Guiot J, de Beaulieu J, Cheddadi R, David F, Ponel P, Reille M (1993) The climate in Western Europe during the Last Glacial/interglacial cycle derived from pollen and insect remains. Palaeogeogr Palaeoclimatol Palaeoecol 103:73–93CrossRefGoogle Scholar
  50. Heaton T, Vogel J (1981) “Excess air” in groundwater. J Hydrol 50:201–216CrossRefGoogle Scholar
  51. Hosteins L (1982) Étude hydrogéologique du réservoir oligocène en Aquitaine occidentale: gestion et conservation de la ressource de cette nappe dans la région de Bordeaux [Hydrogeologic study of the Oligocene reservoir in Western Aquitaine: management and preservation of the groundwater resource in the area of Bordeaux]. PhD Thesis, Univ Bordeaux 1, France, 164 ppGoogle Scholar
  52. Hughes PD, Gibbard PL (2015) A stratigraphical basis for the Last Glacial Maximum (LGM). Quat Int 383:174–185CrossRefGoogle Scholar
  53. Huneau F (2000) Fonctionnement hydrogéologique et archives p laeoclimatiques d’un aquifère profond mediteranéen [Hydrogeological functioning and palaeogroundwaters of a deep Mediterranean aquifer]. PhD Thesis, Univ. Avignon, France, 180 ppGoogle Scholar
  54. Huneau F, Blavoux B, Aeschbach-Hertig W, Kipfer R (2001) Paleogroundwaters of the Valréas Miocene aquifer (southeastern France) as archives of the LGM/Holocene transition in the western Mediterranean region. Proceedings of the International Conference on the Study of Environmental Changes Using Isotope Techniques (13):84–90Google Scholar
  55. IAEA/WMO (2018) Global Network of Isotopes in Precipitation: the GNIP database. ttps://nucleus.iaea.org/wiser. Accessed 1 November 2018
  56. Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Recent researches in the fields of atmosphere, hydrosphere, and nuclear geochemistry, Maruzen, Tokyo, pp 263–283Google Scholar
  57. Jiráková H, Huneau F, Celle-Jeanton H, Hrkal Z, Le Coustumer P (2011) Insights into palaeorecharge conditions for European deep aquifers. Hydrogeol J 19:1545–1562CrossRefGoogle Scholar
  58. Jost A, Lunt D, Kageyama M, Abe-Ouchi A, Peyron O, Valdes PJ, Ramstein G (2005) High-resolution simulations of the Last Glacial Maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions? Clim Dyn 24:557–590CrossRefGoogle Scholar
  59. Kageyama M, Laîné A, Abe-Ouchi A, Braconnot P, Cortijo E, Crucifix M, de Vernal A, Guiot J, Hewitt CD, Kitoh A, Kucera M, Marti O, Ohgaito R, Otto-Bliesner B, Peltier WR, Rosell-Melé A, Vettoretti G, Weber SL, Yu Y (2006) Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea–surface temperatures and pollen-based reconstructions. Quat Sci Rev (25):2082–2102Google Scholar
  60. Kloppmann W, Dever L, Edmunds W (1998) Residence time of chalk groundwaters in the Paris Basin and the north German Basin: a geochemical approach. Appl Geochem 13(5):593–606CrossRefGoogle Scholar
  61. Larroque F (2004) Gestion globale d’un système aquifère complexe: application à l’ensemble aquifère multicouche médocain [Global management of a complex aquifer system: application to the multi-layered aquifer system of the Médoc area]. PhD Thesis, Univ. Bordeaux 3, France, 253 ppGoogle Scholar
  62. Larroque F, Treichel W, Dupuy A (2008) Use of unit response functions for management of regional multilayered aquifers: application to the North Aquitaine Tertiary System (France). Hydrogeol J 16(2):215–233CrossRefGoogle Scholar
  63. Lavielle B, Matray JM, Thomas B, Dauzères A, Bensenouci F, Gilabert E (2012) Stages of evolution of a Toarcian compacted claystone around galleries excavated between 1 and 124 years ago by the study of noble gases dissolved in pore water at the Tournemire Underground Research Laboratory (France). Appl Geochem 27(7):1403–1416CrossRefGoogle Scholar
  64. Le Gal La Salle C, Marlin C, Savoye S, Fontes J (1996) Geochemistry and 14C dating of groundwaters from Jurassic aquifers of North Aquitaine Basin (France). Appl Geochem 11(3):433–445CrossRefGoogle Scholar
  65. Legigan P (1979) L’élaboration de la formation du Sable des Landes, dépôt résiduel de l’environnement sédimentaire Pliocène-Pléistocène centre aquitain [The development of the “Sable des Landes” formation, residual deposit of the Pliocene-Pleistocene sedimentary environment Aquitaine basin]. PhD Thesis, Univ. Bordeaux 1, France, 253 ppGoogle Scholar
  66. Malcuit E (2012) Origine de la minéralisation des eaux dans un aquifère multicouche profond: exemple de la “zone minéralisée de l’Entre-Deux-Mers” (Bassin aquitain, France) [Origin of groundwaters’ mineralization in a deep multi-layered aquifer: example of the “mineralized Entre-Deux-Mers area” (Aquitaine Basin, France)]. PhD Thesis, Univ. Bordeaux 3, France, 316 ppGoogle Scholar
  67. Malcuit E, Atteia O, Larroque F, Franceschi M, Pryet A (2014) On the role of low-permeability beds in the acquisition of F and SO4 concentrations in a multi-layer aquifer, South-West France. J Contam Hydrol 169:97–49CrossRefGoogle Scholar
  68. Millot R, Petelet-Giraud E, Guerrot C, Négrel P (2010) Multi-isotopic composition (δ7Li– δ11B– δD– δ18O) of rainwaters in France: origin and spatio-temporal characterization. Appl Geochem 25(10):1510–1524CrossRefGoogle Scholar
  69. Mook W (1980) Handbook of environmental isotope geochemistry 1. Elsevier, AmsterdamGoogle Scholar
  70. Négrel P, Petelet-Giraud E (2011) Isotopes in groundwater as indicators of climate changes. TrAC Trends Anal Chem 30(8):1279–1290CrossRefGoogle Scholar
  71. Osenbrück K, Lippmann J, Sonntag C (1998) Dating very old pore waters in impermeable rocks by noble gas isotopes. Geochim Cosmochim Acta 62(18):3041–3045CrossRefGoogle Scholar
  72. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chap. A43, US Geological Survey, Reston, VA, 497 ppGoogle Scholar
  73. Pédron N, Platel JP, Bourgine B, Loiseau JB (2008) Gestion des eaux souterraines en Région Aquitaine: développements et maintenance du Modèle Nord-Aquitain de gestion des nappes—année 4, module 4 [Groundwater management in Aquitaine region: development and maintenance of the North-Aquitanian Model of groundwater management—year 4, module 4]. BRGM/RP-56614-FR, Technical report, BRGM, Orléans, FranceGoogle Scholar
  74. Peeters F, Beyerle U, Aeschbach-Hertig W, Holocher J, Brennwalf MS, Kipfer R (2002) Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne. Geochim Cosmochim Acta 67:587–600CrossRefGoogle Scholar
  75. Penna D, Stenni B, Sanda M, Wrede S, Bogaard TA, Gobbi A, Borga M, Fischer BMC, Bonazza M, Charova Z (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrol Earth Syst Sci 14(8):1551–1566CrossRefGoogle Scholar
  76. Platel JP, Mauroux B, Bonnery H, Sourisseau B, Seguin JJ, Chery L, Benhammoudas S, Dufour P (1999) Gestion des eaux souterraines en Aquitaine: relations entre l’estuaire de la Gironde et la nappe de l’Éocène [Groundwater management in Aquitaine region, year 3: relations between the estuary of the Gironde and the Eocene aquifer]. BRGM/RR-40729-FR, Technical report, BRGM, Orléans, FranceGoogle Scholar
  77. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15.  https://doi.org/10.2475/ajs.301.1.1 CrossRefGoogle Scholar
  78. Ponel P (1995) Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeogr Palaeoclimatol Palaeoecol 114:1–41CrossRefGoogle Scholar
  79. Ramstein G, Kageyama M, Guiot J, Wu H, Hély C, Krinner G, Brewer S (2007) How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison. Clim Past 3:331–339CrossRefGoogle Scholar
  80. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  81. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  82. Roche DM, Dokken TM, Goosse TH, Renssen H, Weber SL (2007) Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model. Clim Past 3:205–224CrossRefGoogle Scholar
  83. Rudolph J, Rath H, Sonntag C (1984) Noble gases and stable isotopes in 14C-dated palaeowaters from Central Europe and the Sahara. In: Isotope hydrology 1983. IAEA-SM-270/17, International Atomic Energy Agency, Vienna, pp 467–477Google Scholar
  84. Salem O, Visser J, Dray M, Gonfiantini R (1980) Groundwater flow patterns in the western Libyan Arab Jamahiriya evaluated from isotopic. International Atomic Energy Agency, ViennaGoogle Scholar
  85. Saltel M (2008) Impact de structures géologiques sur l’alimentation de systèmes aquifères profonds: fonctionnement hydrogéologique des antiformes du sud de Bordeaux [Impact of geological structures on the recharge of deep aquifer systems: hydrogeological behaviour of antiforms in the south of Bordeaux]. PhD Thesis, Univ. Bordeaux 3, France, 268 ppGoogle Scholar
  86. Schnebelen N, Platel JP, Petelet-Giraud E, Dubreuilh J, Benhammouda S, Dufour P (2002) Gestion des eaux souterraines en Aquitaine: année 5—relations entre l’estuaire de la Gironde et la nappe de l’Éocène [Groundwater management in Aquitaine region: year 5—relations between the estuary of the Gironde and the Eocene aquifer]. BRGM/RP-51177-FR, Technical report, BRGM, Orléans, FranceGoogle Scholar
  87. Schoeller H (1971) Paléohydrogéologie de la partie septentrionale du bassin d’Aquitaine. Etablissement d’une série de cycles hydrogéologiques, avec stages d’essorage et d’infiltration pendant les ères secondaire et tertiaire [Paleohydrogeology of the northern part the Aquitaine basin: establishment of set of hydrological cycles, with various stages of drying and infiltration during the eras secondary and tertiary]. Bull Soc Geol Fr 1:47–49Google Scholar
  88. Seltzer AM, Stude M, Morgenstern U, Stewart MK, Schaefer JM (2015) Mean annual temperature in New Zealand during the Last Glacial Maximum derived from dissolved noble gases in groundwater. Earth Planet Sci Lett 431:206–216CrossRefGoogle Scholar
  89. Singleton M, Moran J (2010) Dissolved noble gas and isotopic tracers reveal vulnerability of groundwater in a small, high-elevation catchment to predicted climate changes. Water Resour Res 46:W00F06CrossRefGoogle Scholar
  90. Sitzia L, Bertran P, Bahain JJ, Bateman M, Hernandez M, Garon H, de Lafontaine G, Mercier N, Leroyer C, Queffelec A, Voinchet P (2015) The Quaternary coversands of Southwest France. Quat Sci Rev 124:84–105CrossRefGoogle Scholar
  91. Smith SL, Romanovsky VE, Lewkowicz AG, Burn CR, Allard M, Clow GD, Yoshikawa K, Throop J (2010) Thermal state of permafrost in North America: a contribution to the International Polar Year. Permafr Periglac Process 21:117–135CrossRefGoogle Scholar
  92. Strandberg G, Brandefelt J, Kjellström EK, Smith B (2011) High-resolution regional simulation of Last Glacial Maximum climate in Europe. Tellus 66A:107–125CrossRefGoogle Scholar
  93. Stute M, Deák J (1989) Environmental isotope study (14C,13 C, 18 O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31:902–918CrossRefGoogle Scholar
  94. Stute M, Schlosser P (1993) Principles and applications of the noble gas paleothermometer. Climate Change Continental Isotopic Records 8:89–100Google Scholar
  95. Tamers M (1975) The validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239CrossRefGoogle Scholar
  96. Texier J (1996) Présence d’un réseau de grands polygones au Sud de l’estuaire de la Gironde (France): interprétation et implications paléoclimatiques [Presence of large non-sorted polygons located on the south side of the Gironde estuary (France): interpretation and paleoclimatic implications]. Geog Phys Quat 50:103–108Google Scholar
  97. Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16CrossRefGoogle Scholar
  98. Utting N, Clark I, Lauriol B, Wieser M, Aeschbach-Hertig B (2012) Origin and flow dynamics of perennial groundwater in continuous permafrost terrain using isotopes and noble gases: case study of the Fishing Branch River, northern Yukon, Canada. Permafr Periglac Process 23:91–106CrossRefGoogle Scholar
  99. Vandenberghe J, French HM, Gorbunov A, Marchenko S, Velichko AA, Jin H, Cui Z, Zhang T, Wan X (2014) The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP, Boreas (43): 652–666Google Scholar
  100. Van Vliet-Lanoë B (1989) Dynamics and extent of the Weichselian permafrost in western Europe (substage 5e to stage 1). Quat Int 3–4:109–113CrossRefGoogle Scholar
  101. Van Vliet-Lanoë B (1996) Relations entre la contraction thermique des sols en Europe du Nord-Ouest et la dynamique de l’inlandsis weichselien [Soil thermal contraction in NW Europe related to the dynamics of Weichselian Ice Sheet]. CR Acad Sci Paris 322(série IIa):461–468Google Scholar
  102. Vidstrand P (2003) Surface and subsurface conditions in permafrost areas: a literature review. Swedish Nuclear Fuel and Waste Management Co, Stockholm, 70 ppGoogle Scholar
  103. Weninger B, Joris O (2004) Glacial radiocarbon calibration. The CalPal program radiocarbon and archaeology. In: Higham T, Ramsey CB, Owen C (eds) Radiocarbon and archaeology. Oxford University School of Archaeology, Oxford, pp 9–15Google Scholar
  104. Wüest A, Piepke G, Halfman J (1996) Combined effects of dissolved solids and temperature on the dentsity stratification of Lake Malawi. In: The limnology, climatology and paleoclimatology of the eastern African lakes. CRC Press, Boca Raton, FL, pp 183–202Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marc Saltel
    • 1
    Email author
  • Romain Rebeix
    • 2
    • 3
  • Bertrand Thomas
    • 2
    • 3
  • Michel Franceschi
    • 4
    • 5
  • Bernard Lavielle
    • 2
    • 3
  • Pascal Bertran
    • 6
    • 7
  1. 1.BRGM Nouvelle Aquitaine, Parc Technologique EuroparcPessacFrance
  2. 2.University of Bordeaux, CENBGGradignan CedexFrance
  3. 3.CNRS (UMR 5797) CENBGGradignan CedexFrance
  4. 4.Bordeaux INP, G&E, EA 4592PessacFrance
  5. 5.Université Bordeaux Montaigne, G&E, EA 4592PessacFrance
  6. 6.InrapBèglesFrance
  7. 7.PACEA, University of Bordeaux-CNRSPessacFrance

Personalised recommendations