Advertisement

Nitrate as a parameter for differentiating groundwater flow systems in urban and agricultural areas: the case of Morelia-Capula area, Mexico

  • José Pérez Villarreal
  • Jorge Alejandro Ávila OliveraEmail author
  • Isabel Israde Alcántara
  • Otoniel Buenrostro Delgado
Report
  • 41 Downloads

Abstract

Nitrate is found in groundwater due to natural and anthropic processes. Nitrate content in groundwater is associated with factors such as human activities, soil type, climate, geology and chemistry of groundwater. Some of these factors (climate and geology) coincide with those that determine the type of groundwater flow system (local, intermediate or regional) present in an area which, in turn, is influenced by climate, stratigraphy, and type of subsoil and surface rocks; therefore, it is expected that the concentration of nitrate is related to the type of groundwater flow. The relationship between the concentration of nitrate in groundwater samples and the type of flow was analyzed in an aquifer system located in the Trans-Mexican Volcanic Arc, within the Michoacán-Guanajuato volcanic complex. The system is composed of two hydrogeological units, one volcanic and the other sedimentary, with the presence of geological faults, in a context where there is agricultural activity and deficient domestic wastewater management. To improve understanding of the overall aquifer system, 34 groundwater samples (28 wells, 6 springs) were analyzed. The results indicate that each flow system presents characteristic patterns of nitrate concentration and groundwater chemical composition. A high nitrate concentration was found in local and local-intermediate flow systems. Nitrate concentration decreased from local to intermediate and regional flows. The nitrate concentration decreased depending on groundwater flow direction, so it is possible to use nitrate as a parameter to differentiate groundwater flow systems.

Keywords

Nitrate Groundwater flow Volcanic-sedimentary aquifer Anthropic activities Mexico 

Les nitrates comme paramètre permettant de différencier les systèmes d’écoulement des eaux souterraines dans les zones urbaines et agricoles: le cas de la région de Morelia-Capula au Mexique

Résumé

Les nitrates sont présents dans les eaux souterraines en raison de processus naturels et anthropiques. La teneur en nitrates dans les eaux souterraines est associée à des facteurs tels que les activités humaines, le type de sol, le climat, la géologie et la chimie des eaux souterraines. Certains de ces facteurs (climat et géologie) coïncident avec ceux qui déterminent le type de système d’écoulement des eaux souterraines (local, intermédiaire ou régional) présent dans une zone qui est, à son tour, influencée par le climat, la stratigraphie et le type de sous-sol et de roches de surface; par conséquent, on s’attend à ce que la concentration en nitrates soit liée au type d’écoulement des eaux souterraines. La relation entre la concentration de nitrates dans les échantillons d’eau souterraine et le type d’écoulement a été analysée dans un système aquifère situé dans l'Arc Volcanique Trans-Mexicaine, au sein du complexe volcanique de Michoacán-Guanajuato. Le système est composé de deux unités hydrogéologiques, l’une volcanique et l’autre sédimentaire, avec la présence de failles géologiques, dans un contexte d’activité agricole et de gestion déficiente des eaux usées domestiques. Pour améliorer la compréhension de l’ensemble du système aquifère, 34 échantillons d’eau souterraine (28 puits, 6 sources) ont été analysés. Les résultats indiquent que chaque système d’écoulement présente des signatures caractéristiques de concentrations en nitrates et de composition chimique des eaux souterraines. Une forte concentration en nitrates a été obtenue dans les systèmes d’écoulement local et local-intermédiaire. La concentration en nitrates a diminué des flux locaux aux flux intermédiaires et régionaux. La concentration en nitrates a diminué en fonction de la direction du flux d’eau souterraine. Il est donc possible d’utiliser les nitrates comme paramètre permettant de différencier les systèmes d’écoulement d’eau souterraine.

El nitrato Como un parámetro para diferenciar los sistemas de flujo de agua subterránea en áreas urbanas y rurales: el caso del área de Morelia-Capula, México

Resumen

El nitrato se encuentra en el agua subterránea debido a procesos naturales y antrópicos. El contenido de nitrato en el agua subterránea está asociado con factores tales como las actividades humanas, el tipo de suelo, el clima, la geología y la química del agua subterránea. Algunos de estos factores (clima y geología) coinciden con los que determinan el tipo de sistema de flujo de agua subterránea (local, intermedio o regional) presente en un área que, a su vez, está influenciada por el clima, la estratigrafía, el tipo de subsuelo y rocas superficiales; por lo tanto, se espera que la concentración de nitrato esté relacionada con el tipo de flujo de agua subterránea. La relación entre la concentración de nitrato en muestras de agua subterránea y el tipo de flujo se analizó en un sistema acuífero localizado en el Arco Volcánico Trans-Mexicano, dentro del complejo volcánico Michoacán-Guanajuato. El sistema acuífero está compuesto por dos unidades hidrogeológicas, una volcánica y otra sedimentaria, con presencia de fallas geológicas, en un contexto donde existe actividad agrícola y un manejo deficiente de las aguas residuales domésticas. Para profundizar en el conocimiento del sistema acuífero, se analizaron 34 muestras de agua subterránea (28 pozos, 6 manantiales). Los resultados indican que cada sistema de flujo presenta patrones característicos de concentración de nitrato y composición química del agua subterránea. Una alta concentración de nitrato se encontró en los sistemas de flujos locales y locales-intermedios. La concentración de nitrato disminuye conforme los flujos pasan de locales a intermedios y regionales. La concentración del nitrato disminuye en dirección del flujo de agua subterránea, por lo que es posible usar el nitrato como un parámetro para diferenciar los sistemas de flujo de agua subterránea.

硝酸盐作为区分城市区和农业区的地下水流系统的参数:墨西哥莫雷利亚-卡普拉地区的研究案例

摘要

由于自然和人为过程,地下水中发现有硝酸盐。地下水中的硝酸盐含量与人类活动、土壤类型、地质条件和地下水中的化学条件等诸多因素相关。有些因素(气候和地质条件)与本地区存在的那些确定地下水水流类型(局部、中间级或者区域)的因素完全一致,这些因素反过来也受到气候、地形、下层土壤的类型和地表下岩石的影响;因此,预计硝酸盐的含量与地下水流类型有关。对位于Michoacán-Guanajuato火山岩系内跨墨西哥火山带的含水层系统地下水样中的硝酸盐含量和水流类型之间的相互关系进行了分析。该含水层系统由两个水文地质单元组成,一个是火山岩单元,另一个是沉积岩单元,并伴有地质断层,本地区存在着农业活动,家庭污水管理较差。为了进一步了解整个含水层系统,分析了34个地下水水样(28个水井水样和6个泉水水样)。结果表明,每一个水流系统呈现出的硝酸盐含量和地下水化学组分模式各具特色。在局部和局部-中间级水流系统中发现硝酸盐含量很高。硝酸盐含量从局部到中间级和区域呈下降趋势。硝酸盐含量的降低取决于地下水流方向,因此,采用硝酸盐作为区分地下水流系统的参数是可能的。

Nitrato come parametro per differenziare i sistemi di flusso delle acque sotterranee nelle aree urbane e rurali: il caso dell’area di Morelia-Capula, Messico

Riassunto

Il nitrato si trova nelle acque sotterranee a causa di processi naturali e antropici. Il contenuto di nitrato nelle acque sotterranee è associato a fattori come attività umane, tipo di suolo, clima, geologia e chimica delle acque sotterranee. Alcuni di questi fattori (clima e geologia) coincidono con quelli che determinano il tipo di sistema di flusso di acque sotterranee (locale, intermedio o regionale) presente in un’area che, a sua volta, è influenzata dal clima, dalla stratigrafia, tipo di sottosuolo e rocce superficiali; pertanto si prevede che la concentrazione di nitrati sia correlata al tipo di flusso di acque sotterranee. La relazione tra la concentrazione di nitrato nei campioni di acque sotterranee e il tipo di flusso è stata analizzata in un sistema acquifero situato nel Arco Vulcanico Trans-Messicano, all’interno del complesso vulcanico di Michoacán-Guanajuato. Il sistema acquifero è composto da due unità idrogeologiche, una vulcanica e l’altra sedimentaria, con la presenza di faglie geologiche, in un contesto in cui vi è attività agricola e carenza di gestione delle acque reflue domestiche. Per migliorare la comprensione del sistema acquifero, sono stati analizzati 34 campioni di acque sotterranee (28 pozzetti, 6 sorgenti). I risultati indicano che ogni sistema di flusso presenta schemi caratteristici di concentrazione di nitrato e composizione chimica delle acque sotterranee. Un’alta concentrazione di nitrato è stata trovata nei sistemi di flussi locali e locali-intermedi. La concentrazione di nitrato diminuisce man mano che i flussi si spostano da locale a intermedio e regionale. La concentrazione di nitrato diminuisce nella direzione del flusso di acque sotterranee, quindi è possibile utilizzare il nitrato come parametro per differenziare i sistemi di flusso delle acque sotterranee.

Nitrato Como um parâmetro para diferenciar sistemas de fluxo de águas subterrâneas em áreas urbanas e agrícolas: o caso da área de Morelia-Capula, México

Resumo

O nitrato é encontrado nas águas subterrâneas devido a processos naturais e antrópicos. O teor de nitrato nas águas subterrâneas está associado a fatores como atividades humanas, tipo de solo, clima, geologia e química das águas subterrâneas. Alguns destes fatores (clima e geologia) coincidem com aqueles que determinam o tipo de sistema de fluxo das águas subterrâneas (local, intermediário ou regional) presente em uma área, que, por sua vez, é influenciada pelo clima, estratigrafia e tipo de subsolo e rochas de superfície; portanto, espera-se que a concentração de nitrato esteja relacionada ao tipo de fluxo das águas subterrâneas. A relação entre a concentração de nitrato em amostras de águas subterrâneas e o tipo do fluxo foi analisada em um sistema aquífero localizado no Arco Vulcânico Trans-Mexicano, dentro dos limites do Complexo Vulcânico Michoacán-Guanajuato. O sistema é composto por duas unidades hidrogeológicas, sendo uma vulcânica e outra sedimentar, com a presença de falhas geológicas, em um contexto caracterizado por atividades agrícolas e gestão de águas residuárias deficiente. Para melhorar a compreensão de todo o sistema aquífero, 34 amostras de águas subterrâneas (28 poços e 6 nascentes) foram analisadas. Os resultados indicam que cada sistema de fluxo apresenta padrões característicos de concentração de nitrato e composição química das águas subterrâneas. Uma alta concentração de nitrato foi encontrada em sistemas de fluxo local e intermediário-local. As concentrações de nitrato decresceram dos fluxos locais para os intermediários e regionais. A concentração de nitrato diminuiu de acordo com a direção do fluxo de água subterrânea, indicando que o nitrato pode ser utilizado como parâmetro para diferenciar os sistemas de fluxo de águas subterrâneas.

Notes

Acknowledgements

For having performed the analysis of anions, cations and trace elements, we thank Carolina Muñoz Torres of the Environmental Geochemistry Laboratory of the Geosciences Center (CGEO) of the National Autonomous University of Mexico (UNAM). We would like to express our gratitude to the Local Commission (OOAPAS) and the National Water Commission (CONAGUA) for allowing us access to their databases and groundwater wells to gather information from the Morelia-Capula area.

Funding information

This work was completed thanks to the support of the National Council of Science and Technology (CONACYT) who granted the doctoral fellowship 172301.

References

  1. Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Assess Rev 27:220–242.  https://doi.org/10.1016/j.eiar.2006.11.002 CrossRefGoogle Scholar
  2. Asadi P, Ataie-Ashtiani B, Beheshti A (2017a) Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad, Iran. Environ Earth Sci.  https://doi.org/10.1007/s12665-016-6357-z
  3. Asadi P, Hosseini SM, Ataie-Ashtiani B, Simmons CT (2017b) Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination. Environ Model Softw 96:146–157.  https://doi.org/10.1016/j.envsoft.2017.06.043 CrossRefGoogle Scholar
  4. Cardona A, Carrillo-Rivera JJ (2006) Hidrogeoquímica de sistemas de flujo intermedio que circulan por sedimentos continentales derivados de rocas riolíticas [Hydrogeochemistry of intermediate flow systems that circulate through continental sediments derived from rhyolitic rocks]. Ing Hidrául Méx 21:69–86Google Scholar
  5. Carrillo-Rivera JJ, Cardona A, Moss D (1996) Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosi, Mexico. J Hydrol 185:23–44.  https://doi.org/10.1016/S0022-1694(96)03014-4 CrossRefGoogle Scholar
  6. Carrillo-Rivera JJ, Varsányi I, Kovács LÓ, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103.  https://doi.org/10.1007/s11270-007-9400-6 CrossRefGoogle Scholar
  7. Chen J, Tang C, Sakura Y, Yu J, Fukushima Y (2005) Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China plain. Hydrogeol J 13:481–492.  https://doi.org/10.1007/s10040-004-0321-9 CrossRefGoogle Scholar
  8. Corniello A, Ducci D, Ruggieri G (2007) Areal identification of groundwater nitrate contamination sources in periurban areas. J Soils Sediments 7:159–166.  https://doi.org/10.1065/jss2007.03.213 CrossRefGoogle Scholar
  9. Corona-Chávez P, Reyes-Salas M, Garduño-Monroy VH, Israde-Alcántara I, Lozano-Santacruz R, Morton-Bermea O, Hernández-Álvarez E (2006) Asimilación de xenolitos graníticos en el Campo Volcánico Michoacán-Guanajuato: el caso de Arócutin Michoacán, México [Assimilation of granitic xenoliths in the Michoacán-Guanajuato Volcanic Field: the case of Arócutin Michoacán, México]. Rev Mex Cien Geol 23:233–245Google Scholar
  10. Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752.  https://doi.org/10.1016/S0883-2927(99)00079-7 CrossRefGoogle Scholar
  11. EPA (1994) Method 200.8 determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry. Methods Determ. Met 57, USEPA, Washington, DCGoogle Scholar
  12. EPA (1999) Method 300.1 determination of inorganic anions in drinking water by ion chromatography. Environmental Protection Agency (EPA) 40, USEPA, Washington, DCGoogle Scholar
  13. Fagundo-Castillo JR, Alconada-Magliano MM, Carrillo-Rivera JJ, González-Hernández P (2014) Caracterización de los flujos de agua subterránea a partir de su salinidad [Characterization of groundwater flows from its salinity]. Cien Agua 5:63–80Google Scholar
  14. Garduño-Monroy VH, Medina-Vega VH, Israde-Alcántara I, Hernández-Madrigal VM, Ávila-Olivera JA (2010) Unidades Geohidrológicas de la Región de Morelia-Cuitzeo. In: Atlas de la cuenca del lago de Cuitzeo: análisis de su geografía y entorno socio ambiental [Hydrogeological Units of the Morelia-Cuitzeo Region. In: Atlas of the Lake Cuitzeo basin: analysis of its geography and socio-environmental environment]. UNAM, Mexico City, pp 66–69Google Scholar
  15. Garduño-Monroy VH, Pérez-Lopez R, Israde-Alcantara I, Rodríguez-Pascua MA, Szynkaruk E, Hernández-Madrigal VM, García-Zepeda ML, Corona-Chávez P, Ostroumov M, Medina-Vega VH, García-Estrada G, Carranza O, López-Granados E, Mora-Chaparro JC (2009) Paleoseismology of the southwestern Morelia-Acambay fault system, central Mexico. Geofis Int 48:319–335Google Scholar
  16. Garduño MVH, Giordano N, Ávila OJA, Hernández MVM, Sámano NA, Díaz SJE (2014) Estudio hidrogeológico del sistema acuífero de Morelia, Michoacán, para una correcta planificación del territorio [Hydrogeological study of the aquifer system of Morelia, Michoacán, for effecive planning of the territory]. In: Vieyra A, LarrazábalAlejandra (eds) Urbanización, sociedad y medio ambiente: experiencias en ciudades medias [Urbanization, society and environment: experiences in medium cities]. UNAM, Mexico City, pp 197–222Google Scholar
  17. González-Abraham A, Fagundo-Castillo JR, Carrillo-Rivera JJ, Rodríguez-Estrella R (2012) Geoquímica de los sistemas de flujo de agua subterránea en rocas sedimentarias y rocas volcanogénicas de Loreto , BCS , México [Geochemistry of groundwater flow systems in sedimentary rocks and volcanogenic rocks of Loreto, BCS, Mexico]. Bol Soc Geol Mex 64:319–333Google Scholar
  18. Han D, Cao G, McCallum J, Song X (2015) Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China. Sci Total Environ 538:539–554.  https://doi.org/10.1016/j.scitotenv.2015.08.036 CrossRefGoogle Scholar
  19. Huizar-Alvarez R, Ouysse S, Espinoza-Jaramillo MM, Carrillo-Rivera JJ, Mendoza-Archundia E (2016) The effects of water use on Tothian flow systems in the Mexico City conurbation determined from the geochemical and isotopic characteristics of groundwater. Environ Earth Sci.  https://doi.org/10.1007/s12665-016-5843-7
  20. Israde-Alcántara I, Buenrostro-Delgado O, Garduño-Monroy VH, Hernández-Madrial VM, López GE (2009) Problemática geológico-ambiental de los tiraderos de la Cuenca de Cuitzeo, norte del estado de Michoacán [Geological-environmental problems of the dumps of the Cuitzeo Basin, north of the state of Michoacan]. Bol Soc Geol Mex 61:203–211Google Scholar
  21. Israde-Alcántara I, Buenrostro DO, Carrillo CA (2005) Geological characterization and environmental implications of the placement of the Morelia dump, Michoacan, Central Mexico. J Air Waste Manage Assoc 55:755–764.  https://doi.org/10.1080/10473289.2005.10464665 CrossRefGoogle Scholar
  22. Israde AI, Garduño MVH (2004) La geología de la región Morelia. [The geology of the Morelia region]. In: In: Contribuciones a la geología e impacto ambiental de Morelia [Contributions to the geology and environmental impact of Morelia]. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, pp 1–13Google Scholar
  23. Kagabu M, Shimada J, Delinom R, Nakamura T, Taniguchi M (2013) Groundwater age rejuvenation caused by excessive urban pumping in Jakarta area, Indonesia. Hydrol Process 27:2591–2604.  https://doi.org/10.1002/hyp.9380 CrossRefGoogle Scholar
  24. Liao L, Green CT, Bekins BA, Böhlke JK (2012) Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour Res.  https://doi.org/10.1029/2011WR011008
  25. Liu A, Ming J, Ankumah RO (2005) Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 346:112–120.  https://doi.org/10.1016/j.scitotenv.2004.11.019 CrossRefGoogle Scholar
  26. Loewenthal RE, Morrison I, Wentzel MC (2004) Control of corrosion and aggression in drinking water systems. Water Science and Technology 49: 9-18Google Scholar
  27. Mahlknecht J, Gárfias-Solis J, Aravena R, Tesch R (2006) Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico. J Hydrol 324:283–300.  https://doi.org/10.1016/j.jhydrol.2005.09.021 CrossRefGoogle Scholar
  28. Musgrove M, Opsahl SP, Mahler BJ, Herrington C, Sample TL, Banta JR (2016) Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, Central Texas. Sci Total Environ 568:457–469.  https://doi.org/10.1016/j.scitotenv.2016.05.201 CrossRefGoogle Scholar
  29. Nolan BT, Hitt KJ (2006) Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environ Sci Technol 40:7834–7840.  https://doi.org/10.1021/es060911u CrossRefGoogle Scholar
  30. Pastén-Zapata E, Ledesma-Ruiz R, Harter T, Ramírez AI, Mahlknecht J (2014) Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci Total Environ 470–471:855–864.  https://doi.org/10.1016/j.scitotenv.2013.10.043 CrossRefGoogle Scholar
  31. Pérez-Villarreal J, Ávila-Olivera JA, Israde-Alcántara I (2018) Análisis de los sistemas de flujo en un acuífero perturbado por la extracción de aguas subterráneas: Caso zona Morelia-Capula, Michoacán [Analysis of the flow systems in an aquifer disturbed by the extraction of groundwater: case of the Morelia-Capula area, Michoacán]. Bol Soc Geol Mex 70:675–688Google Scholar
  32. Puckett LJ, Survey USG, Tesoriero AJ (2011) Nitrogen contamination of surficial aquifers: a growing legacy. Environ Sci Technol 45:839–844CrossRefGoogle Scholar
  33. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232.  https://doi.org/10.1016/j.watres.2008.07.020 CrossRefGoogle Scholar
  34. Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater: a review. J Environ Qual 22:392.  https://doi.org/10.2134/jeq1993.00472425002200030002x CrossRefGoogle Scholar
  35. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4785–4812.  https://doi.org/10.1029/JZ068i016p04795 CrossRefGoogle Scholar
  36. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14.  https://doi.org/10.1007/s100400050176 CrossRefGoogle Scholar
  37. Umezawa Y, Hosono T, Onodera SI, Siringan F, Buapeng S, Delinom R, Yoshimizu C, Tayasu I, Nagada T, Taniguchi M (2009) Erratum to sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci Total Environ 407:3219–3231.  https://doi.org/10.1016/j.scitotenv.2009.01.048 CrossRefGoogle Scholar
  38. Wang S, Tang C, Song X, Yuan R, Han Z, Pan Y (2016) Factors contributing to nitrate contamination in a groundwater recharge area of the North China plain. Hydrol Process 30:2271–2285.  https://doi.org/10.1002/hyp.10778 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • José Pérez Villarreal
    • 1
  • Jorge Alejandro Ávila Olivera
    • 2
    Email author
  • Isabel Israde Alcántara
    • 3
  • Otoniel Buenrostro Delgado
    • 3
  1. 1.Instituto Tecnológico Superior de Uruapan (ITSU)UruapanMexico
  2. 2.Instituto de Investigaciones sobre Recursos Naturales (INIRENA)Universidad Michoacana de San Nicolás de Hidalgo (UMSNH)MoreliaMexico
  3. 3.Instituto de Investigaciones en Ciencias de la Tierra (INICIT)Universidad Michoacana de San Nicolás de Hidalgo (UMSNH)MoreliaMexico

Personalised recommendations