Advertisement

Impact of groundwater flow across tectonic aquifer compartments in a Miocene sandstone aquifer: three-dimensional hydrogeological modeling of the Kasserine aquifer system in central Tunisia and northeastern Algeria

  • Imen HassenEmail author
  • Ellen Milnes
  • Helen Gibson
  • Rachida Bouhlila
Report
  • 24 Downloads

Abstract

The Kasserine Aquifer System (KAS) is a transboundary aquifer, located in an arid region in central Tunisia and extending into northeastern Algeria. The system consists of four compartments: Oum Ali-Thelepte, Feriana-Skhirat, and the Plateau and the Plaine of Kasserine. The challenge of this study was to evaluate the influence of regional faults on groundwater flow in the different compartments of the KAS and to estimate the regional impact of current and future groundwater use. A three-dimensional saturated regional groundwater flow model for the steady state and transient conditions (1980–2015) was created and calibrated. This work was achieved using numerical flow modelling, coupled with geological modelling, using FEFLOW and GeoModeller software. The significance of regional faults as potential barriers or conduits to groundwater flow in the different aquifer compartments was evaluated by considering the different recharge rates. Two connectivity hypotheses were proposed at each major fault, and the general hydraulic relationship of units that are juxtaposed by each fault were considered. This study contributes rigorous estimates for the diffuse and concentrated recharge in the arid study region, and evaluates the groundwater behavior that shows a gradual decline in the water table over time, using a regional model. Different predicted outcomes for the KAS based on variable potential groundwater extraction scenarios for the period 2015–2050 have been developed. The results of numerical simulation provide useful information regarding the behavior of the KAS aquifers, and contribute significant knowledge to guide sustainable practice for present and future groundwater management.

Keywords

Transboundary aquifer Tunisia Algeria Groundwater recharge Connectivity 

Impact de l’écoulement des eaux souterraines dans les compartiments tectoniques aquifères de l’aquifère gréseux du Miocène: modélisation hydrogéologique en 3D du système aquifère de Kasserine dans la partie centrale de la Tunisie et du nord-est de l’Algérie

Résumé

Le système aquifère de Kasserine (SAK)est un aquifère transfrontalier, situé dans une région aride dans la partie centrale de la Tunisie et qui s’étend dans le nord-est de l’Algérie. Le système comprend quatre compartiments: Oum Ali-Thelepte, Feriana-Skhirat, et le Plateau et la Plaine de Kasserine. Le défi de cette étude était d’évaluer l’influence des failles régionales sur l’écoulement des eaux souterraines dans les différents compartiments du SAK et d’estimer l’impact régional de l’usage actuel et futur des eaux souterraines. Un modèle régional tridimensionnel et saturé d’écoulement des eaux souterraines en régime permanent et transitoire (1980–2015) a été établi et calibré. Ce travail a été réalisé en utilisant une modélisation numérique des écoulements, couplés à une modélisation géologique à l’aide des codes FEFLOW et GeoModeller. L’importance des failles régionales en tant que barrières ou drains pour l’écoulement des eaux souterraines dans les différents compartiments aquifères a été évaluée en considérant les différents taux de recharge. Deux hypothèses de connectivité ont été proposées pour chaque faille principale, les relations hydrauliques des unités qui sont juxtaposées à chaque faille ont été considérées. Cette étude fournit des estimations rigoureuses de la recharge diffuse et concentrée dans la région d’étude aride, et évalue le comportement des eaux souterraines qui montre un déclin graduel du niveau piézométrique au cours du temps, en utilisant un modèle régional. Différents résultats prévus pour le SAK fondés sur des scénarios d’exploitation potentielle des eaux souterraines variables pour la période 2015–2050 ont été élaborés. Les résultats de la simulation numérique fournissent des informations utiles concernant le comportement des aquifères du SAK, et apportent des connaissances importantes pour orienter une pratique durable de la gestion actuelle et future des eaux souterraines.

Impacto del flujo de agua subterránea a través de compartimientos tectónicos en un acuífero de arenisca del Mioceno: modelado hidrogeológico tridimensional del Sistema de Acuíferos Kasserine en el centro de Túnez y el noreste de Argelia

Resumen

El Sistema de Acuíferos de Kasserine (KAS) es un acuífero transfronterizo, ubicado en una región árida en el centro de Túnez y que se extiende hacia el noreste de Argelia. El sistema consta de cuatro compartimentos: Oum Ali-Thelepte, Feriana-Skhirat y Plateau y Plaine of Kasserine. El desafío de este estudio fue evaluar la influencia de las fallas regionales en el flujo de agua subterránea en los diferentes compartimentos del KAS y estimar el impacto regional del uso actual y futuro del agua subterránea. Se creó y calibró un modelo tridimensional de flujo saturado de agua subterránea regional para el estado estacionario y para las condiciones transitorias (1980–2015). Este trabajo se realizó utilizando modelos numéricos de flujo, junto con modelos geológicos, utilizando el software FEFLOW y GeoModeller. La importancia de las fallas regionales como posibles barreras o conductos al flujo de agua subterránea en los diferentes compartimentos de los acuíferos se evaluó considerando las diferentes tasas de recarga. Se propusieron dos hipótesis de conectividad en cada falla principal, y se consideró la relación hidráulica general de las unidades que están yuxtapuestas por cada falla. Con la utilización de un modelo regional, este estudio contribuye con estimaciones rigurosas para la recarga difusa y concentrada en la región árida del estudio y evalúa el comportamiento de las aguas subterráneas que muestra un descenso gradual en el nivel freático con el tiempo. Se han desarrollado diferentes resultados pronosticados para el KAS en función de los posibles escenarios de extracción de agua subterránea para el período 2015–2050. Los resultados de la simulación numérica proporcionan información útil sobre el comportamiento de los acuíferos KAS y contribuyen con un conocimiento significativo para guiar prácticas sostenibles para la gestión presente y futura de las aguas subterráneas.

中新世砂岩含水层中穿过构造含水层隔间的地下水流影响:突尼斯中部和阿尔及利亚东北部Kasserine含水层三维水文地质建模

摘要

Kasserine含水层系统是一个跨边界含水层,位于突尼斯中部的干旱地区,并延伸至阿尔及利亚东北部。该系统由四个隔间组成:Oum Ali-Thelepte、 Feriana-Skhirat、Plateau and the Plaine of Kasserine。本研究的挑战是评估区域断层对Kasserine含水层系统不同隔间地下水流的影响以及估算目前和将来地下水利用的区域影响。建立了稳态和瞬时条件下的三维饱和区域地下水流模型(1980–2015年),并对此进行了校正。此项工作利用FEFLOW和 GeoModeller软件进行数值水流建模、加上地质建模得以完成。考虑到不同补给量,评估了区域断层作为不同含水层隔间地下水流的潜在屏障或管道的重要性。在每一个主要断层都提出了两个连通性的假设,并考虑到了被每个断层并置的单元的一般水力关系。本研究有助于严格估算干旱的研究区的弥散和集中的补给,有助于利用区域模型评估地下水随着时间的推移水位逐渐下降的特性。根据2015–2050年可变的潜在地下水抽取方案,得出了Kasserine含水层系统不同的预测结果。数值模拟结果提供了Kasserine含水层系统含水层特性的有用信息,为指导目前和将来地下水的可持续管理贡献了重要的信息。

Impacto do fluxo das águas subterrâneas através de compartimentos tectônicos de um aquífero arenítico miocênico: modelagem hidrogeológica tridimensional do Sistema Aquífero Kasserine na Tunísia central e nordeste da Argélia

Resumo

O Sistema Aquífero Kasserine (SAK) é um aquífero transfronteiriço, localizado em uma região árida da Tunísia central, estendendo-se ao nordeste da Argélia. O sistema é composto por quatro compartimentos: Oum Ali-Thelepte, Feriana-Skhirat, e o Platô e a Planície de Kasserine. O desafio deste estudo foi avaliar a influência de falhas regionais no fluxo das águas subterrâneas nos diferentes compartimentos do KAS e estimar o impacto regional do uso atual e futuro das águas subterrâneas. Um modelo tridimensional do fluxo saturado regional das águas subterrâneas para condições de estado estacionário e transiente (1980–2015) foi criado e calibrado. Este trabalho foi realizado usando um modelo numérico de fluxo acoplado a um modelo geológico, empregando os softwares FEFLOW e GeoModeller. A importância das falhas regionais como potenciais barreiras ou condutos para o fluxo das águas subterrâneas nos distintos compartimentos do aquífero foi avaliada considerando-se diferentes taxas de recarga. Duas hipóteses de conectividade foram propostas para cada falha maior, e a relação hidráulica geral das unidades justapostas a cada falha foi considerada. Este estudo contribui com estimativas rigorosas de recarga difusa e concentrada na região árida de estudo, e avalia o comportamento das águas subterrâneas, que demonstra um declínio gradual do lençol freático com o tempo, utilizando um modelo regional. Foram desenvolvidas diferentes previsões para o KAS baseadas nos cenários variáveis de extração de águas subterrâneas no período de 2015–2050. Os resultados das simulações numéricas fornecem informações úteis em relação ao comportamento dos aquíferos do KAS, e contribuem com conhecimento significativo para guiar práticas sustentáveis da gestão das águas subterrâneas atuais e futuras.

Notes

Acknowledgements

The authors warmly thank Prof Pierre Perrochet from the laboratory of the Centre of Hydrogeology and Geothermic (CHYN) in Neuchatel in Switzerland. We also thank Intrepid Geophysics and DHI for their support and for providing licence keys for GeoModeller and FEFLOW.7 at no charge.

Funding information

This study was supported by the CILIUM project funded by the Swiss government and the LMHE laboratory.

References

  1. Archambault J (1950) Etude hydrogéologique du synclinal de Sidi Merzoug-Sbiba [Hydrogeological study of the syncline of Sidi Merzoug-Sbida]. Technical report, Arch DTP, Tunis, TunisiaGoogle Scholar
  2. Barthel R, Jagelke J, Götzinger J, Gaiser T, Printz A (2008) Aspects of choosing appropriate concepts for modeling groundwater resources in regional integrated water resources management: example from the Neckar (Germany) and Ouémé catchment (Benin). Phys Chem Earth 33:92–114CrossRefGoogle Scholar
  3. Ben Chaabane R (2016) Etude hydrologique de la region Centre Ouest du gouvernorat de Kasserine [Hydrological study of the central west region of Kasserine Governorate]. Rapport projet CILIUM, Tunis, Tunisia, 58 ppGoogle Scholar
  4. Bonomi T (2009) Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: application to the Milan plain. Comput Geosci 35:134–145CrossRefGoogle Scholar
  5. Carrera-Hernández JJ, Carreón-Freyre D, Cerca-Martínez M, Levresse L (2016) Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico. Hydrogeol J 24:373–393.  https://doi.org/10.1007/s10040-015-1363-x CrossRefGoogle Scholar
  6. Casatny G (1947) Etude hydrologique de la region de Majel Bel Abbes (sud Feriana) [Hydrogeological study of Majel Bel Abbes region (south Feriana)]. Technical report, Arch DTP, Tunis, TunisiaGoogle Scholar
  7. Chesnaux R, Lambert M, Walter J, Fillastre U, Hay M, Rouleau A, Daigneault R, Annie Moisan A, Germaneau D (2011) Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Saguenay–Lac-St.-Jean region, Canada. Comput Geosci 37:1870–1882CrossRefGoogle Scholar
  8. Davis KW, Putnam LD, LaBelle AR (2015) Conceptual and numerical models of groundwater flow in the Ogallala and Arikaree aquifers, Pine Ridge Indian Reservation area, South Dakota, water years 1980–2009. US Geol Surv Sci Invest Rep 2014-5241Google Scholar
  9. Degalier R, Azzouz A (1948) Hydrogeologie de la region de Sbeitla [Hydrogeological study of the region of Sbeitla]. Technical report, Arch DTP, TunisGoogle Scholar
  10. DGRE (1980) Annuaire de l exploitation des nappes de la Tunisie [Directory of the exploitation of water resources in Tunisia]. Technical report, DGRE, TunisGoogle Scholar
  11. DGRE (2008) Annuaire de l exploitation des nappes de la Tunisie [Directory of the exploitation of water resources in Tunisia]. Technical report, DGRE, TunisGoogle Scholar
  12. DGRE (2010) Annuaire de l exploitation des nappes de la Tunisie [Directory of the exploitation of water resources in Tunisia]. Technical report, DGRE, TunisGoogle Scholar
  13. DGRE (2015) Annuaire de l exploitation des nappes de la Tunisie [Directory of the exploitation of water resources in Tunisia]. Technical report, DGRE, TunisGoogle Scholar
  14. DGRE (2016) Annuaire de l exploitation des nappes de la Tunisie [Directory of the exploitation of water resources in Tunisia]. Technical report, DGRE, TunisGoogle Scholar
  15. Diersch H-JG (2006a) FEFLOW: reference manual version 5.3. WASY, BerlinGoogle Scholar
  16. Diersch H-JG (2006b) FEFLOW: user’s manual version 5.3. WASY, BerlinGoogle Scholar
  17. Diersch H-JG (2014) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media, 1st edn. Springer, Heidelberg, Germany.  https://doi.org/10.1007/978-3-642-38739-5
  18. Diersch H-JG, Kolditz O (1998) Coupled groundwater flow and transport: 2. thermohaline and 3D convection systems. Adv Water Resour 21(5):401–425CrossRefGoogle Scholar
  19. Ezzy TR, Cox ME, O’Rourke AJ, Huftile GJ (2006) Groundwater flow modeling within a coastal alluvial plain setting a high resolution hydrofacies approach: Bells Creek plain, Australia. Hydrogeol J 14:675–688CrossRefGoogle Scholar
  20. Gannett MW, Wagner BJ, Lite KE (2012) Groundwater simulation and management models for the Upper Klamath basin, Oregon and California. US Geol Surv Sci Invest Rep 2012-5062Google Scholar
  21. Hassen I, Bouhlila R, Hamzaoui-Azaza F, Khanfir R (2014) Hydrogeological modeling of Kasserine Aquifer System, central Tunisia. In: 10th International Hydrogeological Congress of Greece, Thessaloniki, October 2014, pp 223–230Google Scholar
  22. Hassen I, Gibson H, Hamzaoui-Azaza F, Negro F, Rachid K, Bouhlila R (2016a) 3D geological modeling of the Kasserine Aquifer System, central Tunisia: new insights into aquifer-geometry and interconnections for a better assessment of groundwater resources. J Hydrol.  https://doi.org/10.1016/j.JournalofHydrology.2016.05.034
  23. Hassen I, Slama F, Bouhlila R (2016b) Estimating groundwater recharge in an arid region in Central Tunisia using chloride mass balance and unsaturated modeling. 43rd IAH Congress, Montpellier, France, October 2016Google Scholar
  24. Hassen I, Hamzaoui-Azaza F, Bouhlila R (2018) Establishing complex compartments-aquifers connectivity via geochemical approaches towards hydrogeochemical conceptual model: Kasserine Aquifer System, central Tunisia. J Geochem Explor 188:257–269CrossRefGoogle Scholar
  25. Højberg AL, Refsgaard JC (2005) Model uncertainty: parameter uncertainty versus conceptual models. Water Sci Technol 52(6):177–186CrossRefGoogle Scholar
  26. Khanfir R (1980) Contribution à l’étude hydrogéologique de la région d’Oum Ali Thelepte (Kasserine) [Contribution to the hydrogeological study of Oum Ali Thelepte (Kasserine)]. PhD Thesis, University of Pierre and Marie Curie, FranceGoogle Scholar
  27. Khanfir R (1981) Etude hydrogeologique du haut plateau de kasserine [Hydrogeological study of the Upper Plateau of Kasserine]. Technical report, DGRE, TunisGoogle Scholar
  28. Khanfir R (1983) Etude hydrogeologique de synclinal de Feriana Skhirat [Hydrogeological study of the syncline of Feriana Skhirat]. Technical report, DGRE, TunisGoogle Scholar
  29. Kolditz O, Ratke R, Dierschb HG, Zielke W (1998) Coupled groundwater flow and transport: 1. verification of variable density flow and transport models. Adv Water Resour 21(1):27–46CrossRefGoogle Scholar
  30. Mbarek J (1981) Contribution à l’étude hydrogéologique de la Plaine d’effondrement de Kasserine [Contribution to the hydrogeological study of the Plaine of Kasserine]. PhD Thesis, University of Bordeaux I, FranceGoogle Scholar
  31. McKee PW, Clark BR (2003) Development and calibration of a ground water flow model for the Sparta aquifer of southeastern Arkansas and north central Louisiana and simulated response to withdrawals, 1998–2027. US Geol Surv Water Resour Invest Rep 03-4132Google Scholar
  32. Milnes E (2007) Simulation of groundwater flow conditions in the Ezouza riverbed aquifer (Cyprus). CHYN, Neuchatel, SwitzerlandGoogle Scholar
  33. Poeter E (2007) All models are wrong, how do we know which are useful? Ground Water 45(4):390–391CrossRefGoogle Scholar
  34. Proce CJ, Ritzi RW, Dominic DF, Dai Z (2004) Modeling multiscale heterogeneity and aquifer interconnectivity. Ground Water 42(5):658–670CrossRefGoogle Scholar
  35. Ruhaak W, Victor FB, Sass I (2014) 3D hydro-mechanically coupled groundwater flow modelling of Pleistocene glaciation effects. Comput Geosci 67:89–99CrossRefGoogle Scholar
  36. Schoeller H (1931) Etude hydrogeologique aux environs de Sbeitla [Hydrogeological study of the region of Sbeitla]. Technical report, Arch DTP, TunisGoogle Scholar
  37. Schoeller H (1933) Seconde etude hydrogeologique aux environs de Sbeitla [The second hydrogeological study of the region of Sbeitla]. Technical report, Arch DTP, TunisGoogle Scholar
  38. Sophocleous M (1995) Groundwater recharge estimation and regionalization: the Great Bend prairie of central Kansas and its recharge statistics. J Hydrol 137:113–140CrossRefGoogle Scholar
  39. Wycisk P, Huber T, Gossel W, Neuman CH (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Comput Geosci 35:165–182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Imen Hassen
    • 1
    Email author
  • Ellen Milnes
    • 2
  • Helen Gibson
    • 3
  • Rachida Bouhlila
    • 1
  1. 1.Modeling Hydraulic and Environmental Laboratory, National Engineering School of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.CHYN (Centre of Hydrogeology and Geothermics)Neuchâtel UniversityNeuchâtelSwitzerland
  3. 3.Intrepid GeophysicsBrightonAustralia

Personalised recommendations