Advertisement

Hydrogeology Journal

, Volume 27, Issue 3, pp 1051–1065 | Cite as

Review: Groundwater resource potential and status of groundwater resource development in Ethiopia

  • Haile A. MengistuEmail author
  • Molla B. Demlie
  • Tamiru A. Abiye
Paper

Abstract

The groundwater resources potential of Ethiopia is estimated to be about 40 billion cubic meters. Groundwater has been used as the main source of water supply since the 1970s for the main cities, towns and dispersed rural communities across the country, where provision of reticulated surface-water schemes is often expensive because of initial project construction costs and poor water quality. The exponential growth of the urban population and agriculture-led industrial development have resulted in greater attention to groundwater as the potentially cost-effective water supply source. As part of the growing focus on the use of groundwater, the Ethiopian government is currently implementing irrigation projects. One plan involves nine irrigation projects covering an estimated area of 8,000 ha, being developed on a pilot scale, with 9,000 test wells, 28,000 monitoring wells and 14,657 spring improvements. If this unprecedented Ethiopian groundwater-centred development plan is implemented successfully at such a scale, it is highly likely that its success will persuade other Sub-Saharan developing nations to put in place the necessary policies, regulations and investment for infrastructure and capacity development for exploring, exploiting and managing their groundwater resources.

Keywords

Groundwater resource potential Irrigation Groundwater management Ethiopia Sub-Saharan Africa 

Revue: Potentiel de ressource en eaux souterraines et état de développement des ressource en eaux souterraines en Ethiopie

Résumé

Le potentiel de ressources en eau souterraine de l’Ethiopie est estimé à environ 40 milliards de mètre cube. Les eaux souterraines ont été employées comme source principale d’approvisionnement en eau depuis les années 1970 pour les villes principales, les villes secondaires et les communautés rurales dispersées à travers le pays, où la fourniture de réseaux de distribution à partir d’eau de surface est souvent chère en raison des coûts initiaux de construction et de la faible qualité de l’eau. La croissance exponentielle de la population urbaine et le développement agro-industriel ont suscité une plus grande attention aux eaux souterraines en tant que source d’approvisionnement en eau potentiellement rentable. Dans le cadre de l’intérêt croissant pour l’utilisation des eaux souterraines, le gouvernement éthiopien met en application actuellement des projets d’irrigation. Un plan comporte neuf projets d’irrigation couvrant une surface estimée de 8,000 ha, étant développé à une échelle pilote, avec 9,000 puits d’essais, 28,000 piézomètres et l’exploitation de 14,657 sources. Si ce programme éthiopien sans précédent de développement centré sur l’eau souterraine est mis en application avec succès à une telle échelle, il est fortement probable que son succès persuade d’autres pays sub-sahariens en voie de développement à mettre en place les politiques, les règlements et l’investissement nécessaires pour le développement d’infrastructures et de moyens pour explorer, exploiter et gérer leurs ressources en eaux souterraines.

Revisión: Recursos potenciales y estado de desarrollo del agua subterránea en Etiopía

Resumen

El potencial de recursos hídricos subterráneos de Etiopía se estima en unos 40 mil millones de metros cúbicos. El agua subterránea se ha utilizado como la principal fuente de suministro de agua desde la década de 1970 para las principales ciudades, pueblos y comunidades rurales dispersas en todo el país, donde la provisión de planes de redes de agua superficial es a menudo costosa debido a los costos iniciales de construcción del proyecto y a la mala calidad del agua. El crecimiento exponencial de la población urbana y el desarrollo industrial liderado por la agricultura han dado como resultado una mayor atención a las aguas subterráneas como fuente de suministro potencialmente rentable de agua. Como parte del creciente enfoque en el uso de aguas subterráneas, el gobierno de Etiopía está implementando proyectos de riego. Un plan involucra nueve proyectos de irrigación que cubren un área estimada de 8,000 ha, que se están desarrollando a escala piloto, con 9,000 pozos de prueba, 28,000 pozos de monitoreo y 14,657 mejoras de manantiales. Si este plan de desarrollo etíope centrado en el agua subterránea sin precedentes se implementa con éxito a tal escala, es muy probable que su éxito persuadirá a otras naciones subsaharianas en desarrollo a implementar las políticas, regulaciones e inversiones necesarias para la infraestructura y el desarrollo de capacidades para explorar, explotar y gestionar sus recursos hídricos subterráneos.

综述:埃塞俄比亚地下水潜力及地下水资源开发现状

摘要

埃塞俄比亚地下水资源潜力估计为400立方米。自从20世纪70年代以来地下水一直是全国主要城市、乡镇及分散的农村社区的主要供水水源,由于项目建设开支以及很差的水质,网状地表水计划供水通常很昂贵。城市人口的指数增长以及以农业为指导的工业发展使人们更加注重地下水作为潜在的合算的供水水源。作为日益关注地下水利用的一方,埃塞俄比亚政府目前正在实施灌溉项目。一项计划涉及九个灌溉项目,大约覆盖8,000公顷的土地,现正在试点实施,共计打9000口实验井、28000口监测井以及改良14,657眼泉。如果这项史无前例的埃塞俄比亚集中于地下水的开发计划以这个规模得以成功完成,项目的成功很可能将说服撒哈拉以南发展中国家为探索、开发和管理地下水资源而进行的基础设施建设和能力发展制定必要的政策、规章和进行投资。

Revisão: Potencial dos recursos hídricos subterrâneos e status do desenvolvimento dos recursos hídricos subterrâneos na Etiópia

Resumo

O potencial dos recursos hídricos subterrâneos da Etiópia é estimado em cerca de 40 bilhões de metros cúbicos. A água subterrânea tem sido usada como fonte principal de abastecimento de água desde as décadas de 1970 para as principais cidades, vilarejos e comunidades rurais dispersas pelo país, onde a provisão de esquemas de águas superficiais reticulados é muitas vezes cara devido aos custos iniciais de construção do projeto e baixa qualidade da água. O crescimento exponencial da população urbana e o desenvolvimento industrial liderado pela agricultura resultaram em maior atenção às águas subterrâneas como a fonte de abastecimento de água potencialmente econômica. Como parte do crescente foco no uso das águas subterrâneas, o governo etíope está atualmente implementando projetos de irrigação. Um plano envolve nove projetos de irrigação cobrindo uma área estimada de 8,000 ha, sendo desenvolvido em escala piloto, com 9,000 poços de teste, 28,000 poços de monitoramento e melhorias em 14,657 nascentes. Se este plano de desenvolvimento sem precedentes, centrado nas águas subterrâneas etíopes for implementado com sucesso em tal escala, é altamente provável que seu sucesso possa persuadir outras nações subsaarianas a implementar políticas, regulamentações e investimentos necessários para infraestrutura e desenvolvimento da capacidade de exploração, explotação e gerenciamento de seus recursos hídricos subterrâneos.

Notes

Acknowledgements

The authors would like to acknowledge Prof. Daniel Olago and an anonymous reviewer for their comments, which substantially improved the quality of the paper.

References

  1. Abate B, Koberl C, Buchanan CP, Korner W (1996) Petrography and geochemistry of basaltic and rhyodacitic rocks from Lake Tana and the Gimjabet-Kosober areas (north central Ethiopia). J African Earth Sci 26:119–134CrossRefGoogle Scholar
  2. Abay GK (2010) The impact of low cost sanitation on groundwater contamination in the city of Addis Ababa. PhD Thesis, University of South Africa, Cape Town, South AfricaGoogle Scholar
  3. Abiye T (2006) Groundwater occurrence in Ethiopia. Addis Ababa University Press, Addis Ababa, 105 ppGoogle Scholar
  4. Abiye TA (2010) Groundwater dynamics in the East African Rift System. In: Xu Y, Braune E (eds) Sustainable groundwater resources in Africa. CRC, Boca Raton, FL, pp 93–106Google Scholar
  5. Abiye TA, Kebede S (2011) The role of geodiversity on the groundwater resource potential in the upper Blue Nile River basin, Ethiopia. Environ Earth Sci 64:1283–1291CrossRefGoogle Scholar
  6. African Development Bank Group (ADB) (2014) Ethiopia economic outlook. https://www.afdb.org/en/countries/east-africa/ethiopia/ethiopia-economic-outlook/. Accessed July 2017
  7. Akale AT, Dagnew DC, Giri S, Belete MA, Tilahun SA, Mekuria W, Steenhuis TS (2017) Groundwater quality in an upland agricultural watershed in the sub-humid Ethiopian highlands. J Water Resour Prot (JWARP) 9:1199–1212CrossRefGoogle Scholar
  8. Alemayehu T (2003) Controls on the occurrence of cold and thermal springs in central Ethiopia. J Afr Earth Sci. 9(4):245–251Google Scholar
  9. Arsano Y, Mekonnen E, Gudisa D, Achiso D, O’Meally S, Roger Calow R, Ludi E (2010) Governance and drivers of change in Ethiopia’s water supply sector, Research reports and studies. https://www.odi.org/publications/4995-governance-and-drivers-change-ethiopias-water-supply-sector. Accessed Oct 2018
  10. Asmerom GA (2008) Groundwater contribution and recharge estimation in the upper Blue Nile flows, Ethiopia. MSc Thesis, ITC, Enschede, The NetherlandsGoogle Scholar
  11. Asrat A, Baker A, Leng MJ, Gunn J, Umer M (2008) Environmental monitoring in the Mechara caves, southeastern Ethiopia: implications for speleothem palaeoclimate studies. Int J Speleol 37(3):207–220Google Scholar
  12. Assefa G (1991) Lithostratigraphy and environment of deposition of the Late Jurassic–early Cretaceous sequence of the central part of northwestern plateau, Ethiopia. Neues Jahrb Geol Palaontol 182:155–284Google Scholar
  13. Awulachew SB (2007) Abaya-Chamo lakes physical and water resources characteristics, including scenarios and impacts. Lake Abaya Research Symposium (LARS), University of Siegen and Arba Minch University, Arba Minch, Ethiopia, 7–11 May 2007. http://publications.iwmi.org/pdf/H040627.pdf. Accessed 5 March 2017
  14. Awulachew SB (2010) Water–centered growth challenges, innovations and interventions in Ethiopia. http://publications.iwmi.org/pdf/H044260.pdf. Accessed 2 March 2017
  15. Awulachew SB, Aster D, Makonnen L, Loiskand W, Mekonen A, Ayenew T (2007a) Water resources and irrigation development in Ethiopia. IWMI Working Paper 123, IWMI, Colombo, Sri LankaGoogle Scholar
  16. Awulachew SB, Yilma AD, Loulseged M, Loiskandl W, Ayana M, Alamirew T (2007b) Water resources and irrigation development in Ethiopia. International Water Management Institute, Colombo, Sri Lanka, 78 ppGoogle Scholar
  17. Ayenew T (2008) The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ Geol 54(6):1313–1324CrossRefGoogle Scholar
  18. Ayenew T, Robert B (2007) Comparative study of the hydrology and hydrogeology of selected Ethio-Kenyan Rift lakes. Lake Abaya Research Symposium (LARS) 2007, University of Siegen and Arba Minch University, Arba Minch, Ethiopia, 7–11 May 2007. http://publications.iwmi.org/pdf/H040627.pdf. Accessed 3 March 2017
  19. Ayenew T, Demile M, Wohnlich S (2008) Hydrogeological framework and occurrence of groundwater in the Ethiopian highlands. J Afr Earth Sci 52:97–113CrossRefGoogle Scholar
  20. BCEOM (1999) Abay River basin integrated master plan, main report. Ministry of Water Resources, Addis Ababa, EthiopiaGoogle Scholar
  21. Berhanu BK, Melesse AM, Seleshi Y (2013) GIS-based hydrological zones and soil geo-database of Ethiopia. Catena 104:21–31Google Scholar
  22. Berhanu B, Seleshi Y, Melesse A (2014) Surface water and groundwater resources of Ethiopia: potentials and challenges of water resources development. In: Melesse A, Abtew W, Setegn S (eds) Nile River basin. Springer, Cham, SwitzerlandGoogle Scholar
  23. Bonetto S, De Luca DA, Lasagna M, Lodi R (2015) Groundwater distribution and fluoride content in the west Arsi zone of the Oromia region (Ethiopia). In: Lollino G et al (eds) Engineering geology for society and territory, vol 3. Springer, Cham, Switzerland, pp 579–582Google Scholar
  24. British Geological Survey (2001) Groundwater quality: Ethiopia. WaterAid Works Sheet. https://www.bgs.ac.uk/downloads/start.cfm?id=1280. Accessed January 2019
  25. Calow RC, MacDonald AM, Nicol AL, Robins NS (2010) Ground water security and drought in Africa: linking availability, access, and demand. Ground Water 48(2):246–256CrossRefGoogle Scholar
  26. Central Statistics Agency (CSA) (2016) Welfare monitoring survey 2015/16 statistical report indicators on living standard, accessibility, household assets, vol 2. www.csa.gov.et/ehioinfo-internal?download=860:hce-2016-statistical-report. Accessed November 2018
  27. Chernet T, Travi Y (1993) Preliminary observations concerning the genesis of high fluoride contents in the Ethiopian rift. In: Thonweihe S, Schandelmeier U (eds) Geoscientific research in northern Africa. Balkema, Rotterdam, The Netherlands, pp 651–655Google Scholar
  28. Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734CrossRefGoogle Scholar
  29. Chorowiz J, Collet B, Bonavia F, Mohr P, Parrot JF, Korme T (1998) The Tana basin, Ethiopia: intra-plateau uplift, rifting and subsidence. Tectonophysics 295:351–367CrossRefGoogle Scholar
  30. Datturi S, Kumsa S, Kebede S, van Steenbergen F, van Beusekom M (2017) The right to smile: fluoride and fluorosis in central Rift Valley, Ethiopia. Groundw Mag 3:1–17Google Scholar
  31. Demlie M (2007) Hydrogeology of the Akaki Catchment, central Ethiopia: with special emphasis on the problem of groundwater recharge. Issue 7, Institut fuer Geologie, Mineralogie and Geophysik, Rhur-Universitaet, Bochum, Germany, 151 ppGoogle Scholar
  32. Demlie M, Ayenew T, Wohnlich S (2007) Comprehensive hydrological and hydrogeological study of topographically closed lakes in highland Ethiopia: the case of Hayq and Ardibo. J Hydrol 339:145–158CrossRefGoogle Scholar
  33. Demlie M, Wohnlich S, Ayenew T (2008) Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J Hydrol 353:175–188CrossRefGoogle Scholar
  34. Demographic and Health Survey (DHS) Report (2016) Central Statistics Agency of Ethiopia (CSAE). http://www.csa.gov.et/index.php?option=com_phocadownload&view=category&id=270&Itemid=270. Accessed Nov 2018
  35. Earthwise – British Geological Survey (BGS) (2018) Hydrogeology of Ethiopia. http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Ethiopia. Accessed in Nov 2018
  36. EGS (1996) Geological map of Ethiopia at 1:2000000 scale. Ethiopian Geological Survey, Addis Ababa, EthiopiaGoogle Scholar
  37. FAO (2016) Ethiopia. FAO, Rome. http://www.fao.org/nr/water/aquastat/countries_regions/ETH/. Accessed January 2019
  38. Fekahmed N (2012) Managing water for inclusive and sustainable growth in Ethiopia: key challenges and priorities. https://ec.europa.eu/europeaid/sites/devco/files/erd-consca-dev-researchpapers-negash-20110101_en.pdf. Accessed 3 March 2017
  39. Fetter CW (2001) Applied hydrogeology. 4th edn. Upper Saddle River, NJ, Prentice HallGoogle Scholar
  40. Furi W, Razack M, Abiye TA, Ayenew T, Legesse D (2011) Fluoride enrichment mechanism and geospatial distribution in the volcanic aquifers of the middle Awash basin, northern Main Ethiopian rift. J Afr Earth Sci 60:315–327CrossRefGoogle Scholar
  41. Gadisso, BE (2007) Drought assessment for the Nile basin using Meteosat second generation data with special emphasis on the upper Blue Nile region. MSc Thesis, ITC, The NetherlandsGoogle Scholar
  42. Gani NDS, Abdelsalam MG (2006) Remote sensing analysis of the gorge of the Nile, Ethiopia with emphasis on Dejen–Gohatsion region. J Afr Earth Sci 44:135–150CrossRefGoogle Scholar
  43. Gani NDS, Abdelsalam MG, Gera G, Gani MR (2009) Stratigraphic and structural evolution of the Blue Nile Basin, northwestern Ethiopian plateau. Geol J 44:30–56CrossRefGoogle Scholar
  44. George R, Rogers N, Kelley S (1998) Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province. Geology 26(10):923–926CrossRefGoogle Scholar
  45. Hautot S, Whaler K, Gebru W, Desissa M (2006) The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging. J Afr Earth Sci 44:331–338CrossRefGoogle Scholar
  46. Haylamicheal ID, Moges A (2012) Assessing water quality of rural water supply schemes as a measure of service delivery sustainability: a case study of WondoGenet district, southern Ethiopia. Afr J Environ Sci Technol 6(5):229–223CrossRefGoogle Scholar
  47. Jepson DH, Athearn MJ (1961) A general geologic map of the Blue Nile River basin, Ethiopia (1:1,000,000). Department of Water Resources, Addis Ababa, EthiopiaGoogle Scholar
  48. Kebede S (2013) Groundwater in Ethiopia: features, numbers and opportunities. Springer Heidelberg, Germany, 285 ppGoogle Scholar
  49. Kebede T, Koeberl C, Koller F (1999) Geology, geochemistry and petrogenesis of intrusive rocks of the Wallagga area, western Ethiopia. J Afr Earth Sci 29:715–734CrossRefGoogle Scholar
  50. Kebede S, Travi T, Alemayehu T, Ayenew T (2005) Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia. Appl Geochem 20:1658–1676CrossRefGoogle Scholar
  51. Kebede S, Travi Y, Alemayehu T, Marc V (2006) Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J Hydrol 316:233–247CrossRefGoogle Scholar
  52. Knoema (2016) World data atlas. https://knoema.com/atlas/Ethiopia/Urban-population. Accessed August 2017
  53. Lapworth DJ, Nkhuwa DCW, Okotto-Okotto J, Pedley S, Stuart ME, Tijani MN, Wright J (2017) Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. Hydrogeol J 25(4):1093–1110CrossRefGoogle Scholar
  54. MacDougall JD (ed) (1988) Continental flood basalts. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  55. MacDonald A, Dochartaigh BO, Welle K (2009) Mapping for water supply and sanitation (WSS) in Ethiopia. https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/4231.pdf. Accessed January 2019
  56. MacDonald A, Bonsor H, Dochartaigh B, Taylor R (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7(2):024009.  https://doi.org/10.1088/1748-9326/7/2/024009 CrossRefGoogle Scholar
  57. MacDonald AM, Calow R, Nicol AL, Hope B, Robins NS (2001) Ethiopia: water security and drought. British Geological Survey technical report WC/01/02, BGS, Keyworth, UKGoogle Scholar
  58. MacDonald AM, Ó Dochartaigh BÉ, Bonsor HC, Davies J, Key R (2010) Developing quantitative aquifer maps for Africa. British Geological Survey internal report IR/10/103, BGS, Keyworth, UKGoogle Scholar
  59. Mege D, Korme T (2003) Fissure eruption of flood basalts from statistical analysis of dyke fracture length. J Volcanol Geotherm Res 2722:1–16Google Scholar
  60. Melesse AM, Seleshi Y, Melesse MA (eds) (2014) Nile River Basin. Springer, Cham, Switzerland, 97 pp.  https://doi.org/10.1007/978-3-319-02720-3_6
  61. Mengesha T, Chernet T, Haro W (1996) Geological map of Ethiopia (1:2,000,000). Geological Survey of Ethiopia, Addis Ababa, EthiopiaGoogle Scholar
  62. Mengistu Y (2003) Anthropogenic impact on surface and ground water system in Bahir Ar, Ethiopia. MSc Thesis, Addis Ababa University, EthiopiaGoogle Scholar
  63. Ministry of Water and Energy (MoWE) Report (2013) Supplement to task force report on aquifer management for Addis Abeba and vicinity. Updated version. Strategic Framework for Managed Groundwater Development (SFMGD) Task Force. http://metameta.nl/wp-content/uploads/2013/03/Task_Force_Report_Supplement.pdf. Accessed Aug 2017
  64. Ministry of Water Resources (2011) Ethiopia: strategic framework for managed groundwater development. MoWR-GMATE report. http://metameta.nl/wp-content/uploads/2012/10/2011_03_08_eth_frwrk_FINALSF.pdf. Accessed 6 March 2017
  65. Mishra A, Hata T, Abdelhadi AW (2004) Models for recession flows in the upper Blue Nile River. Hydrol Process 18:2773–2786CrossRefGoogle Scholar
  66. Mosello B, Calow R, Tucker J, Helen Parker H, Alamirew T, Kebede S, Alemseged T, Gudina A (2015) Overseas Development Institute (ODI) report “Building adaptive water resources management in Ethiopia”. https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9647.pdf. Accessed November 2018
  67. Pik R, Deniel C, Coulon C, Yirgu G, Hofmann C, Ayalew D (1998) The northwestern Ethiopian plateau flood basalts: classification and spatial distribution of magma types. J Volcanol Geotherm Res 81:91–111CrossRefGoogle Scholar
  68. Pik R, Marty B, Carignan J, Lave J (2003) Stability of the upper Nile drainage network (Ethiopia) deduced from (U/Th)/He thermochronometry: implications for uplift and erosion of the Afar plume dome. Earth Planet Sci Lett 215:73–88CrossRefGoogle Scholar
  69. Rango T, Kravchenko J, Atlaw B, McCornick PG, Jeuland M, Merola B, Vengosh A (2012) Groundwater quality and its health impact: an assessment of dental fluorosis in rural inhabitants of the Main Ethiopian rift. Environ Int 43:37–47CrossRefGoogle Scholar
  70. Rango T, Vengosh A, Dwyer G, Bianchini G (2013) Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian rift aquifers. Water Res.  https://doi.org/10.1016/j.watres.2013.07.002
  71. Russo A, Assefa G, Atnafu G (1994) Sedimentary evolution of the Abby River (Blue Nile) basin, Ethiopia. Neu Jb Geol Paläont, Mh 5:291–308Google Scholar
  72. Spate Irrigation and Network Foundation (SINF) (2015) Status and potential of groundwater use in Ethiopian floodplains. http://spate-irrigation.org/wp-content/uploads/2015/03/OP17_Flood-wells-Ethiopia_SF.pdf. Accessed 4 March 2017
  73. Tekle-Haimanot R (2005) Study of fluoride and fluorosis in Ethiopia with recommendations on appropriate defluoridation technologies. UNICEF-Ethiopia, Addis Ababa, EthiopiaGoogle Scholar
  74. Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L (2005) The geographical distribution of fluoride surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367(1):182–190CrossRefGoogle Scholar
  75. United Nations Children Fund (UNICEF) (2017) Progress on drinking water, sanitation and hygiene (JMP) report 2017. https://washdata.org/sites/default/files/documents/reports/2018-01/JMP-2017-report-final.pdf. Accessed November 2018
  76. United Nations Development Programme (UNDP) (2006) Human development report: beyond scarcity–power, poverty and the global water crisis. Human Development Report 2006, Palgrave Macmillan, Basingstoke, UKGoogle Scholar
  77. Woldemariam, BH (2009) Water resource management in Ethiopia: the case of Addis Ababa 2009. MSc Thesis, University of KwaZulu-Natal, Durban, South Africa. http://researchspace.ukzn.ac.za/xmlui/bitstream/handle/10413/7099/Woldemariam%20MSc.pdf;jsessionid=337DD70042ABB82C4EBD47D86AC8AFEE?sequence=1. Accessed November 2018
  78. Wolela A (1997) Sedimentology, diagenesis and hydrocarbon potential of sandstones in hydrocarbon prospective Mesozoic rift basins (Ethiopia, UK, USA). PhD Thesis, the Queen’s University of Belfast, Northern Ireland, 238 ppGoogle Scholar
  79. Wolela A (2007) Source rock potential of the Blue Nile (Abay) basin, Ethiopia. J Pet Geol 30(4):389–402CrossRefGoogle Scholar
  80. Wolela A (2008) Sedimentation of the Triassic–Jurassic Adigrat sandstone formation, Blue Nile (Abay) basin, Ethiopia. J Afr Earth Sci 52:30–42CrossRefGoogle Scholar
  81. World Health Organization and the United Nations Children’s Fund (2017) Progress on drinking water, sanitation and hygiene. https://washdata.org/sites/default/files/documents/reports/2018-01/JMP-2017-report-final.pdf. Accessed November 2018
  82. Yitbarek AB (2009) Hydrogeological and hydrochemical framework of complex volcanic system in the Upper Awash River basin, central Ethiopia: with special emphasis on inter-basins groundwater transfer between Blue Nile and Awash River basin. PHD Thesis, University of Poitiers, Poitiers, France, 218 ppGoogle Scholar
  83. Zektser SI, Everett GL (eds) (2004) Groundwater resources of the world and their use. IHP-VI Series on Groundwater no. 6, UNESCO, ParisGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haile A. Mengistu
    • 1
    Email author
  • Molla B. Demlie
    • 2
  • Tamiru A. Abiye
    • 3
  1. 1.Department of Earth ScienceUnversity of Western CapeBellvilleSouth Africa
  2. 2.School of Geological SciencesUniversity of the Kwazulu-NatalDurbanSouth Africa
  3. 3.School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations