Advertisement

Geologic controls on hydraulic conductivity in a karst-influenced carbonate bedrock groundwater system in southern Ontario, Canada

  • Elizabeth H. PriebeEmail author
  • F. R. Brunton
  • D. L. Rudolph
  • C. J. Neville
Report
  • 67 Downloads

Abstract

A large set of hydraulic conductivity values has been integrated with the geologic characterization of a Paleozoic-age carbonate groundwater system to assess the relative influence of specific geologic features on hydraulic conductivity. Three geologic controls are investigated: (1) proximity to bedrock valleys within a regional stress field; (2) carbonate rock texture; and (3) sequence stratigraphic breaks. Results demonstrate that high hydraulic conductivity values do not correlate with a single geological feature, but are associated with various features that have been enhanced by carbonate dissolution. Predicting the spatial distribution of hydraulic conductivity in carbonate rocks requires a regional understanding of the geological history with a conceptualization of where and when waters have interacted with the rocks to dissolve and enhance porosity through geologic time. This investigation focused on a region in southern Ontario, Canada, and concludes with a map identifying the area with the greatest probability of encountering high hydraulic conductivities in the main hydrostratigraphic unit, the Gasport Formation. The map supports the selection of groundwater resource exploration targets for a local municipality. Beyond the local benefits of this work, this investigation offers an approach that can be adopted by practitioners exploring for bedrock groundwater resources or characterizing contaminant transport pathways in complex karst-influenced, carbonate bedrock groundwater systems.

Keywords

Carbonate rocks Hydraulic properties Karst Regional hydrogeology Canada 

Contrôles géologiques de la conductivité hydraulique dans un système d’eaux souterraines de roches calcaires influencées par le karst dans le sud de l’Ontario, Canada

Résumé

Un vaste ensemble de valeurs de conductivité hydraulique a été intégré à la caractérisation géologique d’un système d’eaux souterraines carbonaté datant du Paléozoïque afin d’évaluer l’influence relative des caractéristiques géologiques spécifiques sur la conductivité hydraulique. Trois paramètres de contrôle géologique sont analysés: (1) proximité des fonds de vallée dans un champ de contrainte régionale; (2) texture de la roche carbonatée; et (3) séquence des séries stratigraphiques. Les résultats démontrent que de fortes valeurs de conductivité hydraulique ne sont pas corrélées avec une seule caractéristique géologique, mais sont associées à différents phénomènes qui ont développés et mis en évidence du fait de la dissolution des carbonates. Prédire la distribution spatiale de la conductivité hydraulique dans les roches carbonatées nécessite une compréhension régionale de l’histoire géologique avec une conceptualisation des interactions (où et quand) de l’eau avec les roches, donnant lieu à la dissolution des roches et au développement de la porosité au cours des temps géologiques. Cette étude a porté sur une région du sud de l’Ontario, au Canada, et une carte identifiant la région avec la plus grande probabilité de rencontrer des conductivités hydrauliques élevées dans l’unité hydrostratigraphique principale, la formation de Gasport en résulte. La carte permet la sélection de cibles d’exploration des eaux souterraines pour une municipalité locale. Au-delà des avantages locaux de ce travail, la recherche offre une approche qui peut être adoptée par des ingénieurs qui explorent les ressources en eaux souterraines du substratum rocheux ou qui caractérisent les voies de transport de contaminants dans des systèmes hydrogéologiques carbonatés complexes influencés par la présence de conduits karstiques.

Controles geológicos de la conductividad hidráulica en un sistema kárstico de aguas subterráneas influenciados por un basamento carbonático en el sur de Ontario, Canadá

Resumen

Se ha integrado un gran conjunto de valores de conductividad hidráulica con la característica geológica de un sistema carbonático de agua subterránea de edad paleozoica para evaluar la influencia relativa de las características geológicas específicas en la conductividad hidráulica. Se investigan tres controles geológicos: 1(1) la proximidad a los valles del basamento dentro de un campo de esfuerzos regionales; (2) la textura de la roca carbonática; y (3) las secuencias estratigráficas fracturadas. Los resultados de los altos valores de conductividad hidráulica no se correlacionan con una única característica geológica, sino que se asocian con las diversas características que se han aumentado con la disolución del carbonato. La predicción de la distribución espacial de la conductividad hidráulica en las rocas carbonatadas requiere una comprensión regional de la historia geológica con una conceptualización de dónde y cómo las aguas han interactuado con las rocas para disolver y aumentar la porosidad a través del tiempo geológico. Esta investigación se centró en una región en el sur de Ontario, Canadá, y concluyó con un mapa que identifica el área con la probabilidad de encontrar altas conductividades hidráulicas en la unidad hidroestratigráfica principal, que es la Formación Gasport. El mapa admite la selección de objetivos de exploración de recursos de agua subterránea para un municipio local. Más allá de los beneficios locales de este trabajo, esta investigación ofrece un enfoque que puede ser adoptado por los profesionales que exploran los recursos de agua subterránea del basamento que caracterizan las vías de transporte de contaminantes en los sistemas complejos de agua subterránea de un basamento de rocas carbonáticas.

加拿大安大略湖省南部受岩溶影响的碳酸盐基岩地下水系统中地质条件对水力传导率的控制

摘要

利用大量的水力传导率值并结合古生代碳酸盐地下水系统的地质特征描述来评价特殊的地质特征对水力传导率的相关影响。调查了三个地质控制因素:(1)区域应力场内基岩山谷的接近度;(2)碳酸盐岩结构;(3)序列地层地形突变。结果显示,水力传导率值高与单个的地质特征并无相关,而与受到碳酸盐溶解得到增强的各种特征相关联。预测碳酸盐岩中的水力传导率空间分布需要区域上了解地质历史,并需要概念化何地何时水与岩石相互作用而发生溶解并在地质时代中增强了孔隙度。本研究专注于加拿大安大略省南部的一个地区,最后确定了在主要水文地层单元即Gasport地层中水力传达率可能最大的区域并绘制了图件。图件可以为当地社区选择地下水资源目标提供支持。除了为当地带来利益外,这项研究还为勘查基岩地下水资源的从业者提供了可以采纳的方法,或者为描述复杂的、受岩溶影响的碳酸盐基岩地下水系统中污染物运移途径的特征提供了可以采纳的方法。

Controles geológicos sobre a condutividade hidráulica em um sistema de lençol freático de Rocha carbonática com influência cárstica no sul de Ontário, Canadá

Resumo

Um grande conjunto de valores de condutividade hidráulica foi integrado com a caracterização geológica de um sistema de águas subterrâneas carbonático de idade Paleozóica para avaliar a influência relativa de características geológicas específicas na condutividade hidráulica. Três controles geológicos são investigados: (1) proximidade de vales de rocha dentro de um campo de tensão regional; (2) textura da rocha carbonatica; e (3) quebras estratigráficas de sequência. Os resultados demonstram que altos valores de condutividade hidráulica não se correlacionam com uma única característica geológica, mas estão associados a vários recursos que foram aprimorados pela dissolução de carbonato. A previsão da distribuição espacial da condutividade hidráulica em rochas carbonáticas requer uma compreensão regional da história geológica com uma conceituação de onde e quando as águas interagem com as rochas para dissolver e melhorar a porosidade através do tempo geológico. Esta investigação concentrou-se em uma região no sul de Ontário, Canadá, e conclui com um mapa identificando a área com maior probabilidade de encontrar altas condutividades hidráulicas na unidade hidroestratigráfica principal, a Formação Gasport. O mapa apoia a seleção de alvos de exploração de recursos hídricos subterrâneos para um município local. Além dos benefícios locais deste trabalho, esta investigação oferece uma abordagem que pode ser adotada por profissionais que exploram recursos subterrâneos de águas subterrâneas ou que caracterizam vias de transporte de contaminantes em sistemas subterrâneos de águas subterrâneas carbonáticas complexos com influência cárstica.

Notes

Acknowledgements

The authors would like to thank Kei Yeung for his assistance with the topographic surface interpolation and water well vetting. Additional thanks go to Dave Belanger and Peter Busatto of the City of Guelph, Water Services for facilitating municipal hydraulic testing data acquisition. Many thanks to Julien Bonin for his superb drafting support. This manuscript has also benefited significantly from comprehensive and thoughtful reviews by Dr. Augusto Auler and an anonymous reviewer. This paper is published with the permission of the Director of the Ontario Geological Survey.

Funding information

The authors would like to thank the Ontario Geological Survey, Earth Resources and Geoscience Mapping section, for funding this investigation.

References

  1. Ardis AF, Barker RA (1993) Historical saturated thickness of the Edwards-Trinity aquifer system and selected contiguous hydraulically connected units, west-central Texas. US Geol Surv Water Resour Inventory Rep 92–4125Google Scholar
  2. Armstrong DK, Carter TR (2010) The subsurface Paleozoic stratigraphy of southern Ontario. Ontario Geol Surv Spec Vol 7, OGS, Sudbury, ON, 301 ppGoogle Scholar
  3. Baird AF, McKinnon SD (2007) Linking stress-field deflection to basement structures in southern Ontario: results from numerical modelling. Tectonophysics 432:89–100CrossRefGoogle Scholar
  4. Bajc AF, Marich AS, Priebe EH, Rainsford DRB (2017) Evaluating the groundwater resource potential of the Dundas buried bedrock valley, southwestern Ontario: an integrated geological and hydrogeological case study. Can J Earth Sci.  https://doi.org/10.1139/cjes-2016-0224
  5. Banks WD, Brunton FR 2017 Collaboration between Ontario Geological Survey, consultants and municipal staff results in discovery and development of a safe and sustainable bedrock groundwater supply for the town of Shelburne, southern Ontario, Canada. IAH Canada, GeoOttawa 2017: 70 Years of Canadian Geotechnics and Geosciences, Ottawa, October 2017, pp 1–6Google Scholar
  6. Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428CrossRefGoogle Scholar
  7. Brett CE (1995) Sequence stratigraphy, biostratigraphy and taphonomy in shallow marine environments. Palaois 10:597–616CrossRefGoogle Scholar
  8. Brett CE (1998) Sequence stratigraphy, paleoecology and evolution: biotic clues to responses in sea-level fluctuations. Palaios 13:241–262CrossRefGoogle Scholar
  9. British Geological Survey (2017) National well record archive. https://www.bgs.ac.uk/research/groundwater/datainfo/NWRA.html. Accessed September 2018
  10. Brunton FR (2009) Update of revisions to the early Silurian stratigraphy of the Niagara escarpment: integration of sequence stratigraphy, sedimentology and hydrogeology to delineate hydrogeologic units. In: Summary of field work and other activities 2009. Ontario Geol Surv Open File Rep 6240, pp 25-1–25-20Google Scholar
  11. Brunton FR, Brintnell C (2011) Final update of the early Silurian stratigraphy of the Niagara escarpment and correlation with subsurface units across southwestern Ontario and the Great Lakes Basin. In: summary of field work and other activities 2011, Ontario Geol Surv Open File Rep 6270, pp 30-1–30-11Google Scholar
  12. Brunton FR, Belanger D, DiBiase S, Yungwirth G, Boonstra G (2007) Caprock carbonate stratigraphy and bedrock aquifer characterization of the Niagara Escarpment: City of Guelph Region, southern Ontario. In: Proceedings of the 60th Canadian Geotechnical Conference and the 8th joint Canadian Geotechnical Society, International Association of Hydrogeologists conference, Canadian Geotechnical Society, Ottawa, pp 371–377Google Scholar
  13. Brunton FR, Dodge JEP (2008) Karst of southern Ontario and Manitoulin Island. OGS Groundwater Resources Study 5, Geology Ontario, Sudbury, ONGoogle Scholar
  14. Brunton FR, Brintnell C, Jin J, Bancroft, AM (2012) Stratigraphic architecture of the Lockport Group in Ontario and Michigan: a new interpretation of early Silurian ‘basin geometries’ and ‘Guelph pinnacle reefs’. In: The 51st annual conference: Ontario-New York Oil and Gas Conference, Niagara Falls, ON, Oct. 23–25th, 2012, pp 1–37Google Scholar
  15. Burt AK, Dodge JEP (2016) Three-dimensional modelling of surficial deposits in the Orangeville–Fergus area of southern Ontario. Ontario Geol Surv Groundwater Resources Study 15, Geology Ontario, Sudbury, ONGoogle Scholar
  16. Chapman LJ, Putnam DF (1984) The physiography of southern Ontario, 3rd edn. Ontario Geol Surv Spec Vol 2, Geology Ontario, Sudbury, ON, 270 ppGoogle Scholar
  17. Chen Z, Auler AS, Bakalowicz DD, Griger F, Hartmann J, Jiange G, Moosdorf M, Richts A, Stevanovic Z, Veni G, Goldscheider N (2017) The world karst aquifer mapping project: concept, mapping procedure and map of Europe. Hydrogeol J 25:771–785CrossRefGoogle Scholar
  18. Cole J, Coniglio M, Gautrey S (2009) The role of buried bedrock valleys in the development of karstic aquifers in flat-lying carbonate bedrock: insights from Guelph, Ontario, Canada. Hydrogeology J.  https://doi.org/10.1007/s10040-009-0441-3
  19. Cooke ML, Simo JA, Underwood CA, Rijken P (2006) Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sediment Geol 184:225–239CrossRefGoogle Scholar
  20. Cooper HH, Jacob CE (1946) A generalized method for evaluating formation constants and summarizing well field history. Am Geophys Union Trans 27:526–534CrossRefGoogle Scholar
  21. Cooper HH, Bredehoeft JD, Papadopulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resour Res 3(1):263–269CrossRefGoogle Scholar
  22. Cramer BD, Brett CE, Melchin MJ, Mannik P, Kleffner MA, Mclaughlin PI, Loydell DK, Munnecke A, Jeppsson L, Corrandini C, Brunton FR, Saltzman MR (2011) Revised correlation of Silurian provincial series of North America with global and regional chronostratigraphic units and 13C chemostratigraphy. Lethaia.  https://doi.org/10.1111/j.1502-3931.2010.00234.x
  23. Dreybrdt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32(9):2923–2935CrossRefGoogle Scholar
  24. Ettensohn FR (1994) Tectonic control on formation and cyclicity of major Appalachian unconformities and associated stratigraphic sequences: in Tectonic and Eustatic Controls on Sedimentary Cycles, SEPM Concepts in Sedimentology and Paleontology, 4:217–242Google Scholar
  25. Ettensohn FR, Brett CE (2002) Stratigraphic evidence from the Appalachian Basin for continuation of the Taconian orogeny into Early Silurian time. Physics and Chemistry of the Earth, 27:279–288Google Scholar
  26. Eyles N, Boyce J, Mohajer AA (1993) The bedrock surface of the western Lake Ontario region: evidence of reactivated basement structures. Géog Phys Quat 47(3):269–283Google Scholar
  27. Eyles N, Arnaud E, Scheidegger AE, Eyles CH (1997) Bedrock jointing and geomorphology in southwestern Ontario, Canada: an example of tectonic predesign. Geomophology 19:17–34CrossRefGoogle Scholar
  28. Eyles N, Scheidegger AE (1995) Environmental significance of bedrock jointing in southern Ontario, Canada. Environ Geol 26:269–277CrossRefGoogle Scholar
  29. Ferguson HF, Hamel JV (1981) Valley stress relief in flat-lying sedimentary rocks. In: Proceedings of the Int. Symp. on Weak Rock. Tokyo, September 1981, pp 1235–1240Google Scholar
  30. Ford D (1987) Effects of glaciations and permafrost upon the development of karst in Canada. Earth Surf Process Landf 12:507–521CrossRefGoogle Scholar
  31. Ford DC (1983) Karstic interpretation of the Winnipeg aquifer (Manitoba, Canada). J Hydrol 61:177–180CrossRefGoogle Scholar
  32. Gao C, Shirota J, Kelly RI, Brunton FR, Van Haaften S (2006) Bedrock topography and overburden thickness mapping, southern Ontario. Ontario Geol Surv Miscell Release Data 207Google Scholar
  33. Gao C (2011) Buried bedrock valleys and glacial and subglacial meltwater erosion in southern Ontario. Can J Earth Sci.  https://doi.org/10.1139/E10-104
  34. Gautrey SJ (2004) Evidence to support pre or early Wisconsinan genesis of a productive karst system beneath the City of Guelph. In: Geological Association of Canada–Mineralogical Association of Canada, Joint Annual Meeting: Lake-to-Lake, Brock University, St. Catharines, ON, 29 ppGoogle Scholar
  35. Grasby SE, Betcher RN (2002) Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Can J Earth Sci 39:1053–1063CrossRefGoogle Scholar
  36. Greenhouse JP, Karrow PF (1994) Geological and geophysical studies of buried valleys and their fills near Elora and Rockwood, Ontario. Can J Earth Sci 31:1838–1848CrossRefGoogle Scholar
  37. Gross MR, Engelder T (1991) A case for neotectonic joints along the Niagara Escarpment. Tectonics 10:631–641CrossRefGoogle Scholar
  38. Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  39. Karrow PF (1973) Bedrock topography in southwestern Ontario: a progress report. Geol Soc Am Bull 79:889–910Google Scholar
  40. Kunert M, Coniglio M, Jowett EC (1998) Controls and age of cavernous porosity in middle Silurian dolomite, southern Ontario. Can J Earth Sci 35:1044–1053CrossRefGoogle Scholar
  41. Lee VL, Priebe EH, Brunton FR, Piersol J, Monier-Williams M, Pendelton B, Bingham M, Keller C, Sharp I (2011) Bedrock aquifer mapping of Niagara Escarpment Cuesta: installation and sampling of multi-level monitoring wells. Summary of field work and other activities. Ontario Geol Surv Open File Rep 6270, pp 31–1–31–6Google Scholar
  42. Lucia FJ (1983) Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space. J Pet Technol 35(3):626–637Google Scholar
  43. MacGregor K (1976) Caves of Ontario: cave exploration in Canada. In: Thompson P (ed) Caves exploration in Canada. Canadian Caver, Calgary, AB, pp 39–54Google Scholar
  44. Meyer JR, Parker BL, Arnaud E, Runkel AC (2016) Combining high resolution vertical gradients and sequence stratigraphy to delineate hydrogeologic units for a contaminated sedimentary rock aquifer system. J Hydrol 534:505–523CrossRefGoogle Scholar
  45. McLaughlin PI, Brett CE, Wilson MA (2008) Hierarchy of sedimentary discontinuity surfaces and condensed beds from teh middle Paleozoic of eastern north America: implications for cratonic sequence stratigraphy. In: Dynamics of Epeiric Seas. Geological Association of Canada Special Paper 48, GAC, St. John’s, NFGoogle Scholar
  46. Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock: evidence from the Newark Basin, New Jersey. Groundwater 35(2):318–327CrossRefGoogle Scholar
  47. Muldoon MA, Simo JJ, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9:570–583CrossRefGoogle Scholar
  48. Neuman SP (1982) Statistical characterization of aquifer heterogeneities: an overview. In: Narasimhan TN (ed) Recent trends in hydrogeology. Geol Assoc Canada Spec Pap 189(16):519–524Google Scholar
  49. Ontario (2015) Well records, documentation, reporting and tagging, chap 13. In: Water supply wells: requirements and best management practices. Ministry of Environment and Climate Change. https://dr6j45jk9xcmk.cloudfront.net/documents/4970/m-wwbmp-chapter-13-well-records-april-2015.pdf. Accessed December 2018
  50. Panton JH (1889) The caves and potholes at Rockwood, Ontario. In: Proceedings of the Canadian Institute, third series, vol 6. Canadian Institute, Toronto, pp 244–253Google Scholar
  51. Parker BL, Bairos K, Maldaner CH, Chapman SW, Turner CM, Burns LS, Plett J, Carter R, Cherry JA (2018) Metolachlor dense non-aqueous phase liquid source conditions and plume attenuation in a dolostone water supply aquifer; in Groundwater in Fractured Bedrock Environments, Geological Society, London, Special Publications 479Google Scholar
  52. Perrin J, Parker BL, Cherry JA (2011) Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water. J Hydrol 400:396–410CrossRefGoogle Scholar
  53. Piersol J, Petrie J (2011) City of Guelph Tier III assessment characterization and final report, appendix A. Golder Associates, 66 pp. https://www.sourcewater.ca/en/source-protection-areas/resources/Documents/Grand/GGET-Tier-Three-Risk-Assessment---Appendix-A-A_2017_03.pdf. Accessed December 2018
  54. Priebe EH, Neville CJ, Brunton FR (2017a) Discrete, high-quality hydraulic conductivity estimates for the Early Silurian carbonates of the Guelph region, Ontario Geol Surv Groundwater Resources Study 16, OGS, Sudbury, ONGoogle Scholar
  55. Priebe EH, Neville CJ, Rudolph DL (2017b) Enhancing the spatial coverage of a regional high-quality hydraulic conductivity dataset with estimates made from domestic water-well specific-capacity tests. Hydrogeol J.  https://doi.org/10.1007/s1004-017-1618-2
  56. Rivera A (2013) Canada’s groundwater resources. Fitzhenry and Whiteside, TorontoGoogle Scholar
  57. Rovey CW, Cherkauer DS (1994a) Relation between hydraulic conductivity and texture in a carbonate aquifer: observations. Groundwater 32(2):53–62CrossRefGoogle Scholar
  58. Rovey CW, Cherkauer DS (1994b) Relation between hydraulic conductivity and texture in a carbonate aquifer: regional continuity. Groundwater 32(2):227–238CrossRefGoogle Scholar
  59. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology Series no. 8. SEPM, Tulsa, OK , 200 ppGoogle Scholar
  60. Sharpe DR, Piggot A, Carte TR, Gerber RE, MacRitchie SM, de Loe R, Strynatka S, Zwiers G (2013) Southern Ontario hydrogeological region. In: Rivera A (ed) Canada’s groundwater resources. Fitzhenry and Whiteside, TorontoGoogle Scholar
  61. Singer SN, Cheng CK, Scafe MG (2003) The hydrogeology of southern Ontario, 2nd edn. Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Toronto. https://archive.org/details/hydrogeologyofso00snsiuoft. Accessed December 2018
  62. Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractures rocks, 2nd edn. Springer, Heidelberg, GermanyGoogle Scholar
  63. Straw A (1968) Late Pleistocene glacial erosion along the Niagara Escarpment of southern Ontario. Geol Soc Am Bull 79:889–910. https://doi.org/10.1130/0016-7606(1968)79[889:LPGEAT]2.0.CO;2Google Scholar
  64. State of California (2001) How to fill out a well completion report. Department of Water Resources, Sacramento, CA. https://www.water.ca.gov/pubs/groundwater/how_to_fill_out_a_well_completion_report/wcr_instruction_pamphlet_2_.pdf. Accessed June 2017
  65. Sun RJ, Weeks JB, Grubb HF (1997) Bibliography of the Regional Aquifer-System Analysis Program of the US Geological Survey, 1978–1996. US Geol Surv Water Resour Invest Rep 97-4074. https://water.usgs.gov/ogw/rasa/html/introduction.html. Accessed December 2018
  66. Vail PR, Audemard E, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology: an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Heidelberg, Germany, pp 617–659Google Scholar
  67. Watson DF, Philip GM (1985) A refinement of inverse distance weighted interpolation. Geoprocessing 2:315–327Google Scholar
  68. Weber JN (1960) Ontario underground. Can Geograph J 62(2):42–51Google Scholar
  69. White OL, Karrow PF (1971) New evidence for Spencer’s Laurentian River. Proceedings of the 14th Conference of Great Lakes Research, IAGLR, Ann Arbor, MI, pp 394–400Google Scholar
  70. Wyrick, GG, Borchers JW (1981) Hydrologic effects of stress-relief fracturing in an Appalachian Valley. US Geol Surv Water Suppl Pap 2177, 53 ppGoogle Scholar
  71. Zoback ML (1992) First- and second-order patterns of stress in the lithosphere. J Geophys Res 97(11):703–l 1 728 and mapGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elizabeth H. Priebe
    • 1
    • 2
    Email author
  • F. R. Brunton
    • 1
  • D. L. Rudolph
    • 2
  • C. J. Neville
    • 3
  1. 1.Earth Resources and Mapping SectionOntario Geological SurveySudburyCanada
  2. 2.Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  3. 3.S.S. Papadopulos and AssociatesWaterlooCanada

Personalised recommendations