Advertisement

Electrical analogue for discharge versus time analysis in a pumping well

  • Gianpietro SummaEmail author
  • Assunta Tataranni
  • Germano D’Abramo
Paper
  • 27 Downloads

Abstract

Novel findings about the general properties of an aquifer were obtained by applying the pumping approach introduced by Summa (2010). The approach of keeping the pump’s rotation speed constant was chosen over the well-known and widely used constant discharge method. The present analysis was performed on a set of unpublished data acquired during the same field test that was described in Summa (2010). The values of the instantaneous discharge and instantaneous drawdown were obtained. The contribution of the water already stored in the well to the overall capacitance of the aquifer was cancelled out for the field data that were processed. It was then possible to obtain a discharge-time function depending only upon the aquifer discharge. The discharge-time curve that was obtained showed a behaviour practically indistinguishable from the discharge-time curve for a resistor-inductor-capacitor (RLC) circuit with a direct current. By fully exploiting that circuit analogy, it was possible to evaluate the resistance, capacitance and inductance (inertia) of the aquifer. These parameters were estimated from the RLC solution that best fit the discharge-time curve. The value of the hydraulic resistance that was obtained was of the same order of magnitude as the inverse value of the transmissivity, already calculated for the same aquifer in previous work. This matching suggests that this model, as a future development of the present study, can be tested against the standard models regarding the determination of the traditional hydrogeological parameters. Summa G (2010) A new approach to the step-drawdown test, Water SA, 36(3):279–286.

Keywords

Electric analogy Well enhancement Groundwater hydraulics Variable speed drive pump Dynamical system 

Analogue électrique pour l’analyse du débit en fonction du temps dans un puits de pompage

Résumé

Des résultats novateurs sur les propriétés générales d’un aquifère ont été obtenus en appliquant l’approche de pompage proposée par Summa (2010). L’approche visant à maintenir la vitesse de rotation de la pompe constante a été préférée à la méthode connue et usuelle du débit constant. La présente analyse a été appliquée à un jeu de données non publiées, acquises durant le même essai de terrain décrit par Summa (2010). Les valeurs de débit et de rabattement instantanés ont été obtenues. La capacité globale de l’aquifère a été corrigée de la contribution de l’eau déjà stockée dans le puits, pour les données de terrain qui ont été traitées. Il a alors été possible d’obtenir une fonction du débit par rapport au temps qui dépend uniquement de la production de l’aquifère. La courbe du débit en fonction du temps ainsi obtenue montre un comportement quasi-similaire à une courbe décharge en fonction du temps d’un circuit composé d’une résistance, d’un inducteur et d’un condensateur (RLC) à courant continu. En exploitant pleinement cette analogie avec les circuits électriques, l’évaluation de la résistance, de la capacité et de l’inductance (inertie) de l’aquifère a été rendue possible. Ces paramètres ont été estimés par optimisation de l’ajustement de la solution RLC sur la courbe du débit en fonction du temps. La valeur de résistance hydraulique obtenue était du même ordre de grandeur que l’inverse de la transmissivité, déjà calculée pour le même aquifère dans des travaux antérieurs. Dans le cadre de développements futurs à la suite de cette présente étude, cette concordance suggère que ce modèle peut être confronté aux modèles standards utilisés pour la détermination des paramètres hydrogéologiques traditionnels. Summa G (2010) A new approach to the step-drawdown test (Une nouvelle approche pour interpréter les essais de rabattement par étape) Water SA, 36(3):279–286.

Análogía eléctrica para el análisis de descarga versus tiempo en un pozo de bombeo

Resumen

Se obtuvieron nuevos hallazgos sobre las propiedades generales de un acuífero aplicando el enfoque de bombeo introducido por Summa (2010). El enfoque de mantener constante la velocidad de rotación de la bomba se eligió sobre el método bien conocido y ampliamente utilizado de descarga constante. El presente análisis se realizó en un conjunto de datos no publicados adquiridos durante la misma prueba de campo que se describió en Summa (2010). Se obtuvieron los valores de descarga instantánea y reducción instantánea. La contribución del agua ya almacenada en el pozo a la capacidad general del acuífero se canceló para los datos de campo que se procesaron. Entonces fue posible obtener una función de tiempo de descarga que depende solo de la descarga del acuífero. La curva de tiempo de descarga que se obtuvo mostró un comportamiento prácticamente indistinguible de la curva de tiempo de descarga para un circuito de resistencia-inductor-condensador (RLC) con una corriente continua. Al explotar completamente esa analogía de circuito, fue posible evaluar la resistencia, capacitancia e inductancia (inercia) del acuífero. Estos parámetros se estimaron a partir de la solución RLC que mejor se ajusta a la curva de tiempo de descarga. El valor de la resistencia hidráulica que se obtuvo fue del mismo orden de magnitud que el valor inverso de la transmisividad, ya calculado para el mismo acuífero en trabajos anteriores. Esta combinación sugiere que este modelo, como un futuro desarrollo del presente estudio, puede probarse con los modelos estándar con respecto a la determinación de los parámetros hidrogeológicos tradicionales. Summa G (2010) A new approach to the step-drawdown test (Un nuevo enfoque para ensayos escalonados), Water SA, 36 (3): 279–286.

抽水井中排泄对时间分析电模拟

摘要

通过采用 Summa (2010)介绍的抽水方法获取了含水层一般特性新的发现。在著名的和广泛使用的恒定排泄方法中选取了保持水泵循环速度不变的方法。根据 Summa (2010)所描述的同一野外试验获取的未出版的数据进行了目前的分析。获取了瞬时排泄和瞬时降深值。早已储存在水井中的水对含水层总体容量的贡献量已经在处理的野外数据中取消。然后才有可能获取排泄-事件函数,只取决于含水层排泄。获取的排泄-时间曲线显示出与从直流电电阻器-感应器-电容器电路得到的排泄-时间曲线实际上很难区别。通过完全利用这个电路类推,可评估含水层的电阻、电容和电感(惯性)。通过最佳匹配排泄-时间曲线的电阻器-感应器-电容器解决方法估算了这些参数。获取的水力阻力值在同一个量级上,如同前期工作中计算的同一含水层导水系数的反转值。这种匹配表明,这个模型作为目前研究中的未来发展,可以通过有关传统水文地质参数的标准模型得到检验。Summa G (2010) A New approach to the step-drawdown test (一种新的步降试验方法), Water SA, 36(3):279–286.

Análogo elétrico para vazão versus análise temporal num poço de bombeamento

Resumo

Novas descobertas sobre as propriedades gerais de um aquífero foram obtidas pela aplicação da abordagem de bombeamento introduzida por Summa (2010) A abordagem de manter a velocidade de rotação da bomba constante foi escolhida ao invés do conhecido e largamente utilizado método da vazão constante. A presente análise foi aplicada a um conjunto de dados não publicados adquiridos durante o mesmo ensaio/teste de campo descrito em Summa (2010). Os valores de vazão e rebaixamento instantâneos forma obtidos. A contribuição da água já armazenada no poço para a capacitância geral do aqüífero foi cancelada para os dados de campo que foram processados. Assim, foi possível obter uma função da vazão no tempo dependendo apenas da descarga do aquífero. A curva obtida de descarga no tempo exibiu um comporatamento praticamente indistinguível daquele de uma curva temporal de descarga para um circuito resistor-indutor-capacitor (RIC) com uma corrente contínua. Ao explorar plenamente essa analogia com circuito elétrico, foi possível avaliar a resistência, capacitância e indutância (inércia) do aquífero. Esses parâmetros foram estimados a partir da solução RIC que melhor se ajusta à curva vazão no tempo. O valor da resistência hidráulica obtida foi da mesma ordem de magnitude que o valor inverso da transimssividade, já calculada para o mesmo aquífero de trabalho anterior. Tal correspondência sugere que esse modelo, como um desenvolvimento futuro do presente estudo, pode ser testado em comparação aos modelos padrões no tocante à determinação dos parâmetros hidrogeológicos tradicionais. Summa G (2010) A new approach to the step-drawdown test (Uma nova abordagem para o teste escalonado), Water SA, 36(3):279–286.

Notes

Acknowledgments

The authors acknowledge the insightful comments and suggestions provided by the associate editor and the three reviewers. They greatly helped to improve the overall quality of the paper. The authors thank Mr. Nicola Del Negro and the Futurella Company for having kindly made available their facilities for this study and for having made it possible to carry out the field work described in this paper. Our acknowledgements go also to Dr. Vito Di Benedetto for his kind help with statistical analysis and to Ms. Carmela Tataranni for a critical reading of the manuscript. Special thanks go to Prof. Vincenzo Piscopo for his encouragement to finalize the present study.

References

  1. Al-Khalifah M, McMillan G (2013) Control valve versus variable-speed drive for flow control. International Society of Automation. https://automation.isa.org/wp-content/uploads/2012/06/Control-Valve-vs-Variable-Speed-Drive1.pdf. Accessed November 2018
  2. Anderson MP (2007) Introducing groundwater physics. Phys Today 60(5):42–47.  https://doi.org/10.1063/1.2743123 CrossRefGoogle Scholar
  3. Bear J (1972) Models and analogs. In: Dynamics of fluids in porous media. Dover, New York, pp 665–727Google Scholar
  4. De Marsily G (1986) Quantitative hydrogeology. Academic, Cambridge, MAGoogle Scholar
  5. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, Chichester, UKGoogle Scholar
  6. Driscoll FG (1986) Groundwater and wells, 2nd edn. Johnson Filtration Systems, St. Paul, MNGoogle Scholar
  7. Fuchs HU (2010) The dynamics of heat: a unified approach to thermodynamics and heat transfer. Springer, New YorkCrossRefGoogle Scholar
  8. Ghoneam SM, Abdel-Rahman SM, El-Gazzar D (2011) Dynamic performance application of a variable speed centrifugal pump. Fifteenth International Water Technology Conference, IWTC 15 2011, Alexandria, Egypt, May 2011Google Scholar
  9. Gibson IH (1994) Variable-speed drives as flow control elements. ISA Trans 33(2):165–169CrossRefGoogle Scholar
  10. Greenslade T (2003) The hydraulic analogy for electric current. Phys Teach 41:464–466CrossRefGoogle Scholar
  11. Jacob CE (1947) Drawdown test to determine effective radius of artesian well. Trans Am Soc Civil Eng 112(2312):1047–1070Google Scholar
  12. Karnopp DC, Margolis DL, Rosenberg RC (2012) System dynamics: modeling, simulation, and control of mechatronic systems, 5th edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  13. Kovar J, Brezina T (2010) Model of pipeline with pump for predictive control. In: Katalinic B (ed) Annals of DAAAM for 2010 and proceedings of the 21st International DAAAM Symposium. Zadar, Croatia, October 2010Google Scholar
  14. Kruseman GP, de Ridder NA (1994) Analysis and evaluation of pumping test data, 2nd edn. Publication 47, International Institute for Land Reclamation and Improvement, Wageningen, The NetherlandsGoogle Scholar
  15. Patil A, More S (2014) Mathematical modeling of physical system. IOSR-JEEE 9(3):57–64CrossRefGoogle Scholar
  16. Piscopo V, Summa G (2007) Experiment of pumping at constant-head: an alternative possibility to the sustainable yield of a well. Hydrogeol J 15(4):679–687.  https://doi.org/10.1007/s10040-006-0132-2 CrossRefGoogle Scholar
  17. Qtiplot (n.d.) Data analysis and scientific visualization. https://www.qtiplot.com/download.html. Accessed November 2018
  18. Renard P (2005) 151 Hydraulics of wells and well testing. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Chichester, UKGoogle Scholar
  19. Summa G (2010) A new approach to the step drawdown test. Water SA 36(3):279–286Google Scholar
  20. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gianpietro Summa
    • 1
    Email author
  • Assunta Tataranni
    • 2
  • Germano D’Abramo
    • 3
  1. 1.MateraItaly
  2. 2.MIURMateraItaly
  3. 3.MIURRomeItaly

Personalised recommendations