Advertisement

Hydrogeology Journal

, Volume 27, Issue 3, pp 827–840 | Cite as

A typical groundwater storage assessment in the Tugela area, South Africa

  • Haili LinEmail author
  • Lixiang Lin
Report
  • 398 Downloads

Abstract

Water storage assessment is an important component of feasibility studies for prospective mining areas. As required by national mineral resources and environmental Acts, this may include assessment of both exploitable and sustainable storage; the former relates to the amount of groundwater stored within the exploitable aquifer depth and the latter is defined as the groundwater that can be sustainably extracted without producing unacceptable environmental and economic problems. A simplified method is proposed to assess the groundwater storage in a typical mine area, Tugela in South Africa. In the area, five aquifers (Natal Group, Coastal plain deposits, Basement aquifer, Ecca Group and Dwyka Group) have better harvest potential compared with others on the basis of borehole yield. The study area was divided into four subareas (A, B, C and F) based on proposed mining boundaries. Both exploitable and sustainable groundwater storage were estimated. The estimated exploitable groundwater storage for subareas A, B, C and F are 20.66, 5.78, 43.12, 36.90 Mm3, respectively, on the basis of current median exploitation depths of each aquifer or geological formation. The calculated sustainable groundwater storage for subareas A, B, C and F are 3.31, 0.89, 6.67 and 6.01 Mm3, respectively, with a total of 16.88 Mm3. Groundwater recharge of the subareas was also estimated for subareas A, B, C and F as 31.92, 11.44, 43.38 and 29.78 Mm3/annum, respectively, with a total of 116.53 Mm3/annum. The assessment method can be applied to other areas with similar hydrogeological settings with the available datasets.

Keywords

Groundwater storage Sustainability Groundwater recharge/water budget South Africa Sub-Saharan Africa 

Une évaluation des réserves en eau souterraine dans la région de Tugela, Afrique du sud

Résumé

L’évaluation des réserves en eau est une composante importante d’études de faisabilité dans des régions d’intérêt minier. Tel que demandé dans les lois nationales sur les ressources minérales et l’environnement, l’évaluation peut inclure les réserves exploitables, correspondant à la quantité d’eau souterraine emmagasinée dans la tranche de profondeur exploitable de l’aquifère, et les ressources durables, correspondant à l’eau souterraine qui peut être exploitée sans générer de problèmes environnementaux et économiques inacceptables. Une méthode simplifiée est proposée pour évaluer les réserves en eau souterraine dans la zone minière typique de Tugela en Afrique du Sud. Dans cette zone, cinq aquifères (Groupe de Natal, les dépôts de la plaine côtière, aquifère de base, groupe d’Ecca et groupe de Dwyka) montrent le meilleur potentiel pour l’exploitation en comparaison des autres aquifères, sur la base de la productivité des forages. La zone d’étude a été divisée en quatre secteurs (A, B, C et F) sur la base des limites proposées pour l’activité minière. Les réserves en eau souterraine exploitables et durables ont été toutes deux estimées. Les réserves exploitables pour les quatre secteurs A, B, C et F sont respectivement 20.66, 5.78, 43.12, 36.90 Mm3, sur la base des profondeurs médianes des exploitations en cours dans chaque aquifère ou formation géologique. Les réserves durables pour les secteurs A, B, C et F sont respectivement 3.31, 0.89, 6.67 and 6.01 Mm3, pour un volume total de 16.88 Mm3. La recharge des aquifères pour les quatre secteurs A, B, C et F a également été estimée à respectivement 31.92, 11.44, 43.38 and 29.78 Mm3/an, soit une recharge totale de 116.53 Mm3/an. La méthode d’évaluation utilisée peut être appliquée à d’autres régions ayant des conditions hydrogéologiques similaires avec des données disponibles.

Una evaluación característica del almacenamiento de agua subterránea en el área de Tugela, Sudáfrica

Resumen

La evaluación del almacenamiento de agua es un componente importante en los estudios de factibilidad para la prospección de áreas mineras. Como lo exigen los recursos minerales nacionales y las leyes ambientales, esto debe incluir la evaluación de almacenamientos tanto explotables como sostenibles; el primero se relaciona con la cantidad de agua subterránea almacenada dentro de la profundidad del acuífero explotable y el segundo se define como el agua subterránea que se puede extraer de manera sostenible sin producir inaceptables problemas ambientales y económicos. Se propone un método simplificado para evaluar el almacenamiento de agua subterránea en un área de un área minera típica: Tugela en Sudáfrica. En el área, cinco acuíferos (grupo Natal, depósitos de planicies costeras, acuífero del basamento, grupo Ecca y grupo Dwyka) tienen un mejor potencial de extracción en comparación con otros en base al rendimiento de los pozos. El área de estudio se dividió en cuatro subáreas (A, B, C y F) en función de los límites mineros propuestos. Se estimaron tanto el almacenamiento de agua subterránea explotable como el sostenible. El almacenamiento de agua subterránea explotable estimado para las subáreas A, B, C y F es 20.66, 5.78, 43.12, 36.90 Mm3, respectivamente, sobre la base de las profundidades medias actuales de explotación de cada acuífero o formación geológica. El almacenamiento de agua subterránea sostenible calculado para las subáreas A, B, C y F es 3.31, 0.89, 6.67 y 6.01 Mm3, respectivamente, con un total de 16.88 Mm3. La recarga de agua subterránea de las subáreas también se estimó para las subáreas A, B, C y F como 31.92, 11.44, 43.38 y 29.78 Mm3/año, respectivamente, con un total de 116.53 Mm3/año. El método de evaluación se puede aplicar a otras áreas con configuraciones hidrogeológicas similares con los conjuntos de datos disponibles.

南非图盖拉(Tugela)地区典型地下水储量评估

摘要

地下水储水量评估是新矿区可行性研究的重要组成部分。根据南非矿产资源和环境法案的要求,这项评估包括两部分:可开采储量及可持续储量。前者定义为可开采含水层深度内储存的地下水量,后者定义为在不会造成环境和经济问题的情况下,含水层内可供持续开采的地下水量。本文以南非的图盖拉地区为例,提出了一种简化的方法来评估一个矿区的地下水储量。根据钻孔资料,在该地区有五个含水层(Natal组,沿海平原沉积,基底岩,Ecca组和Dwyka组)的产水量较高。根据拟定的采矿边界,研究区域分为四个子区域(A,B,C和F)。分别在四个子区域对上述两种地下水储量进行评估。根据目前每个含水层的中位开采深度,分区A,B,C和F的可开采地下水储量估算为20.66, 5.78, 43.12, 36.90 Mm3,总计106.46Mm3。分区A,B,C和F的可持续地下水储量估算为3.31, 0.89, 6.67和6.01 Mm3,总计16.88 Mm3。分区A,B,C和F的地下水补给量也分别估算为31.92, 11.44, 43.38和29.78 Mm3 /年,总计116.53 Mm3 /年。此评估方法可应用于具有相似数据来源及水文地质条件的其他区域。

Uma avaliação típica de armazenamento de água subterrânea na área de Tugela, África do Sul

Resumo

A avaliação do armazenamento de água é um componente importante dos estudos de viabilidade para áreas de mineração prospectivas. Conforme exigido pelos recursos minerais nacionais e leis ambientais, isso pode incluir a avaliação de armazenamentos exploráveis ​​e sustentáveis; a primeira diz respeito à quantidade de água subterrânea armazenada na profundidade explorável do aquífero e a última é definida como a água subterrânea que pode ser extraída de maneira sustentável sem produzir problemas ambientais e econômicos inaceitáveis. Um método simplificado é proposto para avaliar o armazenamento de água subterrânea em uma área de mina típica - Tugela na África do Sul. Na área, cinco aquíferos (Grupo Natal, Planície Costeira, Aquífero de Base, Grupo Ecca e Grupo Dwyka) apresentam melhor potencial de produção em comparação com outros, com base no rendimento do poço. A área de estudo foi dividida em quatro subáreas (A, B, C e F) com base nos limites de mineração propostos. Tanto o armazenamento de água subterrânea explorável como sustentável foi estimado. O armazenamento estimado de água subterrânea explorável para as subáreas A, B, C e F é de 20.66, 5.78, 43.12, 36.90 Mm3, respectivamente, com base na profundidade de exploração média atual de cada aquífero ou formação geológica. O armazenamento sustentável de águas subterrâneas calculado para as subáreas A, B, C e F é 3.31, 0.89, 6.67 e 6.01 Mm3, respectivamente, com um total de 16,88 Mm3. A recarga de águas subterrâneas das subáreas foi também estimada para as subzonas A, B, C e F em 31.92, 11.44, 43.38 e 29.78 Mm3/ano, respectivamente, com um total de 116.53 Mm3/ano. O método de avaliação pode ser aplicado a outras áreas com configurações hidrogeológicas semelhantes aos conjuntos de dados disponíveis.

Notes

Acknowledgements

The Department of Mineral Resources has funded the Mine Water Management Project. This work is under the task: Proactive Solutions. The authors would like to thank all reviewers and editors for their valuable time and input to this manuscript.

References

  1. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16CrossRefGoogle Scholar
  2. Alley WM, Reilly TE and Franke OL (1999) Sustainability of Ground water Resources. USGS Circular 1186. 79 pp.Google Scholar
  3. ASCE (1972) Groundwater Management. Manual Eng Pract 40:216Google Scholar
  4. Baron J, Seward P and Seymour A (1998) The Groundwater Harvest Potential Map of the Republic of South Africa. Technical Report GH 3917. Directorate Geohydrology, Department of Water Affairs and Forestry, PretoriaGoogle Scholar
  5. Bell FG, Maud RR (2000) A groundwater survey of the greater Durban area and environs, Natal, South Africa. Environ Geol 39(8):925–936CrossRefGoogle Scholar
  6. Bredehoeft J (1997) Safe Yield and the Water Budget Myth. Ground Water 35(6):929Google Scholar
  7. Botha GA, Singh R (2012) Geological, geohydrological and development potential zonation influences; Environmental management framework for Umkhanyakude District, KwaZulu-Natal. Council for Geoscience Report No: 2012–0153Google Scholar
  8. Chilton PJ, Foster SSD (1995) Hydrogeological Characterisation And Water-Supply Potential Of Basement Aquifers In Tropical Africa. Hydrogeol J 3(1):36–49Google Scholar
  9. Conrad JE, Van De Voort I (1999) A GIS-based experimental methodology to determine the utilisable potential of south African aquifers. WRC report no. 840/1/99. Water Research Commission, PretoriaGoogle Scholar
  10. Cornell DH, Thomas RJ, Moen HFG, Reid DL, Moore JM, Gibson RL (2006) The Namaqua-Natal Province, In: (M.R. Johnson, C.R. Anhaeusser and R.J. Thomas). The geology of South Africa. Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria, pp. 325–379Google Scholar
  11. Davies L, Partners (1995) Characterization and mapping of the groundwater resources of the KwaZulu-Natal Province Mapping Unit 4. Department of Water Affairs and Forestry, Pretoria, South AfricaGoogle Scholar
  12. de Beer CH (2002) The Stratigrapgy, Lithology and Structure of the Table Mountain Group, In (Petersen K and Parsons R editors eds.): A Synthesis of the Hydrogeology of the Table Mountain Group- Formation of a Research Strategy, WRC Report No. TT 158/01: 9–18Google Scholar
  13. Demlie M, Titus R (2015) Hydrogeological and Hydrochemical characteristics of the Natal Group sandstone, South Africa. S Afr J Geol 118(1):33–44CrossRefGoogle Scholar
  14. DWA (Department of Water Affairs and Forestry, South Africa) (2004) Internal Strategic Perspective: Thukela Water Management Area. Prepared by Tlou & Matji (Pty) Ltd, WRP (Pty) Ltd, and DMM cc on behalf of the Directorate: National Water Resource Planning (East). DWAF Report No. P WMA 07/000/00/0304Google Scholar
  15. DWA (Department of Water Affairs and Forestry) (2006) Groundwater Resource Assessment II –Task 2c Groundwater Planning Potential. Department of Water AffairsGoogle Scholar
  16. DWA (Department of Water Affairs, South Africa) (2011) Governing Board Induction Manual, Chapter 1: Overview of the SA Water Sector. Department of Water AffairsGoogle Scholar
  17. DWA (Department of Water Affairs) (1998) Hydrogeological maps brochures: Durban. https://www.dwa.gov.za/groundwater/maps/durbanbrochure.pdf. Cited 1 December 2016
  18. DWA (Department of Water Affairs) (2013) National Water Resources Strategy, Second edition, pp201. https://www.dwa.gov.za/documents/Other/Strategic%20Plan/NWRS2-Final-email-version.pdf. Cited 1 December 2016
  19. EMATEK–CSIR (1995) Characterisation and mapping of the groundwater resources;KwaZulu-Natal province: Mapping Unit 7. Department of Water Affairs and ForestryGoogle Scholar
  20. Freeze RA, Cherry JA (1979) Groundwater, ISBN 0–13–365312-9, Prentice Hall Inc.: 604ppGoogle Scholar
  21. Germishuyse T (1999) A geohydrological study of the Richards Bay Area. M.Sc. thesis. Department of Hydrology. University of ZululandGoogle Scholar
  22. Hicks N, Davids S, Breck B, Green A (2014) Investigation of CO2 storage potential of the Durban Basin in South Africa. Energy Precedia 63:5200–5210CrossRefGoogle Scholar
  23. Holland M (2011) Hydrogeological characterisation of crystalline basement aquifers within the Limpopo Province, South Africa. Ph.D. thesis. University of Pretoria. Pretoria, South AfricaGoogle Scholar
  24. Kelbe B, Germishuyse T (2010) Groundwater / surface water relationships with specific reference to Maputaland. Report no. 1168/1/10. Water Research Commission. PretoriaGoogle Scholar
  25. Kelbe BE, Germishuyse T, Snyman N, Fourie I (2001) Geohydrological studies of the primary coastal aquifer in Zululand. WRC report no. 720/1/01. Water Research CommissionGoogle Scholar
  26. Kirchner J (2009) Basement aquifers groundwater recharge, storage and flow. In: Titus R, Beekman H, Adams S, Strachan L (eds) The basement aquifers of southern Africa. WRC report no. TT 428–09. Water Resource Commission, Pretoria, pp 58–66Google Scholar
  27. Knight J, Grab SW (eds) (2016) Quaternary environmental change in southern Africa: physical and human dimensions. Cambridge University Press, CambridgeGoogle Scholar
  28. McCathy T, Rubidge B (2005) The Story of Earth and Life, a South African Perspective on a 4.6-billion-year Journey, New Holland Publishing (South Africa)Google Scholar
  29. Middleton BJ, Bailey AK (2008). Water Resources of South Africa, 2005 Study (WR 2005): User’s Guide. WRC Report No. TT 381/08. PretoriaGoogle Scholar
  30. Pulotenikov (Плтников).HA (1959) Classification and calculation of groundwater storage for water supply (in Chinese), Geology Press of China: 127pGoogle Scholar
  31. Reboucas AC (1993) Groundwater development in Precambrian shield of South America and Westside Africa. In: Banks SB and Banks D (eds). IAH Congress on Hydrogeology of Hard RocksGoogle Scholar
  32. Rosewarne P, Woodford A, Goes M, Talma S, O’brien R, Tredoux G, Esterhuyse C, Visser, Van Tonder G (2013) Recent Developments in the Understanding of Karoo Aquifers and the Deeper Underlying Formations. 13th Ground Water Division Conference. 17–19 September, 2013. DurbanGoogle Scholar
  33. Ryan PJ, Whitfield GG (1978) Basin analysis of the Ecca and lowermost Beaufort beds and associated coal, uranium and heavy mineral beach sand occurrences. Information Circular No. 128. Economic Geology Research Unit, University of WitwatersrandGoogle Scholar
  34. Sophocleous M, Devlin JF (2004) Discussion on The water budget myth revisited: Why hydrogeologists model. Ground Water 40, no. 4: 340–345. Ground Water 42(4): 618–618Google Scholar
  35. Titus R, Adams S, Witthüser K and Xu Y (2009) Hydrogeochemical processes that influence the groundwater chemistry of basement aquifer systems, In: (Titus, R. ,Beekman, H., Adams, S. and Strachan, L., editors) The Basement Aquifers of Southern Africa. WRC Report No. TT 428–09. Water Resource Commission, Pretoria, pp. 91–103Google Scholar
  36. Du Toit AL (1954) The geology of South Africa (3rd), Oliver and Boyd, London, pp 611Google Scholar
  37. Turner DP (2000) Soils of Kwazulu-Natal and Mpumalanga: Recognition of Natural Soil Bodies. PhD (Theisis), University of Pretoria, Pretoria, South AfricaGoogle Scholar
  38. Van der Walt B (2012) The petrology, petrography and geochemistry of anomalous borehole core sequences in the Highveld coalfield, South Africa: a case study for diatreme activity. M.Sc. thesis, University of JohannesburgGoogle Scholar
  39. Vegter JR (1995) An explanation of a set of National Groundwater Maps. Water Research Commission. Report No TT 74/95Google Scholar
  40. Vegter JR (2001) Groundwater development in South Africa and an introduction to the hydrogeology of groundwater regions. WRC Report No TT134/00. Water Research Commission, PretoriaGoogle Scholar
  41. Voordouw RJ, Rajesh HM (2012) Granitoids from the Margate terrane and their implication for tectono-magmatic models of the Natal Metamorphic Province (South Africa). S Afr J Geol 115:47–64CrossRefGoogle Scholar
  42. Witthuser K, Cobbing J and Titus R (2009) Review of GRA1, GRA2 and International Assessment Methodologies. DWA Report No. P RSA 000/00/11609/6. Department of Water Affairs. PretoriaGoogle Scholar
  43. Woodford AC, Chevallier L (2002) Hydrogeology of the Main Karoo Basin: Current knowledge and future research needs. WRC Report No. TT 179/02. PretoriaGoogle Scholar
  44. Woodford AC and Rosewarn PP (2006) How much groundwater does South Africa have? SRK Consulting, Cape Town. http://www.srk.com/files/File/newsletters/groundwater/PDFs/1_A_Woodford.pdf., Accessed 03 Mar 2018.
  45. Woodford AC, Rosewarne P P and Girman J (2009). How much groundwater does South Africa have? (http://www.srk.co.za/files/File/newsletters/groundwater/PDFs/1_A_Woodford.pdf, Accessed Aug 03, 2017)
  46. Wright EP (1992) The hydrogeology of crystalline basement aquifers in Africa. In: Wright, E.P. and Burgess, W.G. (eds.). The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publication, 66: 1–27Google Scholar
  47. Xu Y, Colvin C, Van Tonder GJ, Hughes S, Le Maitre D, Zhang J and Braune E (2003) Towards the Resource Directed Measures: Groundwater Component. WRC Report No 1090–2/1/03. Water Research Commission, Pretoria. 134pGoogle Scholar
  48. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370:207–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Council for GeosciencePretoriaSouth Africa

Personalised recommendations