Advertisement

Hydrogeology Journal

, Volume 27, Issue 2, pp 685–701 | Cite as

Calibration of regional hydraulic and transport properties of an arid-region aquifer under modern and paleorecharge conditions using water levels and environmental tracers

  • Th. MüllerEmail author
  • Ward Sanford
Paper
  • 184 Downloads

Abstract

A two-dimensional numerical groundwater flow model was established and calibrated for the hyperarid Najd region in southern Oman. The results indicate that recent recharge rates are required to sustain the observed groundwater heads in the Najd. The model was also used to estimate possible ranges of past recharge rates and the effective porosity of the main aquifer unit. Recharge rates during past humid periods were estimated to be no more than 1–3 times modern rates. The effective porosity was estimated to be between 0.06 and 0.093. Insight into the nature of the long-term transport within the aquifer was gained by using transient model runs over the last 350 ka and (1) varying the recharge intensity (from 0.1 to 2.5 times modern), and (2) the timing and duration of humid and dry periods. Finally, results indicate that although recharge rates and the flow conditions have likely changed over time, a steady-state model is capable of reproducing the observed groundwater residence times in the Najd based on carbon-14, helium and chlorine-36 dating.

Keywords

Environmental tracer Groundwater recharge Paleohydrology Numerical modeling Oman 

Calage des propriétés régionales hydrauliques et de transport d’un aquifère de région aride sous des conditions actuelles et anciennes de recharge utilisant des niveaux d’eau et des traceurs environnementaux

Résumé

Un modèle numérique bidimensionnel de l’écoulement des eaux souterraines de la région hyperaride du Nadj, dans le Sud de l’Oman, a été réalisé et calé. Les résultats indiquent que les taux de recharge récents sont nécessaires pour corroborer les charges hydrauliques observées de l’aquifère de Nadj. Le modèle a été également utilisé pour estimer l’éventail possible des taux de recharge du passé et la porosité efficace de la principale unité aquifère. Les taux de recharge des périodes humides passées n’ont pas été estimés à plus de 1–3 fois les taux actuels. La porosité efficace a été estimée entre 0.06 et 0.093. Un aperçu de la nature du transport à long terme au sein de l’aquifère a été obtenu en utilisant les flux d’un modèle transitoire durant les derniers 350,000 ans et en faisant varier (1) l’intensité de la recharge (de 0.1 à 2.5 fois l’actuelle) et (2) la succession et la durée des périodes humides et sèches. Finalement, les résultats indiquent que, bien que les taux de recharge et les conditions d’écoulement aient vraisemblablement changé au cours du temps, un modèle en régime permanent est. capable de reproduire les temps de résidence observés dans l’aquifère de Nadj, tels que déduits des datations au carbone-14, à l’hélium et au chlore-36.

Calibración de las propiedades hidráulicas y del transporte regional de un acuífero de una región árida en condiciones actuales y de paleorecarga utilizando niveles de agua y trazadores ambientales

Resumen

Se probó y calibró un modelo numérico bidimensional de flujo de agua subterránea para la región de Najd en el sur de Omán. Los resultados indican que se requieren tasas de recarga recientes para sostener las alturas hidráulicas del agua subterránea observadas en el Najd. El modelo también se utilizó para estimar posibles rangos de tasas de recarga pasadas y la porosidad efectiva de la unidad del acuífero principal. Las tasas de recarga durante los períodos húmedos pasados se estimaron en no más de 1–3 veces las tasas actuales. La porosidad efectiva se estimó entre 0.06 y 0.093. La comprensión de la naturaleza del transporte a largo plazo dentro del acuífero se obtuvo mediante el uso de un modelo transitorio en los últimos 350 ka y (1) variando la intensidad de recarga (de 0.1 a 2.5 veces de la actual), y (2) el tiempo y la duración de periodos húmedos y secos. Finalmente, los resultados indican que aunque las tasas de recarga y las condiciones de flujo probablemente han cambiado con el tiempo, un modelo de estado estable es capaz de reproducir los tiempos de residencia observados en el agua subterránea en el Najd basándose en la datación de carbono-14, helio y cloro-36.

利用水位和和环境示踪剂校准现代补给和古代补给条件下的干旱地区含水层的区域水力特性和传输特性

摘要

建立了安曼南部高度干旱的Najd地区二维地下水流数值模型,并对此进行了校准。结果表明,需要近代的补给数量以维持所观测到的Najd地区水头。模型还用来估算过去补给量的可能范围和主要含水层单元的有效孔隙度。估算结果显示,过去湿润期补给量不超过当代补给量的1-3倍。估算的有效孔隙度为0.06至0.093。利用瞬时模型模拟了(1)不同补给密度(0.1到2.5倍的当代补给密度)和(2)湿润和干旱期的时间设定和持续时间不同条件下过去350 ka以来的各种情况,对含水层内部长期运移的特性有了新的认识。最终,结果表明,尽管补给量和水流条件过去一直在发生变化,但根据碳14、氦和氯36测年,稳定态模型能够再现Najd地区观测到的地下水滞留时间。

Calibração das propriedades hidráulicas e de transporte regionais de um aquífero de região árida sob condições modernas e de paleo recarga usando níveis de água e traçadores ambientais

Resumo

Um modelo numérico bidimensional de fluxo de águas subterrâneas foi estabelecido e calibrado para a região hiperárida de Najd, no sul de Omã. Os resultados indicam que taxas de recarga recentes são necessárias para sustentar as nascentes observadas em Najd. O modelo também foi usado para estimar possíveis faixas de taxas de recargas passadas e a porosidade efetiva da unidade aquífera principal. As taxas de recarga durante períodos úmidos passados ​​foram estimadas em não mais que 1–3 vezes as taxas modernas. A porosidade efetiva foi estimada entre 0.06 e 0.093. A compreensão da natureza do transporte de longo prazo, dentro do aquífero, foi obtida usando modelos transientes nos últimos 350 mil anos e (1) variando a intensidade de recarga (de 0.1 a 2.5 vezes a moderna), e (2) o tempo e a duração de períodos úmidos e secos. Finalmente, os resultados indicam que, embora as taxas de recarga e as condições de fluxo provavelmente tenham mudado com o tempo, um modelo de estado estacionário é capaz de reproduzir os tempos de residência observados em Najd, com base na datação de carbono-14, hélio e cloro-36.

Notes

Acknowledgements

The authors would like to thank the Ministry of Regional Municipalities and Water Resources (MRMWR) of the Sultanate of Oman for providing data and their steady support.

Supplementary material

10040_2018_1894_MOESM1_ESM.pdf (498 kb)
ESM 1 (PDF 498 kb)

References

  1. Abdul-Wahab SA (2003) Analysis of thermal inversions in the Khareef Salalah region in the Sultanate of Oman. J Geophys Res Atmos 108(D9)Google Scholar
  2. Al-Mashaikhi KSA (2011) Evaluation of groundwater recharge in Najd aquifers using hydraulics, hydrochemical and isotope evidences. PhD Thesis, Helmholtz Centre for Environmental Research, UFZ, GermanyGoogle Scholar
  3. Al-Mashaikhi K, Oswald S, Attinger S, Büchel G, Knöller K, Strauch G (2012) Evaluation of groundwater dynamics and quality in the Najd aquifers located in the Sultanate of Oman. Environ Earth Sci 66(4):1195–1211Google Scholar
  4. Bakiewicz W, Milne DM, Noori M (1982) Hydrogeology of the Umm Er Radhuma aquifer, Saudi Arabia, with reference to fossil gradients. Q J Eng Geol Hydrogeol 15(2):105–126CrossRefGoogle Scholar
  5. Burns SJ, Fleitmann D, Matter A, Neff U, Mangini A (2001) Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29(7):623–626CrossRefGoogle Scholar
  6. Clark ID (1987) Groundwater resources in the Sultanate of Oman: origin, circulation times, recharge processes and paleoclimatology. Isotopic and geochemical approaches. PhD Thesis, Paris 11, FranceGoogle Scholar
  7. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300(5626):1737–1739CrossRefGoogle Scholar
  8. Fleitmann D, Burns SJ, Pekala M, Mangini A, Al-Subbary A, Al-Aowah M, Kramers J, Matter A (2011) Holocene and Pleistocene pluvial periods in Yemen, southern Arabia. Quat Sci Rev 30(7):783–787CrossRefGoogle Scholar
  9. Freeze RA (1979) Porosity and void ratio. In: Groundwater, 1st edn. Prentice-Hall, Upper Saddle River, NJ, pp 36–38Google Scholar
  10. Friesen J, Zink M, Bawain A, Müller T (2018) Hydrometeorology of the Dhofar cloud forest and its implications for groundwater recharge. J Hydrol Reg Stud 16:54–66CrossRefGoogle Scholar
  11. Fuchs M, Buerkert A (2008) A 20 ka sediment record from the Hajar Mountain range in N-Oman, and its implication for detecting arid–humid periods on the southeastern Arabian Peninsula. Earth Planet Sci Lett 265(3):546–558CrossRefGoogle Scholar
  12. Gerber C, Vaikmäe R, Aeschbach W, Babre A, Jiang W, Leuenberger M, Lu Z-T, Mokrik R, Müller P, Raidla V, Saks T, Waber HN, Weissbach T, Zappala JC, Purtschert R (2017) Using 81 Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochim Cosmochim Acta 205:187–210CrossRefGoogle Scholar
  13. Harbaugh AW (2005) MODFLOW-2005, the US geological survey modular ground-water model: the ground-water flow process (book 6, chapter A16). US Geological Survey, Reston, VAGoogle Scholar
  14. Hildebrandt A, Al Aufi M, Amerjeed M, Shammas M, Eltahir EA (2007) Ecohydrology of a seasonal cloud forest in Dhofar: 1. field experiment. Water Resour Res 43(10)Google Scholar
  15. Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Chichester, UKGoogle Scholar
  16. Konikow LF (1985) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer: extended interpretation and reply: extended interpretation. Geol Soc Am Bull 96(8):1096–1098CrossRefGoogle Scholar
  17. Müller T, Osenbrueck K, Strauch G, Pavetich S, Al-Mashaikhi KS, Herb C, Merchel S, Rugel G, Aeschbach W, Sanford W (2016) Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman. Appl Geochem 74:67–83CrossRefGoogle Scholar
  18. Neff U (2001) Massenspektrometrische Th/U-Datierung von Höhlensintern aus dem Oman: Klimaarchive des asiatischen Monsuns [Mass spectrometric Th/U dating of cave sinters from Oman: climate archives of the Asian monsoon], PhD Thesis, Heidelberg University, Heidelberg, GermanyGoogle Scholar
  19. Nerietnicks I (1981) Age dating of groundwater in fissured rock: influence of water volumes in micropores. Water Resour Res 17(2):421–422CrossRefGoogle Scholar
  20. NMOC (Naval Meteorology and Oceanography Command) (2018) Public Facing Website, Joint Typhoon Warning Center, North Indian Best Track Data. http://www.metoc.navy.mil/jtwc/jtwc.html?north-indian-ocean. Accessed 4 October 2018
  21. Patterson RJ, Kinsman DJJ (1981) Hydrologic framework of a sabkha along Arabian gulf. AAPG Bull 65(8):1457–1475Google Scholar
  22. Poeter EP, Hill MC (1999) UCODE, a computer code for universal inverse modeling1. Comput Geosci 25(4)457–462Google Scholar
  23. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW: the US Geological Survey finite-difference ground-water flow model. US Geol Surv Open-File Rep 94-464Google Scholar
  24. Robinson BW, Gunatilaka A (1991) Stable isotope studies and the hydrological regime of sabkhas in southern Kuwait, Arabian Gulf. Sediment Geol 73(1–2):141–159CrossRefGoogle Scholar
  25. Rohling EJ, Grant KM, Roberts AP, Larrasoaña JC (2013) Paleoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years: implications for hominin migrations. Curr Anthropol 54(S8):S183–S201CrossRefGoogle Scholar
  26. Rosenberg TM, Preusser F, Fleitmann D, Schwalb A, Penkman K, Schmid TW, Al-Shanti MA, Matter A (2011) Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39(12):1115–1118CrossRefGoogle Scholar
  27. Saber M, Alhinai S, Al Barwani A, Ahmed AS, Kantoush SA, Habib E, Borrok DM (2017) Satellite-based estimates of groundwater storage changes at the Najd Aquifers in Oman. In: Water resources in arid areas: the way forward. Springer, Cham, Switzerland, pp 155–169Google Scholar
  28. Sanford WE, Wood WW (2001) Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrogeol J 9(4):358–366CrossRefGoogle Scholar
  29. Schulz S, Horovitz M, Rausch R, Michelsen N, Mallast U, Köhne M, Siebert C, Schüth C, Al-Saud M, Merz R (2015) Groundwater evaporation from salt pans: examples from the eastern Arabian Peninsula. J Hydrol 531:792–801CrossRefGoogle Scholar
  30. Strauch G, Al-Mashaikhi KS, Bawain A, Knöller K, Friesen J, Müller T (2014) Stable H and O isotope variations reveal sources of recharge in Dhofar, Sultanate of Oman. Isot Environ Health Stud 50(4):475–490CrossRefGoogle Scholar
  31. Sturchio NC, Du X, Purtschert R, Lehmann BE, Sultan M, Patterson LJ, Lu Z-T, Müller P, Bigler T, Bailey K, O’Connor TP, Young L, Lorenzo R, Becker R, El Alfy Z, El Kaliouby B, Dawood Y, Abdallah AMA (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31(5)Google Scholar
  32. Weyhenmeyer CE, Burns SJ, Waber HN, Aeschbach-Hertig W, Kipfer R, Loosli HH, Matter A (2000) Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science 287(5454):842–845CrossRefGoogle Scholar
  33. Wood WW, Imes JL (1995) How wet is wet? Precipitation constraints on Late Quaternary climate in the southern Arabian Peninsula. J Hydrol 164(1–4):263–268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of HydrogeologyHelmholtz-Centre for Environmental Research – UFZLeipzigGermany
  2. 2.US Geological SurveyRestonUSA

Personalised recommendations