Advertisement

Hydrogeology Journal

, Volume 27, Issue 2, pp 669–683 | Cite as

Groundwater-flow-system characterization with hydrogeochemistry: a case in the lakes discharge area of the Ordos Plateau, China

  • Guofang Pan
  • Xiaoqian LiEmail author
  • Jun Zhang
  • Yunde Liu
  • Hui Liang
Paper

Abstract

Understanding the pattern of regional groundwater circulation is essential for sustainable management of groundwater resources and ecosystems protection. A large-scale basin may develop nested groundwater flow systems including local, intermediate and regional flow systems. Hydrogeochemical tracing may be an effective methodology to identify different groundwater flow systems, considering its routine application in field investigation. This study uses wavy-topography-driven regional groundwater flow in the groundwater-fed lakes area of the northern Ordos Plateau, China, as an example to test the effectiveness of a hydrogeochemical method for groundwater-flow-system characterization. Samples of groundwater from wells with different depths and lake water were collected and analyzed. Hierarchical cluster analysis was conducted using the pH, electrical conductivity, and major ions as the input, which leads to three clusters with distinct geochemical compositions. Considering the hydrochemical characteristics, wells depths, and sampling locations, different groundwater flow systems were identified. Geochemical evolution was affected by processes such as leaching, cation exchange, evaporation and human activities. The relationship between δD and δ18O indicates that the shallow and deep groundwater were recharged by atmospheric precipitation during the modern time and a past colder period, respectively. The groundwater geochemistry is closely related to groundwater circulation depth within different flow systems, indicated by comparison of geochemical processes among the three clusters. This work highlights a hydrochemical method that can identify nested groundwater flow systems in the lakes discharge area of this large-scale basin and provides a better understanding of the hydrogeochemical evolution from the processes involved in relation to groundwater flow systems.

Keywords

Groundwater flow Groundwater-fed lakes Hydrogeochemical tracing Hydrochemistry China 

Caractérisation du système hydrogéologique à l’aide de l’hydrogéochimie: un cas d’étude dans la zone de décharge des lacs du Plateau d’Ordos, Chine

Résumé

La compréhension du modèle de circulation régionale des eaux souterraines est essentielle pour la gestion durable des ressources en eau et la protection des écosystèmes. Un grand bassin peut développer des systèmes d’écoulement d’eaux souterraines imbriqués, y compris des systèmes d’écoulements locaux, intermédiaires et régionaux. Le traçage hydrogéologique peut être une méthode bien adaptée à l’identification des différents systèmes d’écoulements d’eaux souterraines, étant donné son application en routine dans les études de terrain. Cette étude utilise les écoulements d’eaux souterraines régionaux conditionnés par un relief vallonné dans la zone des lacs du nord du plateau d’Ordos, Chine, alimentés par les eaux souterraines, en tant qu’exemple pour tester l’efficacité de la méthode hydrogéochimique pour la caractérisation des systèmes d’écoulements d’eaux souterraines. Des échantillons d’eau souterraine de forages à différentes profondeurs et d’eau du lac ont été prélevés et analysés. Une analyse par ensembles hiérarchisés a été réalisée en utilisant le pH, la conductivité électrique, et les ions majeurs comme données d’entrées, ce qui a permis d’identifiés trois groupes avec des compositions géochimiques distinctes. En considérant les caractéristiques hydrogéochimiques, les profondeurs des forages et les localisations des échantillons, différents systèmes d’écoulements d’eaux souterraines ont été identifiés. L’évolution géochimique a été affectée par des processus tels que le lessivage, l’échange de cations, évaporation et les activités anthropiques. La relation entre δD et δ18O montre que les aquifères superficiels et profonds sont rechargés respectivement par les précipitations atmosphériques actuels et de périodes passées plus froides. La comparaison des processus géochimiques au sein des trois groupes permet d’indiquer que la géochimie des eaux souterraines est fortement liée aux profondeurs des circulations des eaux souterraines au sein des différents systèmes d’écoulement. Ce travail met en évidence l’intérêt de la méthode hydrogéochimique pour identifier des systèmes d’écoulement d’eaux souterraines imbriqués dans le secteur de décharge des aquifères vers les lacs d’un grand bassin et fournit une meilleure compréhension de l’évolution hydrogéochimique à partir des processus impliqués en relation avec les systèmes d’écoulement d’eaux souterraines.

Caracterización hidrogeoquímica del sistema de flujo de agua subterránea: un caso en el área de descarga de lagos del Ordos Plateau, China

Resumen

Es esencial comprender el patrón de la circulación regional de agua subterránea para la gestión sostenible de los recursos hídricos subterráneos y para la protección de los ecosistemas. Una cuenca a gran escala puede desarrollar sistemas de flujo subterráneo anidados, incluidos los sistemas de flujo local, intermedio y regional. Un trazador hidrogeoquímico puede ser una metodología efectiva para identificar diferentes sistemas de flujo de agua subterránea, considerando su aplicación rutinaria en la investigación de campo. Este estudio utiliza el flujo de agua subterránea regional impulsado por una topografía ondulada en el área de lagos alimentados por agua subterránea en el norte del Ordos Plateau, China, como un ejemplo para probar la efectividad de un método hidrogeoquímico para la caracterización del sistema de flujo del agua subterránea. Se recolectaron y analizaron muestras de agua subterránea de pozos con diferentes profundidades y agua del lago. El análisis jerárquico de grupos se realizó utilizando el pH, la conductividad eléctrica y los iones principales como entrada, lo que lleva a tres grupos con distintas composiciones geoquímicas. Teniendo en cuenta las características hidroquímicas, la profundidad de los pozos y las posiciones de muestreo, se identificaron diferentes sistemas de flujo de agua subterránea. La evolución geoquímica se vio afectada por procesos como la lixiviación, el intercambio de cationes, la evaporación y las actividades humanas. La relación entre δD y δ18O indica que las aguas subterráneas poco profundas y profundas fueron recargadas por la precipitación atmosférica durante la época actual y un período pasado más frío, respectivamente. La geoquímica del agua subterránea está estrechamente relacionada con la profundidad de circulación subterránea dentro de diferentes sistemas de flujo, que se indica mediante la comparación de los procesos geoquímicos entre los tres grupos. Este trabajo destaca un método hidroquímico que puede identificar sistemas de flujo de agua subterránea anidados en el área de descarga de lagos de esta cuenca a gran escala y proporciona una mejor comprensión de la evolución hidrogeoquímica de los procesos involucrados en relación con los sistemas de flujo de agua subterránea.

应用水文地球化学方法识别地下水流动系统: 以中国鄂尔多斯高原湖泊排泄区为例

摘要

区域地下水循环模式的理解与认识,对于地下水资源的合理开发与生态系统的保护具有重要意义。大型盆地可能发育着多级次嵌套的地下水流系统,包括局部、中间和区域地下水流系统。水文地球化学方法作为水文地质野外调查常规方法,能够为不同地下水流系统的识别提供重要信息,可能成为一种更具应用前景的有效方法。因此,本研究以中国鄂尔多斯北部高原盆地湖泊排泄区为例,探究应用水文地球化学方法刻画地形控制的区域地下水流动系统的有效性。在研究区结合水文地质条件采集不同埋深的地下水和典型湖水样品进行水化学与氢、氧同位素的测试分析。基于pH、EC和主要阴阳离子指标的聚类分析,将地下水样品分为三个显著不同的水文地球化学类型,代表着三个不同的地下水流系统。溶滤作用、阳离子交换和人类活动是地下水水文地球化学演化的主要影响因素。地下水的氢氧同位素组成特征也表明了三个不同流动系统的地下水补给特征的差异,浅层地下水主要为现代大气降水补给,深层地下水受寒冷气候时期降水补给影响。通过三个类别地下水的地球化学过程对比研究,表明地下水的地球化学组成特征与不同流动系统的地下水循环深度是密切相关的。研究表明水文地球化学方法能够有效地识别大型盆地湖泊集中区的地下水流动系统,而且基于不同地下水流动系统的过程研究可以更好地认识地下水水文地球化学的演化特征。

Caracterização de sistema de fluxo de águas subterrâneas com hidrogeoquímica: um caso na área de descarga de lagos do Planalto de Ordos, China

Resumo

Entender o padrão de circulação regional das águas subterrâneas é essencial para o gerenciamento sustentável de recursos de águas subterrâneas e ecossistemas protegidos. Uma bacia de larga escala talvez desenvolva sistemas de fluxo de águas subterrâneas locais, intermediários e regionais. Traçadores hidrogeoquímicos podem ser uma metodologia efetiva para identificar diferentes sistemas de fluxo de águas subterrâneas, considerando sua rotina de aplicação em investigação de campo. Este estudo usa o fluxo de água subterrânea regional controlado por topografia ondulada em lagos alimentados por águas subterrâneas na área do norte do Planalto de Ordos, China, como um exemplo para testar a efetividade do método hidrogeoquímico para caracterização do fluxo de águas subterrâneas. Amostras de águas subterrâneas de poços com diferentes profundidades e água do lago foram coletadas e analisadas. Análises hierárquicas de agrupamento foram conduzidas usando o pH, condutividade elétrica, e íons maiores como dados de entrada, que resultam em três agrupamentos com composições geoquímicas distintas. Considerando as características geoquímicas, profundidade dos poços, e localização das amostragens, diferentes sistemas de fluxo de águas subterrâneas foram identificados. A relação entre δD e δ18O indica que as águas subterrâneas rasas e profundas foram recarregadas por precipitação atmosférica durante o tempo recente e um período pretérito mais gelado, respectivamente. A geoquímica das águas subterrâneas está altamente relacionada a profundidade de circulação das águas subterrâneas dentro de diferentes sistemas de fluxo, indicados por comparação de processos geoquímicos entre os três agrupamentos de dados. Este trabalho ressalta um método hidrogeoquímico que pode identificar sistemas de fluxo de águas subterrâneas integrados nas áreas de descarga dos lagos desta bacia de larga escala e fornece uma melhor compreensão da evolução hidrogeoquímica do processo envolvido em relação aos sistemas de fluxo de águas subterrâneas.

Notes

Funding information

This study was funded by the foundation of Xi’an Center of Geological Survey, CGS groundwater and ecology key laboratory (No. KLGEAS201602), the National Natural Science Foundation of China (Nos. 41672245 and 41772263), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan; No. CUG170644).

Supplementary material

10040_2018_1888_MOESM1_ESM.pdf (317 kb)
ESM 1 (PDF 317 kb)

References

  1. Abbas Z, Su CL, Tahira F, Mapoma HWT, Aziz SZ (2015) Quality and hydrochemistry of groundwater used for drinking in Lahore, Pakistan: analysis of source and distributed groundwater. Environ Earth Sci 74:4281–4294CrossRefGoogle Scholar
  2. Alley WM, Healy RW, Labaugh JW, Reilly TE (2002) Flow and storage in groundwater systems. Science 296:1985–1990CrossRefGoogle Scholar
  3. Amiri V, Sohrabi N, Dadgar MA (2015) Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran. Environ Earth Sci 74:6163–6176CrossRefGoogle Scholar
  4. Back W (1966) Hydrochemical facies and ground-water flow patterns in northern part of Atlantic coastal plain. AAPG Bull 44(44)Google Scholar
  5. Boulton AJ (2009) Recent progress in the conservation of groundwaters and their dependent ecosystems. Aquatic Conserv Mar Freshwater Ecosyst 19:731–735CrossRefGoogle Scholar
  6. Carrillo-Rivera JJ, Varsányi JI, Kovács LÓ, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103CrossRefGoogle Scholar
  7. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FLGoogle Scholar
  8. Connor R (2015) The United Nations World Water Development Report 2015: water for a sustainable world, vol 1. UNESCO, ParisGoogle Scholar
  9. Currell MJ, Han D, Chen Z, Cartwright I (2012) Sustainability of groundwater usage in northern China, dependence on palaeowaters and effects on water quality, quantity and ecosystem health. Hydrol Process 26(26):4050–4066CrossRefGoogle Scholar
  10. Davis JC (1988) Statistics, data analysis in geology. Biometrics 44:526–527CrossRefGoogle Scholar
  11. Dong W (2005) Application of inverse hydrogeochemical modeling in 14C age correction of deep groundwater in the Ordos Cretaceous artesian basin, MSc Thesis, Jilin University, ChinaGoogle Scholar
  12. Drever J (1997) The geochemistry of natural waters: surface and groundwater environments. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  13. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  14. Güler C, Thyne GD, Mccray JE, Turner KA (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474CrossRefGoogle Scholar
  15. Gibbs RJ (1971) Mechanisms controlling world water chemistry. Science 172:870CrossRefGoogle Scholar
  16. Hou GC, Lin XY, Su XS, Wang XY, Liu J (2006a) Groundwater system in Ordos Artisan Basin (CAB) (in Chinese with English abstract). J Jilin Univ (Earth Sci Ed) 36(3):391–398Google Scholar
  17. Hou GC, Zhang MS, Liu F, Wang YH (2006b) Groundwater investigation in the Ordos Basin (in Chinese). China Geological Survey, BeijingGoogle Scholar
  18. Hou GC, Zhang MS, Wang YH, Zhao ZH, Liang YP, Tao ZP, Yang YC, Li Q, Yin LH, Wang XY, Wang D, Li Y (2007) Groundwater resources of the Ordos Basin and its development and utilization (in Chinese with English abstract). Northwest Geol 40(1):7–34Google Scholar
  19. Hou GC, Liang YP, Su XS, Zhao ZH, Tao ZP, Yin LH, Yang YC, Wang XY (2008) Groundwater systems and resources in the Ordos basin, China. J Geol 82(5):1061–1069Google Scholar
  20. Jalali M (2007) Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran. Environ Geol 52:1133–1149CrossRefGoogle Scholar
  21. Jiang XW, Wan L, Cardenas MB, Ge S, Wang XS (2010) Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys Res Lett 37:L05403Google Scholar
  22. Jiang XW, Wang XS, Wan L, Ge S (2011) An analytical study on stagnant points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resour Res 47:128–139CrossRefGoogle Scholar
  23. Jiang XW, Wan L, Ge S, Cao GL, Hou GC, Hu FS, Wang XS, Li HL, Liang SH (2012) A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resour Res 48:W12502CrossRefGoogle Scholar
  24. Jiang XW, Wan L, Wang JZ, Yin BX, Fu WX, Lin CH (2014) Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophys Res Lett 41:2812–2819CrossRefGoogle Scholar
  25. Jiang XW, Wan L, Wang XS, Wang D, Wang H, Wang JZ, Zhang H, Zhang ZY, Zhao KY (2018) A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China. Hydrogeol J(2):1–12Google Scholar
  26. Khalil MM, Tokunaga T, Yousef AF (2015) Insights from stable isotopes and hydrochemistry to the Quaternary groundwater system, south of the Ismailia Canal, Egypt. J Hydrol 527:555–564CrossRefGoogle Scholar
  27. Li PY, Wu JH, Qian H (2013a) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69:2211–2225CrossRefGoogle Scholar
  28. Li PY, Qian H, Wu JH, Zhang YQ, Zhang HB (2013b) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ 32:195–206CrossRefGoogle Scholar
  29. Li YF, Xu ZH, Wang JX, Wu YG, Hou GC (2005) Guidelines to locate and protect high-quality groundwater in Baiyu Mountain area of China. Environ Geol 47:647–652CrossRefGoogle Scholar
  30. Mádl-Szőnyi J, Tóth Á (2015) Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J 23:1359–1380CrossRefGoogle Scholar
  31. Marchetti ZY, Carrillo-Rivera JJ (2014) Tracing groundwater discharge in the floodplain of the Parana River, Argentina: implications for its biological communities. River Res Appl 30:166–179CrossRefGoogle Scholar
  32. Marghade D, Malpe DB, Zade AB (2012) Major ion chemistry of shallow groundwater of a fast growing city of central India. Environ Monit Assess 184:2405CrossRefGoogle Scholar
  33. Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. J Hydrol 172:31–59CrossRefGoogle Scholar
  34. Menció A, Folch A, Mas-Pla J (2012) Identifying key parameters to differentiate groundwater flow systems using multifactorial analysis. J Hydrol 472–473:301–313CrossRefGoogle Scholar
  35. Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem 23:863–894CrossRefGoogle Scholar
  36. Parkhurst DL, Appelo CAJ (1999) User’s Guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Earth Science Information Center, DenverGoogle Scholar
  37. Pavlovskiy I, Selle B (2015) Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system. Ground Water 53:156–165CrossRefGoogle Scholar
  38. Petrides B, Cartwright I, Weaver TR (2006) The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeol J 14:1522–1543CrossRefGoogle Scholar
  39. Piper AM (1953) A graphic procedure in the geochemical interpretation of water analysis. United States Geological Survey, Washington, DCGoogle Scholar
  40. Praamsma T, Novakowski K, Kyser K, Hall K (2009) Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer. J Hydrol 366:35–45CrossRefGoogle Scholar
  41. Prada SJ, Cruz V, Figueira C (2016) Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. J Hydrol 536:409–425CrossRefGoogle Scholar
  42. Qian C, Wu X, Mu WP, Fu RZ, Zhu G, Wang ZR, Wang DD (2016) Hydrogeochemical characterization and suitability assessment of groundwater in an agro-pastoral area, Ordos Basin, NW China. Environ Earth Sci 75:1356CrossRefGoogle Scholar
  43. Schoeller H (1984) Geochemistry of groundwater. UNESCO Studies and Reports in Hydrology 7, UNESCO, ParisGoogle Scholar
  44. Seraphin P, Vallet-Coulomb C, Gonçalvès J (2016) Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: the Crau aquifer. J Hydrol 542:241–253CrossRefGoogle Scholar
  45. Sishodia RP, Shukla S, Graham WD, Wani SP, Jones JW, Heaney J (2017) Current and future groundwater withdrawals: effects, management and energy policy options for a semi-arid Indian watershed. Adv Water Resour 110Google Scholar
  46. Smart PL (1995) Geochemistry, groundwater and pollution by C.A.J. Appelo and D. Postma, A.A. Balkema, Rotterdam, 1993. No. of pages: xvi + 536. Price: £55.00 (£28 paperback). ISBN 90-5410-106-7. Earth Surf Process Landforms 20:479–480Google Scholar
  47. Sun F (2010) Research on groundwater circulation and environment effect of Dosit River in Ordos Basin. PhD Thesis, Chang’an University, ChinaGoogle Scholar
  48. Taraszki MD (2010) Book review: Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization, by József Tóth (Cambridge University Press, 2009). Hydrogeol J 18:1971–1973CrossRefGoogle Scholar
  49. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812CrossRefGoogle Scholar
  50. Tóth J (1966) Mapping and interpretation of field phenomena for groundwater reconnaissance in a prairie environment, Alberta, Canada. Int Assoc Sci Hydrol Bull 11(2):20–68CrossRefGoogle Scholar
  51. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  52. Tóth Á, Havril T, Simon S, Galsa A, Santos FAM, Müller I, Mádl-Szőnyi J (2016) Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. J Hydrol 539:330–344CrossRefGoogle Scholar
  53. Wang DQ, Liu F, Hou GC (2002) Groundwater exploration in the Ordos Basin (in Chinese with English abstract). Nor Geol Unders 35(4):167–173Google Scholar
  54. Wang DQ, Liu ZC, Yin LH (2004) Hydrogeology features and groundwater systems in the Ordos Basin (in Chinese). Quatern Res 25(1):6–13Google Scholar
  55. Wang H, Jiang XW, Wan L, Han G, Guo H (2015) Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J Hydrol 527:433–441CrossRefGoogle Scholar
  56. Wang JL, Jin MG, Lu GP, Zhang DL, Kang FX, Jia BJ (2016) Investigation of discharge-area groundwaters for recharge source characterization on different scales: the case of Jinan in northern China. Hydrogeol J 24:1–15CrossRefGoogle Scholar
  57. Wang WL, Yang GY, Wang GL (2010) Groundwater numerical model of Haolebaoji well field and evaluation of the environmental problems caused by exploitation (in Chinese). South-to-North Water Transf Water Sci Technol 8:36–41Google Scholar
  58. Wang XY (2011) Research on groundwater circulation and hydrochemical evolution in Dake lake watershed in Ordos Basin. MSc Thesis, Jilin University, ChinaGoogle Scholar
  59. Winter TC, Rosenberry DO, Labaugh JW (2010) Where does the ground water in small watersheds come from? Ground Water 41:989–1000CrossRefGoogle Scholar
  60. Wörman A, Packman AI, Marklund L, Harvey JW, Stone SH (2006) Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophys Res Lett 33:L07402CrossRefGoogle Scholar
  61. Wu JH, Sun ZC (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Exposure Heal 8:311–329CrossRefGoogle Scholar
  62. Yang QC, Li ZJ, Ma HY, Wang LC, Martín JD (2016) Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the southeastern part of Ordos basin, China. Environ Pollut 218:879CrossRefGoogle Scholar
  63. Yin LH, Hou GC, Tao Z, Li Y (2010) Origin and recharge estimates of groundwater in the Ordos Plateau, People’s Republic of China. Environ Earth Sci 60:1731–1738CrossRefGoogle Scholar
  64. Yin LH, Hou GC, Su XS, Wang D, Dong JQ, Hao YH, Wang XY (2011) Isotopes (δD and δ 18 O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19:429–443CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guofang Pan
    • 1
  • Xiaoqian Li
    • 1
    • 2
    Email author
  • Jun Zhang
    • 3
  • Yunde Liu
    • 1
    • 2
  • Hui Liang
    • 1
  1. 1.School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  3. 3.Key Laboratory for Groundwater and Ecology in Arid and Semi-arid AreasXi’an Center of Geological Survey, Chinese Geological SurveyXi’anChina

Personalised recommendations