Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 239–248 | Cite as

Sustainability indices to evaluate groundwater adaptive management: a case study in California (USA) for the Sustainable Groundwater Management Act

  • Brian F. ThomasEmail author
Paper
  • 122 Downloads

Abstract

The Sustainable Groundwater Management Act (SGMA) enacted in California (USA) outlines legal standards to regulate groundwater management. A key requirement of SGMA is local-scale adaptive management, which requires evaluation of measurable objectives defined by local water users. The objective of this study is to illustrate a groundwater sustainability framework using performance indicators and groundwater-level elevation records that may be used to quantify objective management strategy outcomes. Application of the framework to groundwater basins in the Central Valley identified spatial variability in groundwater-basin sustainability indices, attributed to complex interactions between climate and groundwater use. Further, a temporal assessment of performance indicators documented the utility of the framework to evaluate the performance of adaptive management implementations. The proposed framework can be used to inform management decisions and identify future intervention management strategies.

Keywords

Groundwater management Groundwater monitoring Sustainability USA 

Indices de durabilité en vue d’évaluer une gestion adaptative des eaux souterraines: une étude de cas en Californie (USA) au titre de la Loi de Gestion Durable des Eaux Souterraines

Résumé

La Loi de Gestion Durable des Eaux Souterraines (LGDES) promulguée en Californie (USA) dresse le tableau des normes législatives visant à réglementer la gestion des eaux souterraines. Une exigence clé de la LGDES est. la gestion adaptée à l’échelle locale, qui nécessite l’évaluation d’objectifs mesurables définis par les usagers de l’eau. L’objectif de la présente étude est. de donner un exemple de cadre de durabilité pour les eaux souterraines recourant à des indicateurs de performance et à des enregistrements du niveau des eaux souterraines pouvant être utilisés pour quantifier les effets objectifs d’une stratégie de gestion. L’application de ce cadre aux bassins hydrogéologiques de Central Valley a mis en évidence une variabilité spatiale des indices de durabilité de ces bassins, attribuée à des interactions complexes entre le climat et l’utilisation de l’eau souterraine. De plus, une évaluation temporelle des indicateurs de performance a documenté l’utilité du cadre pour évaluer l’efficacité des réalisations de la gestion adaptative. Le cadre proposé peut être utilisé pour renseigner les décisions de gestion et identifier des stratégies futures de gestion des interventions.

Índices de sostenibilidad para evaluar la gestión adaptativa del agua subterránea: un estudio de caso en California (EEUU) para la Ley de Gestión Sostenible del Agua Subterránea

Resumen

La Ley de Gestión Sostenible de Aguas Subterráneas (SGMA) promulgada en California (EEUU) describe las normas legales para regular la gestión del agua subterránea. Un requisito clave de SGMA es la gestión adaptativa a escala local, que requiere la evaluación de los objetivos medibles definidos por los usuarios locales de agua. El objetivo de este estudio es ilustrar un marco de sostenibilidad del agua subterránea que utiliza indicadores de rendimiento y registros de elevación del nivel del agua subterránea que pueden utilizarse para cuantificar los resultados objetivos de la estrategia de gestión. La aplicación del marco a las cuencas de aguas subterráneas en el Valle Central identificó la variabilidad espacial en los índices de sostenibilidad de las cuencas de agua subterránea, atribuidos a interacciones complejas entre el clima y el uso del agua subterránea. Además, una evaluación temporal de los indicadores de rendimiento documentó la utilidad del marco para evaluar el rendimiento de las implementaciones de gestión adaptativa. El marco propuesto se puede utilizar para informar las decisiones de gestión e identificar futuras estrategias de gestión de intervención.

评估地下水合适管理的可持续性指数:为地下水可持续管理行动而在(美国)加利福尼亚州进行的一个实例研究

摘要

(美国)加利福尼亚州颁布的地下水可持续管理行动概括了进行地下水管理的法律标准。地下水可持续管理行动一个关键要求就是局部尺度的适应管理,需要评估由当地水使用者界定的可测量目标。本研究的目的就是利用可用来量化目标管理策略成果的性能指标及地下水位高程记录描述地下水可持续性框架。框架在中央河谷的地下水盆地的应用确定了地下水盆地可持续性指数的空间变化,这些空间变化是由气候和地下水利用之间的复杂相互作用造成的。此外,性能指标时间上的评价记载了框架的效用,以评估适应管理实施的性能。所提出的框架可用来通报管理决策,确定未来介入管理策略。

Índices de sustentabilidade para avaliar o manejo adaptativo das águas subterrâneas: um estudo de caso na Califórnia (EUA) para a Lei de Gestão Sustentável das Águas Subterrâneas

Resumo

A Lei de Gestão Sustentável das Águas Subterrâneas (Sustainable Groundwater Management Act, SGMA), promulgada na Califórnia (EUA), delineia os padrões legais para regular o gerenciamento das águas subterrâneas. Um requisito fundamental da SGMA é o gerenciamento adaptativo em escala local, que requer avaliação de objetivos mensuráveis definidos pelos usuários de água locais. O objetivo deste estudo é ilustrar uma estrutura de sustentabilidade das águas subterrâneas usando indicadores de desempenho e registros de elevação do nível das águas subterrâneas que podem ser utilizados para quantificar os resultados da estratégia de gerenciamento objetivos. A aplicação da estrutura às bacias de águas subterrâneas no Vale Central identificou a variabilidade espacial nos índices de sustentabilidade da bacia, atribuída a interações complexas entre o clima e o uso da água subterrânea. Além disso, uma avaliação temporal de indicadores de desempenho documentou a utilidade da estrutura para avaliar o desempenho de implementações de gerenciamento adaptativo. A estrutura proposta pode ser utilizada para informar as decisões de gestão e identificar futuras estratégias de gestão interventiva.

Notes

Acknowledgements

The author wishes to thank the associate editor and three reviewers whose comments contributed to substantial improvements to the original manuscript. This study was made possible using freely available data from the National Land Data Assimilation System (https://ldas.gsfc.nasa.gov/nldas/), National Snow and Ice Data Center (https://nsidc.org/data/g02158) and California Data Exchange Center (http://cdec.water.ca.gov/reservoir.html). In-situ groundwater observations were collected from the CASGEM system (https://www.casgem.water.ca.gov/).

References

  1. Aladjem D, Sunding D (2015) Marketing the sustainable groundwater management act: applying economics to solve California’s groundwater problems. Nat Resour Environ 30:28–31Google Scholar
  2. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16CrossRefGoogle Scholar
  3. Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Groundwater 53(6):826–829CrossRefGoogle Scholar
  4. California Data Exchange Center (2018) http://cdec.water.ca.gov/reservoir.html. Accessed 1 March 2018
  5. California Department of Water Resources (CADWR) (2014) Groundwater basin prioritization: final CASGEM basin prioritization results—June 2014. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Basin-Prioritization/Files/CA_GW-Basin-Prioritization_07-10-14.pdf. Accessed 15 July 2018
  6. California Department of Water Resources (CADWR) (2016) California’s groundwater: working toward sustainability (Bulletin 118). www.water.ca.gov/groundwater/bulletin118/index.cfm. Accessed 4 April 2018
  7. California Department of Water Resources (CADWR) (2018) Groundwater information center interactive map application. https://gis.water.ca.gov/app/gicima/. Accessed 14 June 2018
  8. Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys Res Lett 41(16):5904–5911CrossRefGoogle Scholar
  9. Chen F, Mitchell K, Schaake J, Xue Y, Pan HL, Koren V, Duan QY, Ek M, Betts A (1996) Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res Atmos 101(D3):7251–7268CrossRefGoogle Scholar
  10. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59:143–156CrossRefGoogle Scholar
  11. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948CrossRefGoogle Scholar
  12. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, De Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38(3)Google Scholar
  13. Faunt CC (ed) (2009) Groundwater availability of the Central Valley aquifer, California. US Geological Survey, Reston, VA, pp 1–57Google Scholar
  14. Faunt CC, Sneed M, Traum J, Brandt JT (2016) Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol J 24(3):675–684CrossRefGoogle Scholar
  15. Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012a) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50(1):19–26CrossRefGoogle Scholar
  16. Gleeson T, Wada Y, Bierkens MF, van Beek LP (2012b) Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410):197–200CrossRefGoogle Scholar
  17. Hanson RT, Belitz K (2009) Groundwater availability of the Central Valley aquifer, California. US Geol Surv Prof Pap 1766, 225 ppGoogle Scholar
  18. Harter T (2015) California’s agricultural regions gear up to actively manage groundwater use and protection. Calif Agric 69(3):193–201CrossRefGoogle Scholar
  19. Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour Res 18(1):14–20CrossRefGoogle Scholar
  20. Howitt R, Medellín-Azuara J, MacEwan D, Lund J, Sumner D (2014) Economic analysis of the 2014 drought for California agriculture. Davis, CA. UC Davis Center for Watershed Sciences. Online at https://watershed.ucdavis.edu/files/biblio/DroughtReport_23July2014_0.pdf. Accessed August 2018
  21. Koster RD, Suarez MJ (1992) Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J Geophys Res Atmos 97(D3):2697–2715CrossRefGoogle Scholar
  22. Lee CH (1915) The determination of safe yields of underground reservoirs of the closed basin type. Trans Am Soc Civ Eng 79(1):148–218Google Scholar
  23. Liang X, Wood EF, Lettenmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob Planet Chang 13(1–4):195–206CrossRefGoogle Scholar
  24. Loucks DP (1997) Quantifying trends in system sustainability. Hydrol Sci J 42(4):513–530CrossRefGoogle Scholar
  25. Loucks DP, Stedinger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  26. Marquez MF, Sandoval-Solis S, DeVicentis AJ, Partida JPO, Goharian E, Britos BR, Jordan PTS, McGourty GT, Lewis DJ, Elkins RB, Harper JM (2017) Water budget development for SGMA compliance, case study: Ukiah Valley Groundwater Basin. J Contemp Water Res Educ 162(1):112–127CrossRefGoogle Scholar
  27. Maupin MA, Kenny JF, Hutson SS, Lovelace JK, Barber NL, Linsey KS (2014) Estimated use of water in the United States in 2010. US Geol Surv Circ 1405Google Scholar
  28. Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Resour Manag 27(13):4409–4424CrossRefGoogle Scholar
  29. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L, Higgins RW (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res Atmos 109(D7)Google Scholar
  30. National Operational Hydrologic Remote Sensing Center (2004) Snow Data Assimilation System (SNODAS) data products at NSIDC. Natl. Snow and Ice Data Center, Boulder, CO.  https://doi.org/10.7265/N5TB14TC. Accessed August 2018
  31. Pandey VP, Shrestha S, Chapagain SK, Kazama F (2011) A framework for measuring groundwater sustainability. Environ Sci Pol 14(4):396–407CrossRefGoogle Scholar
  32. Peters E, Van Lanen HAJ, Torfs PJJF, Bier G (2005) Drought in groundwater: drought distribution and performance indicators. J Hydrol 306(1):302–317CrossRefGoogle Scholar
  33. Poland JF, Lofgren BE, Ireland RL, Pugh RG (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. US Geol Surv Prof Paper 437-H.Google Scholar
  34. Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51(7):5217–5238CrossRefGoogle Scholar
  35. Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1):245–256CrossRefGoogle Scholar
  36. Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: maintaining food security under growing scarcity. Ann Rev Environ Resour 34:205–222CrossRefGoogle Scholar
  37. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012a) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci 109(24):9320–9325CrossRefGoogle Scholar
  38. Scanlon BR, Longuevergne L, Long D (2012b) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48(4)Google Scholar
  39. Sneed M, Brandt JT (2015) Land subsidence in the San Joaquin Valley, California, USA, 2007–2014. Proceedings of the International Association of Hydrological Sciences 372:23–27CrossRefGoogle Scholar
  40. Sun Y, Kang S, Li F, Zhang L (2009) Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin Oasis of Northwest China. Environ Model Softw 24(10):1163–1170CrossRefGoogle Scholar
  41. Swenson SC, Lawrence DM (2015) A GRACE-based assessment of interannual groundwater dynamics in the community land model. Water Resour Res 51(11):8817–8833CrossRefGoogle Scholar
  42. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505CrossRefGoogle Scholar
  43. Theis CV (1940) The source of water derived from wells. Civ Eng 10(5):277–280Google Scholar
  44. Thomas BF, Famiglietti JS (2015) Sustainable groundwater management in the arid southwestern US: Coachella Valley, California. Water Resour Manag 29(12):4411–4426CrossRefGoogle Scholar
  45. Thomas BF, Landerer FW, Wiese DN, Famiglietti JS (2016) A comparison of watershed storage trends over the eastern and upper Midwestern regions of the United States, 2003–2015. Water Resour Res 52(8):6335–6347CrossRefGoogle Scholar
  46. Thomas BF, Caineta J, Nanteza J (2017a) Global assessment of groundwater sustainability based on storage anomalies. Geophys Res Lett 44(22)Google Scholar
  47. Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, Argus DF (2017b) GRACE groundwater drought index: evaluation of California Central Valley groundwater drought. Remote Sens Environ 198:384–392CrossRefGoogle Scholar
  48. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288Google Scholar
  49. Wada Y, van Beek LP, van Kempen CM, Reckman JW, Vasak S, Bierkens MF (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20)Google Scholar
  50. Watkins MM, Wiese DN, Yuan DN, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120(4):2648–2671CrossRefGoogle Scholar
  51. Wiese DN (2015) GRACE monthly global water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA.  https://doi.org/10.5067/TEMSC-OCL05. Accessed June 2017
  52. Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Government Printing Office, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geology and Environmental ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations