Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 395–407 | Cite as

Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization

  • Sien BenoitEmail author
  • Gert Ghysels
  • Kevin Gommers
  • Thomas Hermans
  • Frederic Nguyen
  • Marijke Huysmans
Paper

Abstract

The spatial distribution of hydraulic conductivity (K) in riverbeds is essential to understand and model river–groundwater interactions. However, K in riverbeds varies over several orders of magnitude and its spatial distribution is closely linked to complex geological and fluvial processes. Investigating the local distribution and spatial heterogeneity of K is therefore a challenging task. The use of direct current (DC) and time-domain-induced polarization (IP) geoelectrical methods to map qualitatively the spatial distribution of K within riverbeds is described. The approach is demonstrated for a test site situated in a typical lowland river in Belgium. Inverted geophysical parameters (resistivity, chargeability and normalized chargeability) are compared with estimates of K obtained through slug tests. In general, high values of K are observed in the middle of the river and lower values towards the banks, while the opposite is true for chargeability and normalized chargeability. Therefore, there exists an inverse correlation between K and IP geophysical parameters. Furthermore, geostatistical analyses using variograms show that all parameters have ranges of similar magnitudes. The strong correlation between K and chargeability or normalized chargeability can be explained by the fact that all three parameters are mainly controlled by clay and organic matter content.

Keywords

Riverbed hydraulic conductivity Geoelectrical methods Geostatistics Groundwater/surface-water relations Heterogeneity 

Caractérisation d’une conductivité hydraulique des berges spatialement variable par tomographie de résistivité électrique et de polarisation induite

Résumé

La distribution spatiale de la conductivité hydraulique (K) dans les berges est essentielle pour la compréhension et la modélisation des interactions nappe-rivière. Cependant, K varie dans les berges de plusieurs ordres de grandeur et sa distribution spatiale est étroitement liée à des processus géologiques et fluviaux complexes. C’est. pourquoi l’étude de la distribution et de l’hétérogénéité spatiale de K est un défi. L’utilisation des méthodes géophysiques électriques de courant continu (CC) et de polarisation provoquée induite (PI) dans le domaine temporel pour cartographier de manière qualitative la distribution spatiale de K dans les berges est décrite. Cette approche est mise en œuvre sur un site d’essai localisé sur une rivière caractéristique d’une plaine en Belgique. Les paramètres géophysiques déduits (résistivité, chargeabilité et chargeabilité normalisée) sont comparés aux estimations de K obtenues par des tests d’injection. Les valeurs élevées de K sont généralement observées au milieu de la rivière et les plus faibles vers les berges, alors que l’inverse est constaté pour la chargeabilité et la chargeabilité Normalisée. Il existe donc une corrélation inverse entre K et les paramètres géophysiques de PI. De plus, les analyses géostatistiques reposant sur des variogrammes montrent que tous les paramètres ont des variations d’amplitudes comparables. La forte corrélation entre K et la chargeabilité ou la chargeabilité normalisée peut s’expliquer par le fait que les 3 paramètres sont principalement contrôlés par la teneur en argile et en matière organique.

Caracterización de la conductividad hidráulica variable espacialmente del cauce fluvial utilizando tomografía de resistividad eléctrica y polarización inducida

Resumen

La distribución espacial de la conductividad hidráulica (K) en lechos de ríos es esencial para comprender y modelar las interacciones río-agua subterránea. Sin embargo, el K en lechos de ríos varía en varios órdenes de magnitud y su distribución espacial está estrechamente relacionada con complejos procesos geológicos y fluviales. La investigación de la distribución local y la heterogeneidad espacial de K es, por lo tanto, una tarea desafiante. Se describe el uso de métodos geoeléctricos de corriente continua (DC) y polarización inducida (IP) en el dominio del tiempo para mapear cualitativamente la distribución espacial de K dentro de los lechos de los ríos. El enfoque se demuestra para un sitio de prueba situado en un río típico de tierras bajas en Bélgica. Los parámetros geofísicos invertidos (resistividad, cargabilidad y cargabilidad normalizada) se comparan con las estimaciones de K obtenidas a través de slug tests. En general, los valores altos de K se observan en el medio del río y los valores más bajos hacia las márgenes, mientras que lo opuesto es cierto para la cargabilidad y cargabilidad normalizada. Por lo tanto, existe una correlación inversa entre los parámetros geofísicos de K e IP. Además, los análisis geoestadísticos que usan variogramas muestran que todos los parámetros tienen rangos de magnitudes similares. La fuerte correlación entre K y la cargabilidad o cargabilidad normalizada se puede explicar por el hecho de que los tres parámetros están controlados principalmente por el contenido de arcilla y materia orgánica.

利用电阻率层析成像及激发极化法描述空间上变化的河床水力传导率特征时域

摘要

河床水力传导率(K)的空间分布对于了解和模拟河流-地下水相互作用必不可少。然而,河床的K变化达几个数量级,其空间分布与复杂的地质条件和河床演变过程紧密相连。因此,调查K的局部分布和空间异质性是一项具有挑战性的任务。本文论述了采用直流和激发极化地电法定性绘制河床内K 空间分布图。通过位于比利时一个典型低地河流的试验场展示了该方法。反转的地球物理参数(电阻率、荷电率及规范化的荷电率)与通过断塞试验获取的K估算值进行了对比。总的来说,在河流的中部观测到的K值很高,靠近河岸较低,而荷电率及规范化的荷电率正好相反。因此,K和IP地球物理参数之间存在这负相关。此外,采用变异函数进行的地质统计分析显示,所有参数具有类似量级的范围。所有三个参数主要受控于粘土和有机物含量,这一事实能够解释K和荷电率或规范化的荷电率之间很强的相关性。

Karakterisatie van ruimtelijk variërende hydraulische conductiviteit in een rivierbodem met behulp van elektrische resistiviteitstomografie en geïnduceerde polarisatie

Samenvatting

De ruimtelijke verdeling van hydraulische conductiviteit (K) in rivierbodems is essentieel om interacties tussen rivier en grondwater te begrijpen en modelleren. Maar K varieert over verschillende grootteordes en zijn ruimtelijke verdeling is sterk gerelateerd met complexe geologische en fluviatiele processen. Onderzoek naar de lokale verdeling en ruimtelijke heterogeniteit van K is daarom een uitdagende opdracht. Het gebruik van gelijkstroom en geïnduceerde polarisatie (IP) in het tijddomein als geo-elektrische methoden om de ruimtelijke verdeling van K in rivierbodems kwalitatief in kaart te brengen wordt hier beschreven. De aanpak wordt gedemonstreerd voor een testsite die gesitueerd is in een typische laaglandrivier in België. Geïnverteerde geofysische parameters (resistiviteit, oplaadbaarheid en genormaliseerde oplaadbaarheid) worden vergeleken met schattingen van K, die verkregen werden met behulp van slug tests. Over het algemeen worden hoge waarden van K geobserveerd in het midden van de rivier en lage waarden bevinden zich meer naar de oevers toe, terwijl het omgekeerde geldt voor oplaadbaarheid en genormaliseerde oplaadbaarheid. Er bestaat bijgevolg een inverse correlatie tussen K en geofysische IP parameters. Verder tonen geostatistische analyses met variogrammen dat de ranges van alle parameters gelijkaardige groottes hebben. De sterke correlatie tussen K en oplaadbaarheid of genormaliseerde oplaadbaarheid kan verklaard worden door het feit dat al deze parameters vooral beïnvloed worden door klei en organisch materiaal.

Caracterização da condutividade hidráulica de leito de rio espacialmente variável utilizando tomografia de resistividade e polarização induzida

Resumo

A distribuição espacial da condutividade hidráulica (K) em leitos de rios é essencial para entender e modelar interações entre águas superficiais e subterrâneas. Entretanto, K em leitos de rios varia em varias ordens de grandeza e sua distribuição espacial está intimamente ligada a complexos processos geológicos e fluviais. Investigar a distribuição local e a heterogeneidade espacial da K é, portanto, uma tarefa desafiadora. O uso de métodos geoelétricos de corrente contínua (CC) e polarização induzida por domínio de tempo (PI) para mapear qualitativamente a distribuição espacial da K dentro dos leitos dos rios é descrito. A abordagem é demonstrada para um local de teste situado em um típico rio de planície na Bélgica. Parâmetros geofísicos invertidos (resistividade, carregamento e carregamento normalizado) são comparados com estimativas de K obtidas através de testes de bombeamento (slug test). Em geral, altos valores de K são observados no meio do rio e valores mais baixos em direção às bancadas, enquanto o oposto é verdadeiro para carregamento e carregamento normalizado. Portanto, existe uma correlação inversa entre os parâmetros geofísicos K e IP. Além disso, análises geoestatísticas usando variogramas mostram que todos os parâmetros têm amplitudes similares. A forte correlação entre K e carregamento ou carregamento normalizado pode ser explicada pelo fato de que todos os três parâmetros são controlados principalmente pelo conteúdo de argila e matéria orgânica.

Notes

Acknowledgements

This research was financially supported by a Research Grant of the Research Foundation – Flanders (FWO) on “High resolution characterization of spatially variable riverbed hydraulic conductivity for a better assessment of river–aquifer interactions”. We thank Dr. Gael Dumont from Univ. of Liège for his help during the field work in setting up the river ERT/IP. We also acknowledge the two anonymous reviewers and associate editor for their constructive comments, which helped in the improvement of the manuscript.

References

  1. Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397:93–104.  https://doi.org/10.1016/j.jhydrol.2010.11.036 CrossRefGoogle Scholar
  2. Anibas C, Schneidewind U, Vandersteen G, Joris I (2016) From streambed temperature measurements to spatial–temporal flux quantification: using the LPML method to study groundwater–surface water interaction. 216(July 2015):203–216.  https://doi.org/10.1002/hyp.10588
  3. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62Google Scholar
  4. Attwa M, Günther T (2013) Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers. Hydrol Earth Syst Sci 17(10):4079–4094.  https://doi.org/10.5194/hess-17-4079-2013 CrossRefGoogle Scholar
  5. Bal K, Meire P (2009) The influence of macrophyte cutting on the hydraulic resistance of lowland rivers. J Aquat Plant Manag 47:65–68Google Scholar
  6. Barker JA, Black JH (1983) Slug tests in fissured aquifers. Water Resour Res 19(6):1558CrossRefGoogle Scholar
  7. Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. Wiley, New York, 727 ppGoogle Scholar
  8. Börner FD, Schopper W, Weller A (1996) Evaluation of transport and storage properties in the soils and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–601.  https://doi.org/10.1111/j.1365-2478.1996.tb00167.x CrossRefGoogle Scholar
  9. Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428CrossRefGoogle Scholar
  10. Brunner P, Therrien R, Renard P, Simmons CT, Franssen HJH (2017) Advances in understanding river–groundwater interactions. Rev Geophys 55(3):818–854CrossRefGoogle Scholar
  11. Butler JJ (1996) Slug tests in site characterization: some practical considerations. Environ Geosci 3(3):154–163Google Scholar
  12. Butler JJ (1998) The design, performance, and analysis of slug tests. Lewis, New YorkGoogle Scholar
  13. Calver A (2001) Riverbed Permeabilities: information from pooled data. Ground Water 39(4):546–553CrossRefGoogle Scholar
  14. Caterina D, Beaujean J, Robert T, Nguyen F (2013) A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf Geophys 11(6):639–657CrossRefGoogle Scholar
  15. Caterina D, Hermans T, Nguyen F (2014) Case studies of incorporation of prior information in electrical resistivity tomography: comparison of different approaches. Near Surf Geophys 12:451–465CrossRefGoogle Scholar
  16. Chen X, Burbach M, Cheng C (2008) Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction. J Hydrol 352(3-4):250–266.  https://doi.org/10.1016/j.jhydrol.2008.01.004 CrossRefGoogle Scholar
  17. Clifford J, Binley A (2010) Geophysical characterization of riverbed hydrostratigraphy using electrical resistance tomography. Near Surf Geophys 8(6):493–501.  https://doi.org/10.3997/1873-0604.2010035 CrossRefGoogle Scholar
  18. Crook N, Binley A, Knight R, Robinson DA, Zarnetske J, Haggerty R (2008) Electrical resistivity imaging of the architecture of substream sediments. 44:1–11.  https://doi.org/10.1029/2008WR006968
  19. deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics 55:1613–1624CrossRefGoogle Scholar
  20. Doetsch J, Linde N, Coscia I, Greenhalgh SA, Green AG (2010) Zonation for 3D aquifer characterization based on joint inversions of multimethod cross hole geophysical data. Geophysics 75(6):G53–G64CrossRefGoogle Scholar
  21. DOV (2016) Databank ondergrond Vlaanderen [Database subsurface of Flanders]. https://dov.vlaanderen.be/. Accessed 1 November 2016
  22. Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26(6):675–700CrossRefGoogle Scholar
  23. Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan, NJGoogle Scholar
  24. Genereux DP, Leahy S, Mitasova H, Kennedy CD, Corbett DR (2008) Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J Hydrol 358(3–4):332–353.  https://doi.org/10.1016/j.jhydrol.2008.06.017 CrossRefGoogle Scholar
  25. Ghysels G, Benoit S, Awol H, Jensen EP, Tolche AD, Anibas C, Huysmans M (2018) Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a low-land river (Aa River, Belgium). J Hydrol 559:1013–1027CrossRefGoogle Scholar
  26. Gottschalk I, Hermans T, Knight R, Caers J, Cameron D, Regnery J, McCray J (2017) Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site. J Hydrol 555:407–419CrossRefGoogle Scholar
  27. Hermans T, Irving J (2017) Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularisation. Near Surf Geophys 15:13–25Google Scholar
  28. Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13(1):69–77CrossRefGoogle Scholar
  29. Kazakis N, Vargemezis G, Voudouris KS (2016) Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Sci Total Environ 550:742–750.  https://doi.org/10.1016/j.scitotenv.2016.01.133 CrossRefGoogle Scholar
  30. Kelly WE (1977) Geoelectric sounding for estimation aquifer hydraulic conductivity. Ground Water 15(6):420–425CrossRefGoogle Scholar
  31. Landon MK, Rus DL, Harvey FE, Landonj MK, Rusl DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 39(6):870–885CrossRefGoogle Scholar
  32. Loke MH, Lane JH (2004) Inversion of data from electrical resistivity imaging surveys in water-covered areas. Explor Geophys 35(4):266–271CrossRefGoogle Scholar
  33. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187CrossRefGoogle Scholar
  34. McLachlan PJ, Chambers JE, Uhlemann SS, Binley A (2017) Geophysical characterisation of the groundwater–surface water interface. Adv Water Resour 109:302–319.  https://doi.org/10.1016/j.advwatres.2017.09.016 CrossRefGoogle Scholar
  35. Oldenburg DW, Li YG (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64(2):403–416CrossRefGoogle Scholar
  36. Purvance DT, Andricevic R (2000) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913CrossRefGoogle Scholar
  37. Ramey HJ Jr, Agarwal RG, Martin I (1975) Analysis of “slug test” or DST flow period date. J Can Pet Technol 14:53CrossRefGoogle Scholar
  38. Remy N (2004) S-GeMS: the Stanford geostatistical modeling software: a tool for new algorithms development. Quantitat Geol Geostatist 14:865–871Google Scholar
  39. Revil A, Cathles LMI (1999) Permeability of shaly sands. Water Resour Res 35(3):651–662CrossRefGoogle Scholar
  40. Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. In: Handbook of geophysical exploration: seismic exploration, 18. Pergamon, Oxford, UKGoogle Scholar
  41. Sebok E, Duque C, Engesgaard P, Boegh E (2014) Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel. Hydrogeol J 25(5):1283–1299.  https://doi.org/10.1002/hyp.10170 Google Scholar
  42. Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28(2–3):169–197.  https://doi.org/10.1007/s10712-007-9022-y CrossRefGoogle Scholar
  43. Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67(1):77.  https://doi.org/10.1190/1.1451353 CrossRefGoogle Scholar
  44. Spitzer K (1998) The three-dimensional DC sensitivity for surface and subsurface sources. Geophys J Int 134:736–746.  https://doi.org/10.1046/j.1365-246x.1998.00592.x CrossRefGoogle Scholar
  45. Weller A, Slater L, Binley A, Nordsiek S, Xu S (2015) Permeability prediction based on induced polarization: insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range. Geophysics 80(2):D161–D173.  https://doi.org/10.1190/geo2014-0368.1 CrossRefGoogle Scholar
  46. Waterinfo (2017) Waterinfo Vlaanderen [Water information Flanders]. https://www.waterinfo.be/. Accessed 1 March 2017
  47. Wojnar AJ, Mutiti S, Levy J (2013) Assessment of geophysical surveys as a tool to estimate riverbed hydraulic conductivity. J Hydrol 482:40–56.  https://doi.org/10.1016/j.jhydrol.2012.12.018 CrossRefGoogle Scholar
  48. Yadav GS, Abolfazli H (1998) Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, northwestern India. J Appl Geophys 39:35–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
  2. 2.Department of Hydrology and Hydraulic EngineeringVrije Universiteit BrusselBrusselsBelgium
  3. 3.Department of GeologyGhent UniversityGhentBelgium
  4. 4.Department of Civil EngineeringKU LeuvenLeuvenBelgium
  5. 5.Department of Urban & Environmental EngineeringUniversity of LiègeLiègeBelgium

Personalised recommendations