Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 73–86 | Cite as

An analytical method for estimating leakage from a hydraulic pressure tunnel

  • Yong HuangEmail author
  • Huiyang Qiu
  • Zhi Dou
  • Zhimin Fu
  • Zhifang Zhou
Paper
  • 59 Downloads

Abstract

An analytical method has been proposed to estimate the leakage from a water-filling tunnel between two reservoirs, based on Darcy’s law and the position of the water table, for a phreatic aquifer. The variable water-fill level in the tunnel and an arbitrary intersection angle between the tunnel and horizontal plane were considered. The reliability of this method was validated by numerical analysis and the measured leakage during two water-filling tests in the Heimifeng Pumped Storage Power Station in China. The calculated leakage can represent both the measured value and numerical result due to the small differences between them. Also, the effect of some parameters on the leakage was analysed. Results indicated that leakage increased with decreasing intersection angle, the increase of hydraulic conductivity of the reinforced concrete lining, and the increase of water-fill level in the tunnel. Other parameters exerted little effect on the leakage. Furthermore, the total leakage was estimated under the simultaneous running of two tunnels. When one tunnel was running, the other tunnel was emptying. The calculated leakage was 4.48–8.85 L/s for both tunnels running, which was about 0.5 L/s less than that with one tunnel running and other tunnel emptying. This revealed that the running tunnel had little effect on the leakage from the other (emptying) tunnel.

Keywords

Analytical solutions Leakage Hydraulic pressure tunnel Sensitivity analysis Numerical modeling 

Une méthode analytique pour estimer les pertes d’un tunnel sous pression hydraulique

Résumé

Une méthode analytique a été proposée pour estimer les fuites d’un tunnel de remplissage d’eau entre deux réservoirs, basée sur la loi de Darcy et la position du niveau piézométrique, pour un aquifère phréatique. Le niveau variable de remplissage du tunnel et un angle d’intersection arbitraire entre le tunnel et un plan horizontal ont été considérés. La fiabilité de cette méthode a été validée par analyse numérique et la fuite mesurée lors de deux essais de remplissage d’eau dans la centrale électrique d’accumulation par pompage de Heimifeng en Chine. La fuite calculée peut représenter à la fois la valeur mesurée et le résultat numérique à cause des petites différences entre elles. En outre, l’effet de certains paramètres sur la fuite a été analysé. Les résultats ont montré que la fuite augmente avec la diminution de l’angle d’intersection, l’augmentation de la conductivité hydraulique de la doublure en béton armé, et l’augmentation du niveau d’eau de remplissage dans le tunnel. D’autres paramètres ont peu d’effet sur la fuite. De plus, la fuite totale a été estimée pour deux tunnels en fonction simultanément. Lorsqu’un tunnel était en fonction, l’autre tunnel était en vidange. La fuite calculée était de 4.48–8.85 L/s pour les deux tunnels en fonction, ce qui était environ 0.5 L/s de moins avec un tunnel en fonction et l’autre en vidange. Cela a montré que le tunnel en fonction a peu d’effet sur l’autre tunnel (en vidange).

Un método analítico para estimar la filtración por presión hidráulica en un túnel

Resumen

Se ha propuesto un método analítico para estimar la filtración de un túnel lleno de agua entre dos embalses, según la ley de Darcy y la posición de la capa freática, para un acuífero freático. Se consideró el nivel variable de llenado de agua en el túnel y un ángulo de intersección arbitrario entre el túnel y el plano horizontal. La fiabilidad de este método se validó mediante análisis numérico y la filtración medida durante dos pruebas de llenado de agua en la central eléctrica de almacenamiento por bombeo de Heimifeng en China. La filtración calculada puede representar tanto el valor medido como el resultado numérico debido a las pequeñas diferencias entre ellos. Además, se analizó el efecto de algunos parámetros en la filtración. Los resultados indicaron que la filtración aumentó con la disminución del ángulo de intersección, el aumento de la conductividad hidráulica del revestimiento de hormigón armado y el aumento del nivel de llenado de agua en el túnel. Otros parámetros ejercieron poco efecto sobre la filtración. Además, la filtración total se estimó bajo el funcionamiento simultáneo de dos túneles. Cuando un túnel se estaba ejecutando, el otro túnel se estaba vaciando. La filtración calculada fue de 4.48–8.85 L/s para ambos túneles en funcionamiento, que fue de aproximadamente 0.5 L/s menos que con un túnel en funcionamiento y otro túnel vacío. Esto reveló que el túnel en ejecución tuvo poco efecto sobre la filtración del otro túnel (vacío).

有压隧洞渗漏量估算的解析解

摘要

根据达西定律和潜水含水层中地下水位的位置,推导了蓄能电站上下水库之间充水隧洞渗漏量计算的解析解,该解析解考虑了隧洞中充水水位的变化和隧洞倾斜段与水平面的任意交角。采用此解析解计算了有压隧洞的渗漏量,并与黑麋峰抽水蓄能电站两次充水试验的监测数据和数值模拟结果进行了对比,误差较小,从而验证了本文解析解的可靠性。同时讨论了混凝土衬砌的渗透系数、充水水位和交角等参数对渗漏量的影响,计算结果表明:隧洞渗漏量随着隧洞倾斜段与水平面的交角的减小、隧洞混凝土衬砌渗透系数和充水水位的增加而增大,其它参数对渗漏量的影响很小。采用本文的解析解预测了两隧洞同时运行以及一洞运行、另一洞放空条件下隧洞的渗漏量,计算结果显示:两隧洞同时运行时的渗漏量为4.48–8.85 L/s,仅比一洞运行、另一洞放空检修时的渗漏量少约0.5 L/s ,因此运行隧洞的渗漏量对放空隧洞的渗漏量几乎没有影响。

Um método analítico para estimar vazamentos a partir de um túnel hidraulicamente pressurizado

Resumo

Um método analítico foi proposto para estimar o vazamento de um túnel de enchimento de água entre dois reservatórios, baseado na lei de Darcy e a posição do lençol freático, para um aquífero freático. O nível variável de enchimento de água no túnel e um ângulo de interseção arbitrário entre o túnel e o plano horizontal foram considerados. A confiabilidade deste método foi validada por análise numérica e pelo vazamento medido durante dois testes de enchimento de água na Estação de Armazenamento Bombeado Heimifeng na China. O vazamento calculado pode representar tanto o valor medido quanto o resultado numérico devido às pequenas diferenças entre eles. Além disso, o efeito de alguns parâmetros no vazamento foi analisado. Os resultados indicaram que o vazamento aumentou com a diminuição do ângulo de interseção, o aumento da condutividade hidráulica do revestimento de concreto armado e o aumento do nível de enchimento de água no túnel. Outros parâmetros exerceram pouco efeito sobre o vazamento. Além disso, o vazamento total foi estimado sob o funcionamento simultâneo de dois túneis. Quando um túnel estava correndo, o outro túnel estava esvaziando. O vazamento calculado foi de 4.48–8.85 L/s para ambos os túneis em execução, que foi cerca de 0.5 L/s menor do que aquele com um túnel em execução e outro esvaziamento do túnel. Isso revelou que o túnel corrente teve pouco efeito sobre o vazamento do outro túnel (vazio).

Notes

Funding information

This study was financially supported by The National Natural Science Foundation of China (Grant No. 41572209), and sponsored by a Qing Lan Project of Jiangsu Province (2016B16073).

References

  1. Bear J (1972) Dynamics of fluids in porous media. Elsevier, Boston, pp 155–286Google Scholar
  2. Bian K, Xiao M (2010) Research on seepage of high pressure hydraulic tunnel when reinforced concrete lining cracking. Chin J Rock Mech Eng 29(2):3647–3654Google Scholar
  3. Bobet A, Nam SW (2007) Stresses around pressure tunnels with semi-permeable liners. Rock Mech Rock Eng 40(3):287–315CrossRefGoogle Scholar
  4. Chen YF, Hong JM, Zheng HK, Li Y, Hu R (2016) Evaluation of groundwater leakage into a drainage tunnel in Jinping-I Arch Dam foundation in Southwestern China: a case study. Rock Eng 49(3):961–979CrossRefGoogle Scholar
  5. Chiu YC, Chia Y (2012) The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan. Hydrogeol J 20(8):1599–1611CrossRefGoogle Scholar
  6. El Tani M (2003) Circular tunnel in a semi-infinite aquifer. Tunnel Underground Space Technol 18:49–55CrossRefGoogle Scholar
  7. El Tani M (2010) Helmholtz evolution of a semi-infinite aquifer drained by a circular tunnel. Tunnel Underground Space Technol 25:54–62CrossRefGoogle Scholar
  8. Farhadian H, Katibeh H, Huggenberger P (2016) Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses. Environ Earth Sci 75(6):1–16CrossRefGoogle Scholar
  9. Farhadian H, Hassani AN, Katibeh H (2017) Groundwater inflow assessment to Karaj water conveyance tunnel, northern Iran. KSCE J Civ Eng 21(6):2429–2438CrossRefGoogle Scholar
  10. Fernandez G, Alvarez TA Jr (1994) Seepage-induced effective stresses and water pressures around pressure tunnels. J Geotech Eng ASCE 120(1):108–128CrossRefGoogle Scholar
  11. Goodman R, Moye D, Schalkwyk A, Javendel I (1965) Groundwater inflow during tunnel driving. Eng Geol 1:150–162Google Scholar
  12. Holmøy KH, Nilsen B (2014) Significance of geological parameters for predicting water inflow in hard rock tunnels. Rock Mech Rock Eng 47:853–868CrossRefGoogle Scholar
  13. Hu LT, Jiao JJ (2015) Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China. Hydrogeol J 23(7):1305–1317CrossRefGoogle Scholar
  14. Hu YJ, Fang JP, Huang DJ, Feng SN, Su XT (2013) Coupling analysis of seepage-stress-cracking for inner water exosmosis of pressure tunnel (in Chinese). J Beijing Univ Technol 39(2):174–179Google Scholar
  15. Huang Y, Yu ZB, Zhou ZF (2013) Simulating groundwater inflow in the underground tunnel with a coupled fracture-matrix model. J Hydrol Eng 18(11):1557–1561CrossRefGoogle Scholar
  16. Hwang JH, Lu CC (2007) A semi-analytical method for analyzing the tunnel water inflow. Tunnel Underground Space Technol 22(1):39–46CrossRefGoogle Scholar
  17. Karlsrud K (2001) Water control when tunneling under urban areas in the Olso region. NFF publication No. 12, NFF, Brisbane, Australia, pp 4–33Google Scholar
  18. Kavour KP, Karatzas GP, Plagnes V (2017) A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeol J 25(5):1301–1317CrossRefGoogle Scholar
  19. Kitterød NO, Colleuille H, Wong WK, Pedersen TS (2000) Simulation of groundwater drainage into a tunnel in fractured rock and numerical analysis of leakage remediation, Romeriksporten tunnel, Norway. Hydrogeol J 8(5):480–493CrossRefGoogle Scholar
  20. Kværner J, Snilsberg P (2011) Groundwater hydrology of boreal peatlands above a bedrock tunnel: drainage impacts and surface water groundwater interactions. J Hydrol 403(3):278–291CrossRefGoogle Scholar
  21. Lei S (1999) An analytical solution for steady flow into a tunnel. Ground Water 37:23–26CrossRefGoogle Scholar
  22. Liu XX, Shen SL, Xu YS, Yin ZY (2018) Analytical approach for time-dependent groundwater inflow into shield tunnel face in confined aquifer. Int J Numer Anal Methods Geomech 42:655–673CrossRefGoogle Scholar
  23. Lyu HM, Sun WJ, Shen SL, Arulrajah A (2018) Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci Total Environ 626:1012–1025CrossRefGoogle Scholar
  24. Ma L, Xu YS, Shen SL, Sun WJ (2014) Evaluation of the hydraulic conductivity of aquifers with piles. Hydrogeol J 22(2):371–382CrossRefGoogle Scholar
  25. Malott S, O’Carroll DM, Robinson CE (2016) Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event. Water Resour Res 52(7):5248–5264CrossRefGoogle Scholar
  26. Masset O (2011) Transient tunnel inflow and hydraulic conductivity of fractured crystalline rocks in the Central Alps (Switzerland). PhD Thesis, ETH, ZurichGoogle Scholar
  27. Molinero J, Samper J, Juanes R (2002) Numerical modelling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Eng Geol 64(4):369–386CrossRefGoogle Scholar
  28. Moon J, Fernandez G (2010) Effect of excavation-induced groundwater level drawdown on tunnel inflow in a jointed rock mass. Eng Geol 110(3–4):33–42CrossRefGoogle Scholar
  29. Nash JE, Sutcliffe JE (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  30. Nikvar Hassani A, Katibeh H, Farhadian H (2016) Numerical analysis of steady-state groundwater inflow into Tabriz line 2 metro tunnel, northwestern Iran, with special consideration of model dimensions. Bull Eng Geol Environ 75(4):1617–1627CrossRefGoogle Scholar
  31. Nikvar Hassani A, Farhadian H, Katibeh H (2018) A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel. Tunnel Undergr Space Technol 73:15–25CrossRefGoogle Scholar
  32. Nilsen B, Palmström A (2001) Stability and water leakage of hard rock subsea tunnels. In: Adachi et al. (eds) Proceedings of Conf. on Modern Tunneling Science and Technology, Kyoto, Japan, 30 October–1 November 2001, pp 497–502Google Scholar
  33. Panthi KK, Nilsen B (2010) Uncertainty analysis for assessing leakage through water tunnels: a case from Nepal Himalaya. Rock Mech Rock Eng 43:629–639CrossRefGoogle Scholar
  34. Ren QW, Dong YW, Yu TT (2009) Numerical modeling of concrete hydraulic fracturing with extended finite element method. Sci Chin Ser E: Technol Sci 52(3):559–565CrossRefGoogle Scholar
  35. Rezae M (2017) A new approach to water head estimation based on water inflow into the tunnel: case study—Karaj water conveyance tunnel. Q J Eng Geol Hydrogeol 50(2):126CrossRefGoogle Scholar
  36. Rong Y, Xu XB, Cai XH (2006) Calculation of crack space and crack width of tunnel lining based on elastic foundation curved beam mode (in Chinese). J Chongqing Jianzhu Univ 28(5):23–26Google Scholar
  37. Russo SL, Gnavi L, Peila D, Suozzi E (2013) Rough evaluation of the water-inflow discharge in abandoned mining tunnels using a simplified water balance model: the case of the Cogne iron mine (Aosta Valley, NW Italy). Environ Earth Sci 70:2753–2765CrossRefGoogle Scholar
  38. Schleiss AJ (1997) Design of reinforced concrete linings of pressure tunnels and shafts. Int J Hydropower Dams 4(3):88–94Google Scholar
  39. Sefelnasr A, Gossel W, Wycisk P (2014) Three-dimensional groundwater flow modeling approach for the groundwater management options for the Dakhla Oasis, Western Desert, Egypt. Environ Earth Sci 72(4):1227–1241CrossRefGoogle Scholar
  40. Sharifzadeh M, Karegar S, Ghorbani M (2013) Influence of rock mass properties on tunnel inflow using hydromechanical numerical study. Arab J Geosci 6(1):169–175CrossRefGoogle Scholar
  41. Shin JH, Kim SH, Shin YS (2012) Long-term mechanical and hydraulic interaction and leakage evaluation of segmented tunnels. Soils Found 52(1):38–48CrossRefGoogle Scholar
  42. Su K, Zhou Y, Wu H, Shi C, Zhou L (2017) An analytical method for groundwater inflow into a drained circular tunnel. Ground Water 55(5):712–721CrossRefGoogle Scholar
  43. Wu YX, Shen SL, Yin ZY, Xu YS (2015a) Characteristics of groundwater seepage with cut-off wall in gravel aquifer, I: field observations. Can Geotech J 52(10):1526–1538CrossRefGoogle Scholar
  44. Wu YX, Shen SL, Yin ZY, Xu YS (2015b) Characteristics of groundwater seepage with cut-off wall in gravel aquifer, II: numerical analysis. Can Geotech J 52(10):1539–1549CrossRefGoogle Scholar
  45. Wu YX, Shen SL, Yuan DJ (2016) Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J Hydrol 539:554–566CrossRefGoogle Scholar
  46. Wu YX, Shen JS, Chan WC, Hino T (2017) Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects. Eng Geol 226:44–51CrossRefGoogle Scholar
  47. Xu YS, Ma L, Shen SL, Sun WJ (2012) Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeol J 20(8):1623–1634CrossRefGoogle Scholar
  48. Yi ST, Hyun TY, Kim JK (2011) The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete. Constr Build Mater 25:2576–2583CrossRefGoogle Scholar
  49. Zarei HR, Uromeihy A, Sharifzadeh M (2011) Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features. Tunn Undergr Space Technol 26:364–373CrossRefGoogle Scholar
  50. Zhang W, Chen YC, Huang LC, Liu LJ (2015) 3D finite element analysis of seepage from a high pressure tunnel and study on its permeation stability (in Chinese). J Water Resour Architect Eng 13(5):212–217Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yong Huang
    • 1
    Email author
  • Huiyang Qiu
    • 1
  • Zhi Dou
    • 1
  • Zhimin Fu
    • 2
  • Zhifang Zhou
    • 1
  1. 1.School of Earth Science and EngineeringHohai UniversityNanjingChina
  2. 2.Institute of hydrology and water resourcesHohai UniversityNanjingChina

Personalised recommendations