Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 225–237 | Cite as

Protecting groundwater levels and ecosystems with simple management approaches

  • Saskia L. NoorduijnEmail author
  • Peter G. Cook
  • Craig T. Simmons
  • Stuart B. Richardson
Paper

Abstract

Groundwater quantity is often managed using simple tools. The most common are (1) basin or sub-basin scale volumetric allocations, usually based on either historic use or estimates of recharge, (2) trigger-level management which regulates use according to observations of groundwater level, and (3) buffer zones, which control the location of wells, particularly around groundwater-dependent ecosystems (GDEs). The volumetric approach limits the long-term impact of abstraction and provides a stable, secure supply for groundwater users. However, this approach does not consider the spatial distribution of recharge and discharge, and so is poor at protecting GDEs. Buffer zones provide an effective means of limiting the short-term impact of abstraction on GDEs, and can also be used to shift impact from high to low priority GDEs. However, buffer zones mostly delay the impacts of abstraction on groundwater level and flow, and are less effective for managing long-term impacts. Groundwater response triggers aim to directly control groundwater levels, although the success of this approach is highly dependent on the location of the observation well, and the trigger value. This makes its successful implementation extremely difficult. Used alone, none of these approaches will successfully protect the environment. In combination, they can provide reasonable protection for ecosystems and reliability of groundwater supply for users.

Keywords

Groundwater management Trigger levels Buffer zones Sustainability Groundwater/surface-water relations 

Protection des niveaux piézométriques et les écosystèmes par des approches simples de gestion

Résumé

L’hydrogéologie quantitative est. souvent gérée à l’aide d’outils simples. Les plus courants sont (1) les allocations volumétriques à l’échelle du bassin ou du sous-bassin, basées généralement soit sur l’utilisation historique soit sur des estimations de la recharge, (2) la gestion d’un seuil d’alerte, qui régule l’utilisation en fonction des observations des niveaux piézométriques, et (3) les zones tampon, qui contrôlent l’emplacement des puits, en particulier autour des écosystèmes dépendant des eaux souterraines (EsDES). L’approche volumétrique limite l’impact à long terme de l’exploitation et fournit un approvisionnement stable et sécurisé pour les usagers des eaux souterraines. Cependant, cette approche ne prend pas en compte la distribution spatiale de la recharge et de la décharge, et de ce fait est. peu adaptée à la protection des EsDES. Les zones tampon fournissent des moyens efficaces de limitation de l’impact à court terme de l’exploitation sur les EsDES, et peuvent aussi être utilisées pour déplacer l’impact sur les EsDES d’une priorité élevée à moindre. Cependant, les zones tampon retardent principalement les impacts des prélèvements sur le niveau piézométrique et l’écoulement des eaux souterraines, et sont moins efficaces pour gérer les effets à long terme. Les seuils d’alerte à la réponse des eaux souterraines visent à contrôler directement les niveaux piézométriques, bien que le succès de cette approche dépende fortement de l’emplacement du piézomètre et de la valeur du seuil d’alerte. Ceci rend la réussite de sa mise en œuvre extrêmement difficile. Utilisée seule, aucune de ces approches ne protègera efficacement l’environnement. Combinées, elles peuvent assurer une protection acceptable des écosystèmes et la fiabilité de l’approvisionnement en eau souterraine pour les utilisateurs.

Protección de los niveles de agua subterránea y de los ecosistemas con métodos simples de manejo

Resumen

La cantidad de agua subterránea a menudo se maneja con herramientas simples. Las más comunes son (1) asignaciones volumétricas de cuenca o subcuenca, generalmente basadas en el uso histórico o estimaciones de recarga, (2) nivel de activación de la gestión que regula el uso según las observaciones del nivel freático, y (3) zonas de amortiguamiento, que controlan la ubicación de los pozos, particularmente alrededor de los ecosistemas dependientes del agua subterránea (GDE). El enfoque volumétrico limita el impacto a largo plazo de la extracción y proporciona un suministro estable y seguro para los usuarios de aguas subterráneas. Sin embargo, este enfoque no tiene en cuenta la distribución espacial de la recarga y la descarga, por lo que es deficiente para proteger los GDE. Las zonas de amortiguamiento proporcionan un medio eficaz para limitar el impacto a corto plazo de la explotación en las GDE, y también se pueden usar para cambiar el impacto de las GDE de alta a baja prioridad. Sin embargo, principalmente las zonas de amortiguamiento retrasan los impactos de la extracción sobre el nivel y el caudal del agua subterránea, y son menos efectivas para la gestión de impactos a largo plazo. Los desencadenantes de respuesta de agua subterránea apuntan a controlar directamente los niveles de agua subterránea, aunque el éxito de este método depende en gran medida de la ubicación del pozo de observación y del valor de activación. Esto hace que su implementación exitosa sea extremadamente difícil. Utilizado solo, ninguno de estos enfoques protegerá con éxito el medio ambiente. En combinación, pueden proporcionar una protección razonable para los ecosistemas y la confiabilidad del suministro de agua subterránea para los usuarios.

用简单的管理方法保护地下水位和生态系统

摘要

经常采用简单的工具管理地下水量。最常见的是(1)流域或亚流域尺度的容积分配,通常基于历史利用状况或补给估算值;(2)根据地下水为观测结果调节利用量的触发水准管理;以及(3)控制井位的缓冲区,特别是在依赖于地下水的生态系统周围控制井位的缓冲区。容积方法消减了长期抽水的影响,并为地下水用户提供了稳定的、安全的供水。然而,这个方法没有考虑补给和排泄的空间分布,因此,在保护依赖于地下水的生态系统中表现很差。缓冲区提供了限制抽水对依赖于地下水系统的短期影响的有效方法,并可用来根据依赖于地下水系统的优先权的高低来改变影响程度。然而,缓冲区通常延迟了抽水对地下水位和水流的影响,在管理长期的影响中效果较差。地下水响应触发要素的目的就是直接控制地下水位,尽管此种方法成功高度依赖于观测井的位置和触发要素值。这就使该方法的成功实施变的非常困难。如果单单使用一种方法,这些方法没有一种能够成功保护环境。如果多种方法结合在一起,它们就能为生态系统提供合理的保护及为用户提供可靠的地下水供应。

Protegendo os níveis de água subterrânea e ecossistemas com simples abordagens de gestão

Resumo

A quantidade disponível de águas subterrâneas é frequentemente gerenciada usando ferramentas simples. As mais comuns são (1) alocações volumétricas em escada de bacia ou sub-bacia de acordo com seu uso histórico ou estimativas de recarga, (2) gerenciamento por meio de valores gatilho para regular o uso de acordo com as observações do nível de água subterrânea, e (3) zonas de amortecimento, que controlam a alocação dos poços, particularmente em torno de ecossistemas dependentes de águas subterrâneas (EDASs). A abordagem volumétrica limita o impacto de longo prazo da abstração e fornece um suprimento estável e seguro para os usuários das águas subterrâneas. No entanto, esta abordagem não considera a distribuição espacial de recarga e descarga, e por isso é insuficiente para proteger EDASs. As zonas de amortecimento fornecem um meio eficaz de limitar o impacto de curto prazo nas EDASs, e também pode ser usado para mudar o impacto nas EDASs de alta para baixa prioridade. No entanto, as zonas de amortecimento atrasam, principalmente, os impactos da captação no nível e no fluxo das águas subterrâneas e são menos eficazes para o gerenciamento de impactos de longo prazo. Os valores gatilho de águas subterrâneas visam controlar diretamente os níveis de águas subterrâneas, embora o sucesso dessa abordagem seja altamente dependente da localização do poço de observação e do valor de referência. Isto torna extremamente difícil uma implementação bem sucedida. Usadas sozinhas, nenhuma dessas abordagens protegerá com sucesso o ambiente. Combinadas, eles podem fornecer proteção razoável para os ecossistemas e segurança hídrica de água subterrânea para os usuários.

Notes

Acknowledgements

We wish to thank the MDBA-NCGRT Strategic Groundwater Research Partnership Steering Committee, in particular Peter Hyde, Sue Hamilton, and Ray Evans. Thanks to the Guillaume Bertrand and Yu-Li Wang for their review of the manuscript and valuable comments.

Funding information

This work was funded by the Murray-Darling Basin Authority (MDBA)/National Centre for Groundwater Research and Training (NCGRT) Strategic Research Partnership.

References

  1. Adelaide and Mount Lofty Ranges Natural Resources Management Board (2009) Water Allocation Plan for the Clare Valley Prescribed Water Resources Area. Adelaide and Mount Lofty Ranges Natural Resources Management Board, Adelaide, AustraliaGoogle Scholar
  2. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42:12–16.  https://doi.org/10.1111/j.1745-6584.2004.tb02446.x CrossRefGoogle Scholar
  3. Amlin NM, Rood SB (2002) Comparative tolerances of riparian willows and cottonwoods to water-table decline. Wetlands 22:338–346. https://doi.org/10.1672/0277-5212(2002)022[0338:CTORWA]2.0.CO;2Google Scholar
  4. Anderson T, Cauchi T, Mozina M, Smyth B (2014) Approaches to achieve sustainable use and management of groundwater resources in the Murray-Darling Basin using rules and resource condition limits literature review report. GHD, Melbourne, VIC, AustraliaGoogle Scholar
  5. Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream–aquifer systems. J Water Resour Plan Manag 129:35–48.  https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(35) CrossRefGoogle Scholar
  6. Barlow PM, Leake SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376Google Scholar
  7. Bekesi G, Hodges S (2006) The protection of groundwater dependent ecosystems in Otago, New Zealand. Hydrogeol J 14:1696–1701.  https://doi.org/10.1007/s10040-006-0062-z CrossRefGoogle Scholar
  8. Bernadez FG, Rey Benayas JM, Martinez A (1993) Ecological impact of groundwater extraction on wetlands (Douro Basin, Spain). J Hydrol 141:219–238.  https://doi.org/10.1016/0022-1694(93)90051-A CrossRefGoogle Scholar
  9. Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012) Review: from multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeol J 20:5–25.  https://doi.org/10.1007/s10040-011-0791-5 CrossRefGoogle Scholar
  10. Bertrand G, Masini J, Goldscheider N, Meeks J, Lavastre V, Celle-Jeanton H, Gobat JM, Hunkeler D (2014) Determination of spatiotemporal variability of tree water uptake using stable isotopes (δ18O, δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn forest, Switzerland. Ecohydrology 7:319–333.  https://doi.org/10.1002/eco.1347 CrossRefGoogle Scholar
  11. Boulton AJ, Hancock PJ (2006) Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust J Bot 54:133–144.  https://doi.org/10.1071/BT05074 CrossRefGoogle Scholar
  12. Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35:929CrossRefGoogle Scholar
  13. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water.  https://doi.org/10.1111/j.1745-6584.2002.tb02511.x
  14. Bredehoeft JD (2011) Hydrologic trade-offs in conjunctive use management. Ground Water 49:468–475.  https://doi.org/10.1111/j.1745-6584.2010.00762.x CrossRefGoogle Scholar
  15. Bredehoeft JD, Durbin T (2009) Ground water development: the time to full capture problem. Ground Water 47:506–514.  https://doi.org/10.1111/j.1745-6584.2008.00538.x CrossRefGoogle Scholar
  16. Bredehoeft JD, Kendy E (2008) Strategies for offsetting seasonal impacts of pumping on a nearby stream. Ground Water 46:23–29.  https://doi.org/10.1111/j.1745-6584.2007.00367.x Google Scholar
  17. Bredehoeft JD, Young RA (1970) The temporal allocation of ground water: a simulation approach. Water Resour Res 6:3–21.  https://doi.org/10.1029/WR006i001p00003 CrossRefGoogle Scholar
  18. Brodie R, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An adaptive management framework for connected groundwater–surface water resources in Australia. Dept. of Fisheries, Australian Gov., Canberra, AustraliaGoogle Scholar
  19. Brodie RS, Hostetler S, Slatter E (2008) Comparison of daily percentiles of streamflow and rainfall to investigate stream–aquifer connectivity. J Hydrol 349:56–67.  https://doi.org/10.1016/j.jhydrol.2007.10.056 CrossRefGoogle Scholar
  20. Brown K, Harrington G, Lawson J (2006) Review of groundwater resource condition and management principles for the Tertiary Limestone Aquifer in the South East of South Australia. DWLBC report 2006/2, Dept. of Water, Land and Biodiversity Conservation, Adelaide, AustraliaGoogle Scholar
  21. Canham CA, Froend RH, Stock WD, Davies M (2012) Dynamics of phreatophyte root growth relative to a seasonally fluctuating water table in a Mediterranean-type environment. Oecologia 170:909–916.  https://doi.org/10.1007/s00442-012-2381-1 CrossRefGoogle Scholar
  22. Cooper DJ, Wolf EC, Ronayne MJ, Roche JW (2015) Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California. J Hydrol Reg Stud 3:87–105.  https://doi.org/10.1016/j.ejrh.2014.10.002 CrossRefGoogle Scholar
  23. Currell MJ (2016) Drawdown “triggers”: a misguided strategy for protecting groundwater-fed streams and springs. Groundwater 54:619–622.  https://doi.org/10.1111/gwat.12425 CrossRefGoogle Scholar
  24. Currell M, Gleeson T, Dahlhaus P (2016) A new assessment framework for transience in hydrogeological systems. Groundwater 54:4–14.  https://doi.org/10.1111/gwat.12300 CrossRefGoogle Scholar
  25. Davids JC, Mehl SW (2015) Sustainable capture: concepts for managing stream–aquifer systems. Groundwater 53:851–858.  https://doi.org/10.1111/gwat.12297 CrossRefGoogle Scholar
  26. Der Yeh H, Chang YC, Zlotnik VA (2008) Stream depletion rate and volume from groundwater pumping in wedge-shape aquifers. J Hydrol 349:501–511.  https://doi.org/10.1016/j.jhydrol.2007.11.025 CrossRefGoogle Scholar
  27. Downing RA, Oakes DB, Wilkinson WB, Wright CE (1974) Regional development of groundwater resources in combination with surface water. J Hydrol 22:155–177.  https://doi.org/10.1016/0022-1694(74)90102-4 CrossRefGoogle Scholar
  28. Dresel PE, Clark R, Cheng X, Reid M, Terry A, Fawcett J, Cochrane D (2010) Mapping terrestrial groundwater dependent ecosystems: method development and example output. State of Victoria, MelbourneGoogle Scholar
  29. Eamus D (2009) Identifying groundwater dependent ecosystems: a guide for land and water managers. Land and Water Australia, Clayton, AustraliaGoogle Scholar
  30. Eamus D, Froend R, Hose G, Murray B, Management ER (2006) A functional methodology for determining the GW regime needed to maintain health of groundwater dependent vegetation. Aust J Bot 54:97–114CrossRefGoogle Scholar
  31. Evans R, Merrick N, Gates G (2004) Groundwater level response management: strengths, weaknesses and opportunities. In: The 9th Murray-Darling Basin groundwater workshop 2004, Bendigo, Australia, 2004Google Scholar
  32. Evans WR, Evans RS, Holland GF (2012) Conjunctive use and management of groundwater and surface water within existing irrigation commands: the need for a new focus on an old paradigm. Thematic paper no. 2. Groundwater Governance, Sinclair Knight Merz, Australia, pp 1–40Google Scholar
  33. Eyre Peninsula Natural Resources Management Board (2016) Water allocation plan for the southern basins and Musgrave prescribed wells areas. Gov of South Australia, Adelaide, AustraliaGoogle Scholar
  34. Fienen MN, Nolan BT, Feinstein DT (2016) Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model. Environ Model Softw 77:95–107.  https://doi.org/10.1016/j.envsoft.2015.11.023 CrossRefGoogle Scholar
  35. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  36. Froend R, Loomes R, Horwitz P, Bertuch M, Storey A, Bamford M (2004) Study of ecological water requirements on the Gnangara and Jandakot mounds. Centre for Ecosystem Management, ECU, Joondalup, AustraliaGoogle Scholar
  37. Gleeson T, Cardiff M (2013) The return of groundwater quantity: a mega-scale and interdisciplinary “future of hydrogeology”? Hydrogeol J 21:1169–1171.  https://doi.org/10.1007/s10040-013-0998-8 CrossRefGoogle Scholar
  38. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379.  https://doi.org/10.1038/ngeo881 CrossRefGoogle Scholar
  39. Glover RE, Balmer GG (1954) River depletion resulting from pumping a well near a river. EOS Trans Am Geophys Union 35:468–470.  https://doi.org/10.1029/TR035i003p00468 CrossRefGoogle Scholar
  40. Gunderson L (1999) Resilience, flexibility and adaptive management: antidotes for spurious certitude? Ecol Soc 3.  https://doi.org/10.5751/ES-00089-030107
  41. Howe CW, Schurmeier DR, Douglas Shaw J (1986) Innovative approaches to water allocation: the potential for water markets. Water Resour Res 22:439–445.  https://doi.org/10.1029/WR022i004p00439 CrossRefGoogle Scholar
  42. Jenkins CT (1977) Computation of rate volume of stream depletion by wells. Techniques of Water Resources Investigations, US Geological Survey, Reston, VA, 17 ppGoogle Scholar
  43. Kath J, Dyer FJ (2017) Why groundwater matters: an introduction for policy-makers and managers. Policy Stud 38:447–461.  https://doi.org/10.1080/01442872.2016.1188907 CrossRefGoogle Scholar
  44. Kath J, Reardon-Smith K, Le Brocque AF, Dyer FJ, Dafny E, Fritz L, Batterham M (2014) Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses in canopy condition. Glob Ecol Conserv 2:148–160.  https://doi.org/10.1016/j.gecco.2014.09.002 CrossRefGoogle Scholar
  45. Kendy E, Bredehoeft JD (2006) Transient effects of groundwater pumping and surface-water-irrigation returns on streamflow. Water Resour Res 42:1–11.  https://doi.org/10.1029/2005WR004792 CrossRefGoogle Scholar
  46. Kløve B, Ala-aho P, Bertrand G, Boukalova Z, Ertürk A, Goldscheider N, Ilmonen J, Karakaya N, Kupfersberger H, Kvœrner J, Lundberg A, Mileusnić M, Moszczynska A, Muotka T, Preda E, Rossi P, Siergieiev D, Šimek J, Wachniew P, Angheluta V, Widerlund A (2011) Groundwater dependent ecosystems, part I: hydroecological status and trends. Environ Sci Pol 14:770–781.  https://doi.org/10.1016/j.envsci.2011.04.002 CrossRefGoogle Scholar
  47. Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J, Muotka T, Mykrä H, Preda E, Rossi P, Uvo CB, Velasco E, Pulido-Velazquez M (2014a) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266.  https://doi.org/10.1016/j.jhydrol.2013.06.037 CrossRefGoogle Scholar
  48. Kløve B, Balderacchi M, Gemitzi A, Hendry S, Kværner J, Muotka T, Preda E (2014b) Protection of groundwater dependent ecosystems: current policies and future management options. Water Policy 16:1070–1086.  https://doi.org/10.2166/wp.2014.014 CrossRefGoogle Scholar
  49. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:1–5.  https://doi.org/10.1029/2011GL048604 CrossRefGoogle Scholar
  50. Konikow LF, Leake SA (2014) Depletion and capture: revisiting the source of water derived from wells. Ground Water 52:100–111.  https://doi.org/10.1111/gwat.12204 CrossRefGoogle Scholar
  51. Korus JT, Burbach ME (2009) Analysis of aquifer depletion criteria with implications for groundwater management. Great Plains Res 19:187–200Google Scholar
  52. Leake SA (2011) Capture-rates and directions of groundwater flow don’t matter! Ground Water 49:456–458.  https://doi.org/10.1111/j.1745-6584.2010.00797.x CrossRefGoogle Scholar
  53. Leake SA, Reeves HW, Dickinson JE (2010) A new capture fraction method to map how pumpage affects surface water flow. Ground Water 48:690–700.  https://doi.org/10.1111/j.1745-6584.2010.00701.x CrossRefGoogle Scholar
  54. Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water SA 25:137–152. http://www.wrc.org.za. Accessed August 2018
  55. Lv J, Wang XS, Zhou Y, Qian K, Wan L, Eamus D, Tao Z (2013) Groundwater-dependent distribution of vegetation in Hailiutu River catchment: a semi-arid region in China. Ecohydrology 6:142–149.  https://doi.org/10.1002/eco.1254 CrossRefGoogle Scholar
  56. Mahoney JM, Rood SB (1992) Response of a hybrid poplar to water-table decline in different substrates. For Ecol Manag 54:141–156.  https://doi.org/10.1016/0378-1127(92)90009-x CrossRefGoogle Scholar
  57. MDBA (2012) The proposed groundwater baseline and sustainable diversion limits: methods report. MDBA, Canberra, AustraliaGoogle Scholar
  58. Münch Z, Conrad J (2007) Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeol J 15:19–28.  https://doi.org/10.1007/s10040-006-0125-1 CrossRefGoogle Scholar
  59. Noyola-Medrano MC, Ramos-Leal JA, Domínguez-Mariani E, Pineda-Martínez LF, López-Loera H, Carbajal N (2009) Factors causing the mining of aquifers in arid environments: case of San Luis Potosí valley. Rev Mex Ciencias Geol 26:395–410Google Scholar
  60. NSW Office of Water (2010) Water sharing plan for the Peel Valley regulated, unregulated, alluvial and fractured rock water sources. NSW Office of Water, Wollongong, AustraliaGoogle Scholar
  61. Ordens CM, Werner AD, Alcoe DW, Hutson JL, Ward JD, Simmons CT (2010) Trigger-level versus flux-based management approaches applied to coastal aquifers. Proc. of SWIM21 - 21st Salt Water Intrusion Meeting, pp 200–202Google Scholar
  62. Parsons S, Caruso N, Barber S, Hayes S (2010) Evolving issues and practices in groundwater dependent ecosystem management. Waterlines Report, Gov. of Australia, Canberra, AustraliaGoogle Scholar
  63. Peake P, Fitzsimons J, Frood D, Mitchell M, Withers N, White M, Webster R (2011) A new approach to determining environmental flow requirements: sustaining the natural values of floodplains of the southern Murray-Darling Basin. Ecol Manag Restor 12:128–137.  https://doi.org/10.1111/j.1442-8903.2011.00581.x CrossRefGoogle Scholar
  64. Pfautsch S, Dodson W, Madden S, Adams MA (2015) Assessing the impact of large-scale water table modifications on riparian trees: a case study from Australia. Ecohydrology 8:642–651.  https://doi.org/10.1002/eco.1531 CrossRefGoogle Scholar
  65. Productivity Commission (2003) Water rights arrangements in Australian and overseas: annex D, Queensland. Productivity Commission, Melbourne, AustraliaGoogle Scholar
  66. Rohde MM, Froend R, Howard J (2017) A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 1–9.  https://doi.org/10.1111/gwat.12511
  67. Sahuquillo A, Lluria M (2003) Conjunctive use as potential solution for stressed aquifers: social constraints. In: Intensive use of ground water: challenges and opportunities, chap 7. In: Intensive use of groundwater. Balkema, Lisse, The Netherlands, pp 157–176Google Scholar
  68. Saliba BC (1987) Do water markets “work”? Market transfers and trade-offs in the southwestern states. Water Resour Res 23:1113–1122.  https://doi.org/10.1029/WR023i007p01113 CrossRefGoogle Scholar
  69. Scanlon BR, Healy RW, Cook PG (2001) Choosing appropriate technique for quantifying groundwater recharge. Hydrogeol J 10:18–39.  https://doi.org/10.1007/s10040-0010176-2 CrossRefGoogle Scholar
  70. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370Google Scholar
  71. Schirmer M, Davis GB, Hoehn E, Vogt T (2012) GQ10 groundwater quality management in a rapidly changing world. J Contam Hydrol 127:1–2.  https://doi.org/10.1016/j.jconhyd.2011.11.001 CrossRefGoogle Scholar
  72. Schofield N, Burt A, Connell D, Printing CP (2003) Environmental water allocation: principles, policies and practices. Report PR030541, Land and Water Australia, Dept. of Agriculture and Water, Canberra, Australia Google Scholar
  73. Schutten J, Verweij W, Hall A, Scheidleder A (2011) Technical report on groundwater dependent terrestrial ecosystems, Technical report no. 6.  https://doi.org/10.2779/93018
  74. Serov P, Kuginis L, Williams JP (2012) Risk assessment guidelines for groundwater dependent ecosystems, vol 1: the conceptual framework. NSW Gov., SydneyGoogle Scholar
  75. Skurray JH, Roberts EJ, Pannell DJ (2012) Hydrological challenges to groundwater trading: lessons from south-west Western Australia. J Hydrol 412–413:256–268.  https://doi.org/10.1016/j.jhydrol.2011.05.034 CrossRefGoogle Scholar
  76. Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43.  https://doi.org/10.1016/S0022-1694(00)00263-8 CrossRefGoogle Scholar
  77. Sophocleous M, Koussis A, Martin JL, Perkins SP (1995) Evaluation of simplified stream–aquifer depletion models for water rights administration. Groundwater 33:579–588.  https://doi.org/10.1111/j.1745-6584.1995.tb00313.x CrossRefGoogle Scholar
  78. South Australian Arid Lands Natural Resources Management Board (2009) Water allocation plan for the far north prescribed wells area. SA Arid Lands Natural Resources Management Board, Port Augusta, AustraliaGoogle Scholar
  79. South Australian-Victoria Border Groundwaters Agreement Review Committee (2007) Management review tertiary limestone aquifer in province 2 of the designated area. Gov. of SA-Vic, Adelaide-Melbourne, AustraliaGoogle Scholar
  80. Spalding CP, Khaleel R (1991) An evaluation of analytical solutions to estimate drawdowns and stream depletions by wells. Water Resour Res 27:597–609.  https://doi.org/10.1029/91WR00001 CrossRefGoogle Scholar
  81. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans Am Geophys Union 2:519–524.  https://doi.org/10.4135/9781452218564.n218 CrossRefGoogle Scholar
  82. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:1–5.  https://doi.org/10.1029/2009GL039401 CrossRefGoogle Scholar
  83. Tomlinson M (2011) Ecological water requirements of groundwater systems: a knowledge and policy review. Waterlines Report, Gov. of Australia, Canberra, AustraliaGoogle Scholar
  84. Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:1–5.  https://doi.org/10.1029/2010GL044571 CrossRefGoogle Scholar
  85. Werner AD, Alcoe DW, Ordens CM, Hutson JL, Ward JD, Simmons CT (2011) Current practice and future challenges in coastal aquifer management: flux-based and trigger-level approaches with application to an Australian case study. Water Resour Manag 25:1831–1853.  https://doi.org/10.1007/s11269-011-9777-2 CrossRefGoogle Scholar
  86. Werner AD, Zhang Q, Xue L, Smerdon BD, Li X, Zhu X, Yu L, Li L (2013) An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag 27:507–533.  https://doi.org/10.1007/s11269-012-0199-6 CrossRefGoogle Scholar
  87. Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995.  https://doi.org/10.1029/JC090iC05p08995 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Center for Groundwater Research and Training, College of Science and EngineeringFlinders University of South AustraliaBedford ParkAustralia
  2. 2.CDM SmithAdelaideAustralia

Personalised recommendations