Advertisement

Dynamics of greenhouse gases in the river–groundwater interface in a gaining river stretch (Triffoy catchment, Belgium)

  • Anna Jurado
  • Alberto V. Borges
  • Estanislao Pujades
  • Pierre Briers
  • Olha Nikolenko
  • Alain Dassargues
  • Serge Brouyère
Paper
  • 84 Downloads

Abstract

This study investigates the occurrence of greenhouse gases (GHGs) and the role of groundwater as an indirect pathway of GHG emissions into surface waters in a gaining stretch of the Triffoy River agricultural catchment (Belgium). To this end, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations, the stable isotopes of nitrate, and major ions were monitored in river and groundwater over 8 months. Results indicated that groundwater was strongly oversaturated in N2O and CO2 with respect to atmospheric equilibrium (50.1 vs. 0.55 μg L−1 for N2O and 14,569 vs. 400 ppm for CO2), but only marginally for CH4 (0.45 vs. 0.056 μg L−1), suggesting that groundwater can be a source of these GHGs to the atmosphere. Nitrification seemed to be the main process for the accumulation of N2O in groundwater. Oxic conditions prevailing in the aquifer were not prone for the accumulation of CH4. In fact, the emissions of CH4 from the river were one to two orders of magnitude higher than the inputs from groundwater, meaning that CH4 emissions from the river were due to CH4 in-situ production in riverbed or riparian zone sediments. For CO2 and N2O, average emissions from groundwater were 1.5 × 105 kg CO2 ha−1 year−1 and 207 kg N2O ha−1 year−1, respectively. Groundwater is probably an important source of N2O and CO2 in gaining streams but when the measures are scaled at catchment scale, these fluxes are probably relatively modest. Nevertheless, their quantification would better constrain nitrogen and carbon budgets in natural systems.

Keywords

Greenhouse gases Indirect emissions Groundwater monitoring Gaining stream Belgium 

Dynamique des gaz à effet de serre à l’interface rivière–eau souterraine dans un tronçon drainant de la rivière (bassin versant du Triffoy, Belgique)

Résumé

Cette étude examine la présence de gaz à effet de serre (GES) et le rôle de l’eau souterraine comme voie indirecte des émissions de GES dans les eaux de surface dans un tronçon drainant du bassin versant agricole de la rivière Triffoy (Belgique). À cette fin, les concentrations d’oxyde nitreux (N2O), du méthane (CH4) et de dioxyde de carbone (CO2), les isotopes stables du nitrate et les ions majeurs ont été surveillés dans la rivière et l’eau souterraine pendant 8 mois. Les résultats indiquent que l’eau souterraine est fortement sursaturée en N2O et en CO2 par rapport à l’équilibre atmosphérique (50.1 vs. 0.55 μg L−1 pour le N2O et 14,569 vs. 400 ppm pour le CO2), mais seulement de manière marginale pour le CH4 (0.45 vs. 0.056 μ g L−1), ce qui suggère que l’eau souterraine peut être une source de ces GES vers l’atmosphère. La nitrification semblait être le processus principal d’accumulation de N2O dans les eaux souterraines. Les conditions oxiques prévalant dans les eaux souterraines n’étaient pas la cause de l’accumulation de CH4. En fait, les émissions de CH4 depuis la rivière étaient d’un à deux ordres de grandeur plus élevés que les entrées depuis les eaux souterraines, ce qui signifie que les émissions de CH4 depuis la rivière étaient dues à la production in situ du CH4 dans le lit ou dans les sédiments de la zone riparienne. Pour le CO2 et le N2O, les émissions moyennes depuis les eaux souterraines étaient respectivement de 1.5 × 105 kg CO2 ha−1 année−1 and 207 kg N2O ha−1 année−1 dans les cours d’eau drainants mais quand les mesures sont évaluées à l’échelle du bassin versant, ces flux sont sans doute relativement modestes. Néanmoins, leur quantification permettrait de mieux contraindre les bilans de l’azote et du carbone dans les systèmes naturels.

Dinámica de los gases de efecto invernadero en la interfaz río–agua subterránea en un tramo de río ganador (Cuenca Triffoy, Bélgica)

Resumen

Este estudio investiga la presencia de gases de efecto invernadero (GEIs) y el papel del agua subterránea como una vía indirecta de emisiones de GEIs a las aguas superficiales en un tramo ganador de la cuenca agrícola del río Triffoy (Bélgica). Con este fin, se midireron las concentraciones de óxido nitroso (N2O), metano (CH4) y dióxido de carbono (CO2), los isótopos estables del nitrato y los iones mayoritarios en el río y las aguas subterráneas durante 8 meses. Los resultados indicaron que las aguas subterráneas estaban fuertemente sobresaturadas en N2O y CO2 con respecto al equilibrio atmosférico (50.1 vs. 0.55 μg L−1 para N2O y 14,569 vs. 400 ppm para CO2), pero solo marginalmente para el CH4 (0.45 vs. 0.056 μg L−1), sugiriendo que las aguas subterráneas pueden ser una fuente de estos GEIs a la atmósfera. La nitrificación fue el proceso principal para la acumulación de N2O en las aguas subterráneas. Las condiciones óxicas del acuífero no fueron favorables para la acumulación de CH4. De hecho, las emisiones de CH4 del río fueron de uno a dos órdenes de magnitud más altas que las entradas de las aguas subterráneas, lo que significa que las emisiones de CH4 del río se debieron a la producción in situ de CH4 en los sedimentos del lecho del río o de la zona ribereña. Para el CO2 y el N2O, las emisiones promedio de las aguas subterráneas fueron 1.5 × 105 kg CO2 ha−1 año−1 y 207 kg N2O ha−1 año−1, respectivamente. Las aguas subterráneas son probablemente una fuente importante de N2O y CO2 en ríos ganadores, pero cuando las medidas se escalan a nivel de toda la cuenca, estos flujos son probablemente relativamente modestos. Sin embargo, su cuantificación limitaría mejor los balances de nitrógeno y carbono en los sistemas naturales.

(比利时Triffoy流域)一个袭夺河段中河水–地下水界面温室气体动力学

摘要

本研究调查 了(比利时)Triffoy河农业流域一个袭夺河段温室气体的产生以及地下水作为温室气体排放进入地表水的间接途径的作用。为此,对河流和地下水中的一氧化二氮、甲烷和二氧化碳浓度、硝酸盐的稳定同位素以及主要离子进行了8个月的监测。结果显示,针对大气平衡(一氧化二氮50.1 vs. 0.55 μg L−1 及二氧化碳14,569 vs. 400 ppm)来说,地下水中的一氧化二氮和二氧化碳过度饱和,但只有甲烷接近饱和(0.45 vs. 0.056 μg L−1),表明地下水可能是这些温室气体进入大气的来源。硝化疏忽是地下水中一氧化二氮积累的主要过程。含水层中盛行的氧化条件不是甲烷积累的原因。事实上,河中的甲烷排放高于地下水排放一到两个数量级,意味着甲烷从河中的排放归因于河床中或河岸带沉积物中甲烷的现场产生。对于二氧化碳和一氧化二氮,地下水中的平均排放量分别为1.5 × 105 kg CO2 ha−1 year−1 and 207 kg N2O ha−1 year−1。地下水可能是袭夺河中二氧化碳和一氧化二氮的重要来源,但在测量结果为流域尺度时,这些通量可能相对保守。然而,二氧化碳和一氧化二氮的量化可以更好地约束自然系统中的氮和碳。

Dinâmica de gases de efeito estufa na interface rio - água subterrânea em um trecho de ganho fluvial (bacia de Triffoy, Bélgica)

Resumo

Este estudo investiga a ocorrência de gases de efeito estufa (GEEs) e o papel das águas subterrâneas como um caminho indireto de emissões de GEE nas águas superficiais em um trecho de ganho da bacia agrícola do Rio Triffoy (Bélgica). Para este fim, as concentrações de óxido nitroso (N2O), metano (CH4) e dióxido de carbono (CO2), os isótopos estáveis de nitrato e os íons principais foram monitorados em águas fluviais e subterrâneas durante 8 meses. Os resultados indicaram que a água subterrânea estava fortemente supersaturada em N2O e CO2 em relação ao equilíbrio atmosférico (50.1 vs. 0.55 µg/L para N2O e 14.569 vs. 400 ppm para CO2), mas apenas marginalmente para CH4 (0.45 vs. 0.056 µg/L), sugerindo que as águas subterrâneas podem ser uma fonte destes GEE para a atmosfera. A nitrificação pareceu ser o principal processo para o acúmulo de N2O nas águas subterrâneas. Condições oxidativas predominantes no aquífero não foram a causa do acúmulo de CH4. De fato, as emissões de CH4 do rio foram de uma a duas ordens de magnitude mais altas que os insumos das águas subterrâneas, significando que as emissões de CH4 do rio estavam relacionadas à produção in situ de CH4 nos sedimentos de leito de rio ou de zonas ripárias. Para CO2 e N2O, as emissões médias das águas subterrâneas foram de 1.5 × 105 kg CO2 ha−1 ano−1 e 207 kg N2O ha−1 ano−1, respectivamente. A água subterrânea é provavelmente uma fonte importante de N2O e CO2 nas correntes de ganho, mas quando as medidas são dimensionadas na escala de captação, esses fluxos são provavelmente relativamente modestos. No entanto, suas quantificações restringiriam melhor os balanços de nitrogênio e de carbono nos sistemas naturais.

Notes

Acknowledgements

We thank Marc-Vincent Commarieu for help in gas chromatograph (GC) measurements. Further, we wish to thank the editor and the two anonymous reviewers for their comments and suggestions, which helped to improve the quality of the paper.

Funding information

A. J. and E. P. gratefully acknowledge the financial support from the University of Liège and the EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme (2015–2017 and 2014–2016 fellows from FP7-MSCA-COFUND, 600405). A. V. B. is a senior research associate at the Fonds National de la Recherche Scientifique (FNRS). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675120. A GC was acquired with funds from FNRS (FNRS, 2.4.598.07).

Supplementary material

10040_2018_1834_MOESM1_ESM.pdf (453 kb)
ESM 1 (PDF 453 kb)

References

  1. Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Omengo FO, Geeraert N, Deirmendjian L, Polsenaere P, Borges AV (2015) Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12(1):67CrossRefGoogle Scholar
  2. Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO2 produced from NH3 by nitrosomonas: 15N evidence. FEBS Lett 164:236–240CrossRefGoogle Scholar
  3. Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Grimm NB, Johnson SL, McDowell WH, Poole GC, Valett HM, Arango CP, Bernot MJ, Burgin AJ, Crenshaw CL, Helton AM, Johnson LT, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2010) Nitrous oxide emission from denitrification in stream and river networks. Proc Nat Acad Sci USA 108:214–219CrossRefGoogle Scholar
  4. Bell RA, Darling WG, Ward RS, Basava-Reddi L, Halwa L, Manamsa K, Ó Dochartaigh BE (2017) A baseline survey of dissolved methane in aquifers of Great Britain. Sci Total Environ 601–602:1803–1813.  https://doi.org/10.1016/j.scitotenv.2017.05.191 CrossRefGoogle Scholar
  5. Borges AV, Darchambeau F, Lambert T, Bouillon S, Morana C, Brouyère S, Hakoun V, Jurado A, Tseng HC, Descy JP, Roland FAE (2018) Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci Total Environ 610:342–355CrossRefGoogle Scholar
  6. Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S (2015) Globally significant greenhouse gas emissions from African inland waters. Nat Geosci 8:637–642CrossRefGoogle Scholar
  7. Briers P, Jamin P, Ruthy I, Orban P, Brouyère S (2016a) Hydrogéologie du bassin du Hoyoux [Hydrogeology of the Hoyoux basin]. In: Atlas du Karst Wallon-Bassins versants du Hoyoux et de la Solières. Service Publique de la Wallonie, Belgium, pp 41–47Google Scholar
  8. Briers P, Orban P, Brouyère S (2016b) Caractérisation complémentaire des masses d’eau dont le bon état dépend d’interactions entre les eaux de surface et les eaux souterraines (ESO–ESU): délivrable D3.5—quantification des échanges nappe–rivière pour les bassins tests [Complementary characterization of water bodies whose good status depends on interactions between surface water and groundwater (GW–SW): deliverable D3.5—quantification of the nappe–river exchanges for the test basins]. University of Liege, BelgiumGoogle Scholar
  9. Briers P, Orban P, Brouyère S (2016c) Caractérisation complémentaire des masses d’eau dont le bon état dépend d’interactions entre les eaux de surface et les eaux souterraines (ESO–ESU): délivrable D4.1—développement d’indicateurs des interactions entre eaux souterraines et eau de surface [Complementary characterization of water bodies whose good status depends on interactions between surface water and groundwater (GW–SW): deliverable D4.1—development of indicators between groundwater and surface water interactions]. University of Liege, BelgiumGoogle Scholar
  10. Briers P, Orban P, Brouyère S (2016d) Caractérisation complémentaire des masses d’eau dont le bon état dépend d’interactions entre les eaux de surface et les eaux souterraines (ESO–ESU): délivrable D3.4—caractérisation hydrochimique et campagne isotopique pour la discrimination des sources de pollution ponctuelles et diffuses du nitrate [Complementary characterization of water bodies whose good status depends on interactions between surface water and groundwater (GW–SW): deliverable D3.4—hydrochemical characterization and isotopic campaign for the discrimination of point and non-point sources of nitrate pollution]. University of Liege, BelgiumGoogle Scholar
  11. Brouyère S, Briers P, Descy JP, Schmit F, Degré A, Orban P (2017) Caractérisation complémentaire des masses d’eau dont le bon état dépend d’interactions entre les eaux de surface et les eaux souterraines: délivrable D1. 8—rapport final [Complementary characterization of water bodies whose good status depends on interactions between surface water and groundwater: deliverable D1. 8—final report]. University of Liege, BelgiumGoogle Scholar
  12. Brouyère S, Briers P, Schmit F, Orban P, Hallet V, Delloye F, Descy JP (2015) Case study 2: groundwater–surface water interaction in limestone areas of the GWB BE_Meuse_RWM021 (Belgium). Technical report on groundwater associated aquatic ecosystems, Liege University, Belgium, pp 47–49Google Scholar
  13. Casciotti KL, Sigman DM, Hastings MG, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912CrossRefGoogle Scholar
  14. Cheung K, Klassen P, Mayer B, Goodarzi F, Aravena R (2010) Major ion and isotope geochemistry of fluids from coal bed methane and shallow groundwater wells in Alberta. Canada Appl Geochem 25:1307–1329CrossRefGoogle Scholar
  15. Deurer M, von der Heide C, Böttcher J, Duijnisveld WHM, Weymann D, Well R (2008) The dynamics of N2O near the groundwater table and the transfer of N2O into the unsaturated zone: a case study from a sandy aquifer in Germany. Catena 72(3):362–373CrossRefGoogle Scholar
  16. Fox RJ, Fisher TR, Gustafson AB, Jordan TE, Kana TM, Lang MW (2014) Searching for the missing nitrogen: biogenic nitrogen gases in groundwater and streams. J Agric Sci 152(S1):96–106CrossRefGoogle Scholar
  17. Gardner JR, Fisher TR, Jordan TE, Knee KL (2016) Balancing watershed nitrogen budgets: accounting for biogenic gases in streams. Biogeochemistry 127(2–3):231–253CrossRefGoogle Scholar
  18. Gilbert N (2012) One-third of our greenhouse gas emissions come from agriculture. Nat News, 31 October 2012.  https://doi.org/10.1038/nature.2012.11708
  19. Glavan M, Jamšek A, Pintar M (2017) Modelling impact of adjusted agricultural practices on nitrogen leaching to groundwater. In: Water quality. InTech, Richmond, BCGoogle Scholar
  20. Hasegawa K, Hanaki K, Matsuo T, Hidaka S (2000) Nitrous oxide from the agricultural water system contaminated with high nitrogen. Chemosphere-Global Change Sci 2(3):335–345CrossRefGoogle Scholar
  21. Hinshaw SE, Dahlgren RA (2016) Nitrous oxide fluxes and dissolved N gases (N2 and N2O) within riparian zones along the agriculturally impacted San Joaquin River. Nutr Cycl Agroecosys 105(2):85–102CrossRefGoogle Scholar
  22. Hiscock KM, Bateman AS, Mühlherr IH, Fukada T, Dennis PF (2003) Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environ Sci Technol 37(16):3507–3512CrossRefGoogle Scholar
  23. Hotchkiss ER, Hall RO Jr, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8(9):696–699CrossRefGoogle Scholar
  24. IPCC (2014) Climate Change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 ppGoogle Scholar
  25. IPCC (2006) IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, JapanGoogle Scholar
  26. Jahangir MM, Johnston P, Khalil MI, Hennessy D, Humphreys J, Fenton O, Richards KG (2012) Groundwater: a pathway for terrestrial C and N losses and indirect greenhouse gas emissions. Agr Ecosys Environ 159:40–48CrossRefGoogle Scholar
  27. Jahangir MM, Johnston P, Barrett M, Khalil MI, Groffman PM, Boeckx P, Fenton O, Murphy J, Richards KG (2013) Denitrification and indirect N2O emissions in groundwater: hydrologic and biogeochemical influences. J Contam Hydrol 152:70–81CrossRefGoogle Scholar
  28. Johnson MS, Lehmann J, Riha S, Krusche AV, Richey JE, Ometto JPHB, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401CrossRefGoogle Scholar
  29. Jurado A, Borges AV, Pujades E, Hakoun V, Otten J, Knoeller K, Brouyère S (2018) Occurrence of greenhouse gases in the aquifers of the Walloon region (Belgium). Sci Total Environ 619–620:1579–1588CrossRefGoogle Scholar
  30. Kendall C (1998) Tracing sources and cycling of nitrate in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576CrossRefGoogle Scholar
  31. Kroopnick P, Craig H (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175(4017):54–55CrossRefGoogle Scholar
  32. Mayer B (2005) Assessing sources and transformations of sulphate and nitrate in the hydrosphere using isotope techniques. In: Isotopes in the water cycle. Springer, Dordrecht, The Netherlands, pp 67–89Google Scholar
  33. Mayer B, Bollwerk SM, Mansfeldt T, Hütter B, Veizer J (2001) The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim Cosmochim Acta 65(16):2743–2756CrossRefGoogle Scholar
  34. McAleer EB, Coxon CE, Richards KG, Jahangir MMR, Grant J, Mellander PE (2017) Groundwater nitrate reduction versus dissolved gas production: a tale of two catchments. Sci Total Environ 586:372–389CrossRefGoogle Scholar
  35. Minamikawa K, Nishimura S, Sawamoto T, Nakajima Y, Yagi K (2010) Annual emissions of dissolved CO2, CH4, and N2O in the subsurface drainage from three cropping systems. Glob Chang Biol 16(2):796–809CrossRefGoogle Scholar
  36. Nikolenko O, Jurado A, Borges AV, Knӧller K, Brouyѐre S (2018) Isotopic composition of nitrogen species in groundwater under agricultural areas: a review. Sci Total Environ 621:1415–1432CrossRefGoogle Scholar
  37. Otero N, Torrentó C, Soler A, Menció A, Mas-Pla J (2009) Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic (Osona, Spain). Agric Ecosyst Environ 133(1):103–113CrossRefGoogle Scholar
  38. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceano: Fluids Environ 2(1):41–53CrossRefGoogle Scholar
  39. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232CrossRefGoogle Scholar
  40. SPW, DGARNE (2010) État des lieux de la masse d’eau souterraine RWM021 « Calcaires et Grès du Condroz » [State of play of the groundwater body RWM021 “Limestones and Sandstone of Condroz”]. Service Public de Wallonie, Wallonie, BelgiumGoogle Scholar
  41. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73(17):4145–4153CrossRefGoogle Scholar
  42. Tan KH (2010) Principles of soil chemistry. CRC, Boca Raton, FLGoogle Scholar
  43. Vidon P, Serchan S (2016) Impact of stream geomorphology on greenhouse gas concentration in a New York mountain stream. Water Air Soil Pollut 227(12):428CrossRefGoogle Scholar
  44. Vilain G, Garnier J, Tallec G, Tournebize J (2012) Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France). Biogeochemistry 111(1–3):253–271CrossRefGoogle Scholar
  45. von der Heide C, Böttcher J, Deurer M, Duijnisveld WH, Weymann D, Well R (2009) Estimation of indirect nitrous oxide emissions from a shallow aquifer in northern Germany. J Environ Qual 38(6):2161–2171CrossRefGoogle Scholar
  46. Wang S, Yeager KM, Wan G, Liu CQ, Liu F, Lü Y (2015) Dynamics of CO2 in a karst catchment in the southwestern plateau, China. Environ Earth Sci 73(5):2415–2427CrossRefGoogle Scholar
  47. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  48. Werner SF, Browne BA, Driscoll CT (2012) Three-dimensional spatial patterns of trace gas concentrations in baseflow-dominated agricultural streams: implications for surface–ground water interactions and biogeochemistry. Biogeochemistry 107(1–3):319–338CrossRefGoogle Scholar
  49. Worral F, Lancaster A (2005) The release of CO2 from river waters: the contribution of excess CO2 from groundwater. Biogeochemistry 76:299–317CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna Jurado
    • 1
    • 2
  • Alberto V. Borges
    • 3
  • Estanislao Pujades
    • 1
    • 4
  • Pierre Briers
    • 1
  • Olha Nikolenko
    • 1
  • Alain Dassargues
    • 1
  • Serge Brouyère
    • 1
  1. 1.Urban & Environmental Engineering, Hydrogeology and Environmental GeologyAquapôle, University of LiègeLiègeBelgium
  2. 2.Institute for Groundwater ManagementTechnische Universität DresdenDresdenGermany
  3. 3.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  4. 4.Department of Computational HydrosystemsUFZ - Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations