Advertisement

The effect of hydraulic anisotropies on intensely exploited groundwater resources: the numerical evaluation of a hydrothermal transboundary aquifer system in the Middle East

  • Kalliopi Tzoufka
  • Fabien Magri
  • Tino Rödiger
  • Nimrod Inbar
  • Eyal Shalev
  • Peter Möller
  • Marwan Raggad
  • Eliyahu Rosenthal
  • Christian Siebert
Paper

Abstract

Previous investigations postulate the presence of a zone of high hydraulic anisotropy parallel to the principle axis of the Lower Yarmouk Gorge (LYG) in the Middle East. Driven by mixed convection, heated fresh groundwaters ascend within the gorge from confined Cretaceous units through artesian wells and Hammat Gader springs. Two-dimensional transient numerical simulations of coupled fluid flow and heat transport processes are used to investigate the impact of (1) a zone of hydraulic anisotropy and (2) abstraction on hydraulic heads and temperature profiles in the shallow aquifers. The models successfully reproduce hydraulic head distribution pre- and post-groundwater abstraction; dominance of conductive and advective heat transport processes is also shown. The models further support the existence of a structural feature along the principle axis of the gorge, which hydraulically connects groundwaters in both flanks, while cross flow of groundwaters is prevented. That implies a subsurface anisotropic zone, which lets the gorge act as a complex conduit-barrier system where adjacent N–S and S–N flow-fields confluence and get drained towards the Jordan Rift. The present numerical investigations support the hypothesis that, most likely, structural features that represent physical anisotropies control the hydrothermal system of the LYG. Furthermore, the study provides an example of numerical investigation of a complex transboundary aquifer system, with emphasis on existent anisotropies, structural ambivalence and restricted field accessibility.

Keywords

Numerical modeling Anisotropy Thermal anomaly Transboundary aquifer Middle East 

Effet des anisotropies hydrauliques sur des ressources d’eaux souterraines intensément exploitées: évaluation numérique d’un système transfrontalier hydrothermal aquifère au Moyen-Orient

Résumé

De précédentes recherches postulent la présence d’une zone d’importante anisotropie hydraulique parallèle à l’axe principal des gorges du Yarmouk inférieur (LYG) dans le Moyen-Orient. Mues par une convection mixte, les eaux douces souterraines chaudes montent dans les gorges à partir des unités crétacées captives, par les puits artésiens et les sources de Hammat Gader. Des simulations numériques transitoires bidimensionnelles des procédés couplés de flux de fluide et de transport de la chaleur sont employées pour étudier l’impact (1) d’une zone d’anisotropie hydraulique et (2) des prélèvements sur les charges hydrauliques et les profils de température dans les aquifères peu profonds. Les modèles reproduisent avec succès la distribution des charges hydrauliques avant et après les prélèvements d’eaux souterraines; la dominance des procédés de conduction et d’advection dans le transport de la chaleur est. également montrée. De plus, les modèles soutiennent l’idée de l’existence d’un dispositif structural le long de l’axe principal des gorges, qui relie hydrauliquement les eaux souterraines des deux flancs, tandis l’écoulement transverse des eaux souterraines est. empêché. Cela suppose une zone anisotrope souterraine, qui laisse les gorges agir en tant que système complexe de conduit-barrière où les champs d’écoulements adjacents N–S et S–N confluent et sont drainés par le rift jordanien. Les investigations numériques actuelles soutiennent l’hypothèse que, le plus probablement, les éléments structuraux qui représentent des anisotropies physiques commandent le système hydrothermal du LYG. En outre, l’étude fournit un exemple de recherche numérique sur un système aquifère transfrontalier complexe, en mettant l’accent sur les anisotropies existantes, l’ambivalence structurale et une accessibilité restreinte au terrain.

El efecto de las anisotropías hidráulicas en los recursos hídricos subterráneos intensamente explotados: la evaluación numérica de un sistema acuífero hidrotermal transfronterizo en el Medio Oriente

Resumen

Las investigaciones previas postulan la presencia de una zona de alta anisotropía hidráulica paralela al eje principal de Lower Yarmouk Gorge (LYG) en el Medio Oriente. Impulsado por la convección mixta, las aguas subterráneas dulces calientes ascienden dentro de la garganta desde unidades confinadas del Cretácico a través de pozos artesianos y manantiales de Hammat Gader. Se utilizan simulaciones numéricas bidimensionales transitorias de procesos acoplados de flujo de fluidos y transporte de calor para investigar el impacto de (1) una zona de anisotropía hidráulica y (2) captación sobre cargas hidráulicas y perfiles de temperatura en los acuíferos poco profundos. Los modelos reproducen con éxito la distribución de la carga hidráulica antes y después de la extracción del agua subterránea; también se muestra el dominio de los procesos de transporte de calor conductivo y advectivo. Los modelos respaldan además la existencia de una característica estructural a lo largo del eje principal de la garganta, que conecta hidráulicamente las aguas subterráneas en ambos flancos, mientras que se evita el flujo cruzado de las aguas subterráneas. Eso implica una zona anisotrópica en el subsuelo, que permite que la garganta actúe como un complejo sistema de barrera de conductos donde confluyen los campos de flujo adyacentes N–S y S–N y se drenan hacia el Jordan Rift. Las investigaciones numéricas actuales respaldan la hipótesis de que, muy probablemente, las características estructurales que representan anisotropías físicas controlan el sistema hidrotermal del LYG. Además, el estudio proporciona un ejemplo de investigación numérica de un complejo sistema acuífero transfronterizo, con énfasis en las anisotropías existentes, la ambivalencia estructural y la accesibilidad restringida al campo.

水力各向异性对强烈开采地下水资源的影响:中东热水跨边界含水层系统数值评估

摘要

在中东,过去的研究假定存在着一个平行于Yarmouk峡谷下游主轴的高度水力各向异性带。受到混合对流的驱使,加热的地下淡水通过自流井和Hammat Gader泉群从承压白垩纪单元向外涌出,其水位在峡谷内抬升。采用耦合液体流和热传送过程二维瞬时数值模拟调查了(1)水力各向异性带和(2)抽水对浅层含水层水头和温度剖面的影响。模型成功地再现了抽水前后的水头分布;还显示出传导和平流热传输过程转主导地位。模型进一步支持沿峡谷的主轴存在着一个构造特征,在地下水交叉水流受到阻碍时,这个构造特征就会水力上连接两岸的地下水。这意味着在地表以下存在着一个各向异性带,这个各向异性带能够使峡谷担当一个复杂的通道屏障系统,在这里毗邻的N–S 和 S–N流场汇合,并且向约旦裂谷排水。目前的数值调查结果支持这一假设,即很可能代表物理各向异性的构造特征控制着Yarmouk峡谷下游水热系统。此外,研究还为复杂的跨边界含水层系统的数值调查,尤其是侧重现有的各向异性、构造上各种情况并存以及抵达野外场地受限的数值调查提供了样板。

O efeito de anisotropias hidráulicas em águas subterrâneas altamente explotadas: avaliação numérica de um sistema aquífero hidrotermal transfronteiriço no Oriente Médio

Resumo

Investigações anteriores postulam a presença de uma zona de elevada anisotropia hidráulica paralela ao eixo principal do Baixo Desfiladeiro de Yarmouk (BDY), no oriente médio. Conduzidas por convecção mista, as águas subterrâneas aquecidas ascendem dentro do desfiladeiro de Unidades Cretáceas através de poços artesianos e nas nascentes de Hammat Gader. Simulações numéricas de transiente bidimensional de processos de fluxo de fluidos e transporte de calor acoplados são utilizados para investigar os impactos de (1) uma zona de anisotropia hidráulica e (2) explotação nas alturas piezométricas e perfis de temperatura em aquíferos rasos. Os modelos reproduzem com sucesso a distribuição da altura piezométrica pré e pós a explotação; é mostrada também a dominância de processos condutivos e convectivos de transporte de calor. Os modelos suportam ainda a existência de uma feição estrutural ao longo do eixo principal do desfiladeiro, com águas subterrâneas hidraulicamente conectadas em ambos os flancos, enquanto o fluxo cruzado de águas subterrâneas é impedido. Isso implica numa zona anisotrópica subsuperficial, o que permite que o desfiladeiro atue como um complexo sistema conduto-barreira, onde ocorre confluência de fluxos N–S e S–N adjacentes e são drenados para a Fenda do Jordão. A investigação numérica presente apoia a hipótese de que, muito provavelmente, feições estruturais que representam anisotropias físicas controlam o sistema hidrotermal do BDY. Além disso, o estudo fornece um exemplo de investigação numérica de um complexo sistema aquífero transfronteiriço, com ênfase nas anisotropias existentes, ambivalência estrutural e de restrita acessibilidade.

Notes

Acknowledgements

We thank DHI for providing the FEFLOW license. We acknowledge provision of data from the Hydrological Service of Israel (HSI). We further thank Weon Shik Han for editing the manuscript and particularly Jin-Yong Lee and two other anonymous reviewers for a fast review process and valuable comments, which significantly improved the manuscript.

Funding information

The study was supported by YSEP program (YSEP103), granted by the German Federal Ministry of Education and Research (BMBF) and the Israeli Ministry of Science and Technology (MOST) and additionally through the German Research Foundation (DFG) (grant Ma4450/2–3).

References

  1. Abbo H, Shavit U, Markel D, Rimmer A (2003) A numerical study on the influence of fractured regions on lake/groundwater interaction: the Lake Kinneret (Sea of Galilee) case. J Hydrol 283:225–243CrossRefGoogle Scholar
  2. Andrews IJ (1992a) Cretaceous and Paleogene lithostratigraphy in the subsurface of Jordan. Subsurface Geol Bull 5, Natural Resources Authority (NRA), Amman, Jordan, 60 ppGoogle Scholar
  3. Andrews IJ (1992b) Permian, Triassic and Jurassic lithostratigraphy in the subsurface of Jordan. Subsurface Geol Bull 4, Natural Resources Authority (NRA), Amman, Jordan, 60 ppGoogle Scholar
  4. Arad A, Bein A (1986) Saline- versus freshwater contribution to the thermal waters of the northern Jordan Rift Valley, Israel. J Hydrol 83:49–66CrossRefGoogle Scholar
  5. Bajjali W, Clark ID, Fritz P (1997) The artesian thermal groundwaters of northern Jordan: insights into their recharge history and age. J Hydrol 192:355–382CrossRefGoogle Scholar
  6. Bergelson G, Nativ R, Bein A (1998) Assessment of hydraulic parameters of the aquifers around the Sea of Galilee. Ground Water 36:409–417.  https://doi.org/10.1111/j.1745-6584.1998.tb02811.x CrossRefGoogle Scholar
  7. BGR (Deutsche Bundesanstalt für Geowissenschaften und Rohstoffe), WAJ (Water Authority of Jordan) (1994) Groundwater resources of northern Jordan. Structural features of the main hydrogeological units in northern Jordan, vol 3. BGR-Archive no. 112708, WAJ, Amman, JordanGoogle Scholar
  8. BGR (Deutsche Bundesanstalt für Geowissenschaften und Rohstoffe), WAJ (Water Authority of Jordan) (1997) Groundwater resources of northern Jordan: groundwater modelling—three dimensional groundwater model of northern Jordan, vol 5, part 1. WAJ, Amman, JordanGoogle Scholar
  9. BGR (Deutsche Bundesanstalt für Geowissenschaften und Rohstoffe), WAJ (Water Authority of Jordan) (2001) Groundwater resources of northern Jordan: contributions to the hydrogeology of northern Jordan, vol 4. Ministry of Water and Irrigation, Amman, JordanGoogle Scholar
  10. Bruner I, Dekel I (1989) High-resolution seismic reflection survey in the southern Golan Heights. Rep 120/1939/88, The Institute for Petroleum Research and Geophysics, Tel Aviv, IsraelGoogle Scholar
  11. Cherubini Y, Cacace M, Blöcher G, Scheck-Wenderoth M (2013) Impact of single inclined faults on the fluid flow and heat transport: results from 3-D finite element simulations. Environ Earth Sci 70:3603–3618CrossRefGoogle Scholar
  12. Dafny E, Burg A, Gvirtzman H (2006) Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: the Golan Heights, Israel case study. J Hydrol 330:506–524CrossRefGoogle Scholar
  13. Diersch H-JG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944CrossRefGoogle Scholar
  14. Eckstein Y, Simmonsi G (1977) Measurement and interpretation of terrestrial heat flow in Israel. Geothermics 6:117–142CrossRefGoogle Scholar
  15. Goretzki N, Inbar N, Kühn M, Möller P, Rosenthal E, Schneider M, Siebert C, Raggad M, Magri F (2016) Inverse problem to constrain hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge. Energy Procedia 97:419–426CrossRefGoogle Scholar
  16. Gvirtzman H, Garven G, Gvirtzman G (1997a) Thermal anomalies associated with forced and free ground-water convection in the Dead Sea rift valley. Geol Soc Am Bull 109:1167–1176CrossRefGoogle Scholar
  17. Gvirtzman H, Garven G, Gvirtzman G (1997b) Hydrogeological modeling of the saline hot springs at the Sea of Galilee, Israel. Water Resour Res 33:913–926CrossRefGoogle Scholar
  18. Hurwitz S, Stanislavsky E, Lyakhovsky V, Gvirtzman H (2000) Transient groundwater–lake interactions in a continental rift: Sea of Galilee, Israel. Geol Soc Am Bull 112:1694–1702CrossRefGoogle Scholar
  19. Inbar N, Rosenthal E, Magri F, Al-Raggad M, Moeller P, Flexer A, Siebert C (2018) Faulting patterns determining groundwater flow paths in the Lower Yarmouk Gorge. Hydrol Earth Syst Sci Discuss.  https://doi.org/10.5194/hess-2018-188
  20. Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes. Cambridge University Press, Cambridge, UKGoogle Scholar
  21. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1):PA1003.  https://doi.org/10.1029/2004PA001071 CrossRefGoogle Scholar
  22. López DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31:1489–1503CrossRefGoogle Scholar
  23. Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. J Hydrol 520:342–355CrossRefGoogle Scholar
  24. Magri F, Möller S, Inbar N, Möller P, Raggad M, Rödiger T, Rosenthal E, Siebert C (2016) 2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems: implications for transboundary flow in the Lower Yarmouk Gorge. Mar Pet Geol 78:750–758CrossRefGoogle Scholar
  25. McKibbin R, Tyvand PA (1984) Thermal convection in a porous medium with horizontal cracks. Int J Heat Mass Transf 27:1007–1023CrossRefGoogle Scholar
  26. Meiler M (2011) The deep geological structure of the Golan Heights and the evolution of the adjacent Dead Sea Fault system. PhD Thesis, Tel Aviv University, Israel, 153 ppGoogle Scholar
  27. Moh’d BK (2000) The geology of Irbid and Ash Shuna Ash Shamaliyya (Waqqas). Map sheets nos. 3154-II and 3154-III, Bulletin 46, Geological Mapping Division, Amman, Jordan, 67 ppGoogle Scholar
  28. Mor D (1986) The volcanism of the Golan Heights (in Hebrew, English abstract). Rep GSI/05/1986, Geological Survey of Israel, JerusalemGoogle Scholar
  29. NRA (National Resources Agency) (1997) Geological map of Wadi Al Arab. scale 1:50,000. NRA, Amman, JordanGoogle Scholar
  30. Rimmer A, Hurwitz S, Gvirtzman H (1999) Spatial and temporal characteristics of Saline Springs: Sea of Galilee, Israel. Ground Water 37:663–673CrossRefGoogle Scholar
  31. Roded R, Shalev E, Katoshevski D (2013) Basal heat-flow and hydrothermal regime at the Golan–Ajloun hydrological basins. J Hydrol 476:200–211CrossRefGoogle Scholar
  32. Rödiger T, Magri F, Geyer S, Morandage ST, Ali Subah HE, Alraggad M, Siebert C (2017) Assessing anthropogenic impacts on limited water resources under semi-arid conditions: three-dimensional transient regional modelling in Jordan. Hydrogeol J 25(7):2139–2149Google Scholar
  33. Rosenthal M, Segev A, Rybakov M, Lyakhovsky V, Ben-Avraham Z (2015) The deep structure and density distribution of northern Israel and its surroundings. Rep GSI/12/2015, Geological Survey of Israel, JerusalemGoogle Scholar
  34. Sahawneh J (2011) Structural control of hydrology, hydrogeology and hydrochemistry along the eastern escarpment of the Jordan Rift Valley, Jordan (in English). PhD Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 284 ppGoogle Scholar
  35. Salameh E (1996) Water quality degradation in Jordan. Royal Society for the Conservation of Nature, Amman, JordanGoogle Scholar
  36. Shalev E, Levitte D, Gabay R, Zemach E (2008) Assessment of Geothermal Resources in Israel. Rep. GSI/29/2008, The Ministry of National Infrastructures, Geological Survey of Israel, JerusalemGoogle Scholar
  37. Shalev E, Lyakhovsky V, Weinstein Y, Ben-Avraham Z (2013) The thermal structure of Israel and the Dead Sea Fault. Tectonophysics 602:69–77CrossRefGoogle Scholar
  38. Shalev E, Lyakhovsky V, Yechieli Y (2007) Is advective heat transport significant at the Dead Sea basin? Geofluids 7:292–300.  https://doi.org/10.1111/j.1468-8123.2007.00190.x CrossRefGoogle Scholar
  39. Shalev E, Malik U, Lutsky H (2015) Monitoring and analysis of water levels and pumping data from Meizar wells (in Hebrew). Rep. GSI/07/2015, The Ministry of National Infrastructures, Geological Survey of Israel, JerusalemGoogle Scholar
  40. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry towards geometric engineering. Springer, Berlin, pp 203–222CrossRefGoogle Scholar
  41. Shulman H, Reshef M, Ben-Avraham Z (2004) The structure of the Golan Heights and its tectonic linkage to the Dead Sea transform and the Palmyrides folding. Isr J Earth Sci 53:225–237CrossRefGoogle Scholar
  42. Siebert C, Möller P, Geyer S, Kraushaar S, Dulski P, Guttman J, Subah A, Rödiger T (2014) Thermal waters in the Lower Yarmouk Gorge and their relation to surrounding aquifers. Chem Erde 74:425–441CrossRefGoogle Scholar
  43. Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275CrossRefGoogle Scholar
  44. Simmons CT, Sharp JM, Nield DA (2008) Modes of free convection in fractured low-permeability media. Water Resour Res 44:W03431Google Scholar
  45. Simms MA, Garven G (2004) Thermal convection in faulted extensional sedimentary basins: theoretical results from finite-element modeling. Geofluids 4:109–130CrossRefGoogle Scholar
  46. Sneh A, Bartov Y, Weissbrod T, Rosensaft M (1998) Geological Map of Israel. 4 sheets, scale 1:200,000, Geological Survey of Israel, JerusalemGoogle Scholar
  47. Yang J, Large RR, Bull SW (2004) Factors controlling free thermal convection in faults in sedimentary basins: implications for the formation of zinc–lead mineral deposits. Geofluids 4:237–247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kalliopi Tzoufka
    • 1
    • 2
  • Fabien Magri
    • 3
    • 4
  • Tino Rödiger
    • 1
  • Nimrod Inbar
    • 5
    • 6
  • Eyal Shalev
    • 7
  • Peter Möller
    • 8
  • Marwan Raggad
    • 9
  • Eliyahu Rosenthal
    • 5
  • Christian Siebert
    • 1
  1. 1.Department of Catchment HydrologyUFZ Helmholtz-Centre for Environmental ResearchHalleGermany
  2. 2.Chair of HydrogeologyTechnische Universität Bergakademie FreibergFreibergGermany
  3. 3.Department of Environmental InformaticsUFZ Helmholtz-Centre for Environmental ResearchLeipzigGermany
  4. 4.HydrogeologyFreie Universität BerlinBerlinGermany
  5. 5.Department of Earth SciencesTel Aviv UniversityTel AvivIsrael
  6. 6.Eastern Regional R&D CenterArielIsrael
  7. 7.Geological Survey of IsraelJerusalemIsrael
  8. 8.Helmholtz-Centre Potsdam GFZ German Research Centre for GeosciencesPotsdamGermany
  9. 9.Department of GeologyJordan UniversityAmmanJordan

Personalised recommendations