Advertisement

Well-screen and well-head clogging by hydrous ferric oxides

  • C. G. E. M. van Beek
Report

Abstract

In the production of drinking water from groundwater by aeration and rapid sand filtration (RSF), iron(II) may be removed in two ways: at pH > ~8 by homogeneous oxidation and precipitation, and at ~6.0 < pH < ~7.5 by combined heterogeneous and biological iron(II) oxidation and precipitation. In line with this distinction, wells may become clogged by the accumulation of hydrous ferric oxide (HFO) precipitates in two ways: at “high” pH (pH > ~7) by development of HFO flakes resulting in minimal clogging of the screen slots, and at “low” pH (pH < ~7) by massive HFO precipitates and biomass resulting in extensive clogging of the screen slots. As HFO precipitation continues, both processes result in extensive well-head clogging, i.e. fouling of submersible pumps, collector lines, etc. While well-screen clogging may be monitored conveniently, no general method is available for monitoring well-head clogging. Recognition of both chemical clogging types is important for effective well construction, operation and maintenance. During rest, HFO precipitation processes continue, further blocking pumps and water lines. If a vertical hydraulic gradient is present over the height of the well screen, HFO precipitates may accumulate on the well screen and enter the aquifer. Consequently, the behavior of the well is important not only during operation, but also during rest. These findings are illustrated by numerous observations on well fields exploited by the drinking water utilities in the Netherlands.

Keywords

Homogeneous, heterogeneous and biological iron(II) oxidation Well clogging Well enhancement The Netherlands 

Crépines et tête de puits colmatés par des oxydes de fer hydratés

Résumé

Dans la production d’eau potable à partir d’eaux souterraines par aération et filtration rapide sur sable (FRS), le fer (II) peut être enlevé de deux façons: à pH > ~ 8 par oxydation et précipitation homogènes, et à ~ 6.0 < pH < ~ 7.5 par une oxydation du fer biologique (II) et une précipitation hétérogène. En ligne avec cette distinction, les puits peuvent être colmaté par l’accumulation des précipités d’oxyde ferrique hydraté (OFH) de deux façons: au pH «élevé» (pH > ~ 7) impliquant un colmatage minimal des ouvertures des crépines par le développement de flocons d’OFH, et à un pH «faible» (pH < ~ 7) par un colmatage des ouvertures des crépines par les précipités massifs d’OFH et la biomasse. À mesure que la précipitation des OFH se poursuit, les deux processus entraînent un colmatage complet des têtes de puits, c’est-à-dire l’encrassement des pompes submersibles, des canalisations d’eau, etc. Bien que le colmatage des crépines puisse être surveillé aisément, aucune méthode générale n’est disponible pour surveiller le colmatage de la tête de puits. La reconnaissance des deux types de colmatage chimique est importante pour la construction, le fonctionnement et l’entretien efficaces des puits. Pendant les phases de repos, les processus de précipitation des OFH se poursuivent, bloquant les pompes et les canalisations d’eau. Si un gradient hydraulique verticale est présent au-dessus de la partie crépinée du puits, les précipités d’OFH peuvent s’accumuler sur les crépines et pénétrer dans l’aquifère. Par conséquent, le comportement du puits est important pas seulement durant son fonctionnement mais aussi pendant les phases de repos. Ces résultats sont illustrés par de nombreuses observations sur les champs captants exploités par les services d’alimentation en eau potable aux Pays-Bas.

Obstrucción de filtros y de la boca de pozo por óxidos férricos hidratados

Resumen

En la producción de agua potable a partir de agua subterránea por aireación y filtración rápida de arena (RSF), el hierro (II) puede eliminarse de dos maneras: a pH > ~ 8 por oxidación y precipitación homogénea, y a ~ 6.0 < pH < ~ 7.5 por oxidación y precipitación heterogénea y biológica del hierro (II). En línea con esta distinción, los pozos pueden obstruirse por la acumulación de precipitados de óxido férrico hidratado (HFO) de dos maneras: a pH “alto” (pH > ~ 7) que implica obstrucción mínima de las ranuras de los filtros por desarrollo de escamas de HFO, y pH “bajo” (pH < ~ 7) por obstrucción extensiva de las ranuras de los filtros por precipitados masivos de HFO y biomasa. A medida que continúa la precipitación de HFO, ambos procesos resultan en obstrucción extensiva de la boca del pozo, es decir, incrustación en las bombas sumergibles, en líneas colectoras, etc. Si bien la obstrucción de los filtros del pozo puede monitorearse convenientemente, no hay un método general disponible para monitorear la obstrucción en la boca del pozo. El reconocimiento de ambos tipos de obstrucción química es importante para una construcción, operación y mantenimiento efectivo del pozo. Durante el reposo, continúan los procesos de precipitación de HFO, bloqueando aún más las bombas y las tuberías de agua. Si hay un gradiente hidráulico vertical sobre la altura de los filtros del pozo, los precipitados de HFO pueden acumularse en el filtro del pozo y entrar al acuífero. En consecuencia, el comportamiento del pozo es importante no solo durante la operación, sino también durante el reposo. Estos hallazgos se ilustran con numerosas observaciones sobre campos de pozos explotados por las empresas de agua potable en los Países Bajos.

水合铁氧化物造成的井滤水管和水头堵塞

摘要

在地下水通过曝气和快速沙过滤加工成饮用水中,可以通过两种途径去除水中的铁:pH > 8时通过同质氧化和沉淀,pH 6.0到7.5时通过异质及生物铁氧化和沉淀。根据这个区别,水合铁氧化物沉淀物的积累可能会通过两种方式造成水井堵塞:在“高”pH(>7)就会出现水合铁氧化物碎片发育造成的滤水管开口矿物堵塞,以及在“低”pH(<7)就会出现大量水合铁氧化物沉淀物和生物质造成的滤水管开口大面积堵塞。随着水合铁氧化物沉淀继续,两个过程导致大范围水头堵塞,即潜水泵、收集管以及其它设备污垢汇集。对水井滤水管堵塞可以很方便地监测,但还没有监测水头堵塞的常规方法。两种化学堵塞类型的识别对于井的有效建设、运行和维护非常重要。在非运行期间,水和铁氧化物沉淀过程继续,进一步堵塞水泵和水管。如果在井滤水管上方存在着垂直水力坡度,水合铁氧化物沉淀物可在井滤水管上和整个含水层内积累。因此,水井的生产状态不仅在运行期间非常重要,而且在非运行期间也很重要。在荷兰饮用水公共事业设施开发井场的众多观测结果对这些发现进行了描述。.

Colmatação de filtro e cabeça de poço por óxidos de ferro hidratado

Resumo

No tratamento por aeração e filtração rápida em areia (FRA) de águas subterrâneas para abastecimento, ferro(II) pode ser removido de duas formas: oxidação homogênea e precipitação com pH > 8 e, por combinação de oxidação heterogênea e biológica do ferro(II) e precipitação com 6 < pH < ~7.5. De acordo com essa distinção, poços podem sofrer colmatação devido ao acúmulo de óxido de ferro hidratado (OFH) precipitado de duas formas: sob “elevado” pH (pH > ~7), envolvendo mínima colmatação das ranhuras do filtro pelo desenvolvimento de flocos de OFH, e sob “baixo” pH (pH < ~7), por colmatação intensa das ranhuras do filtro por elevada precipitação de OFH e biomassa. Enquanto a precipitação de OFH continua, ambos os processos resultam em uma colmatação extensiva da cabeça do poço, ou seja, incrustação das bombas submersas, linhas coletoras, etc. Enquanto a colmatação do filtro pode ser monitorada convenientemente, não há um método geral para monitoramento da colmatação na cabeça do poço. O reconhecimento de ambos os tipos de colmatação química é importante para uma efetiva construção, operação e manutenção do poço. Durante o descanso, o processo de precipitação de OFH continua, ocasionando bloqueio das bombas e linhas d’água. Se houver um gradiente hidráulico sobre a altura do filtro do poço, o OFH precipitado pode acumular no filtro e adentrar no aquífero. Consequentemente, o comportamento do poço é importante não apenas durante a operação, mas também durante o descanso. Essas descobertas são ilustradas por numerosas observações em regiões com poços explotados para abastecimento humano na Holanda.

Notes

Acknowledgements

Many colleagues, active in one of the Dutch drinking water utilities, assisted in looking for data and in discussing provisional conclusions: Rob Breedveld (Vitens), Pieter Dammers (Dunea), Wim Kessels (WML), Ruud Krab (Vitens), Rob Lafort (Evides), Nico van der Moot (WMD), Paul Niekus (Vitens), Renard Prevoo (WML) and Carl van Rosmalen (Brabant Water). Discussions with Thilo Behrends (Utrecht University) and Martin van der Schans (KWR Water) were very fruitful.

References

  1. Appeldoorn P, Wensing M, van den Akker C (2000) Horizontal directed drilled drains as part of ground water abstraction, H2O (10) 20–22 (in Dutch)Google Scholar
  2. Bustos Medina DA, van den Berg GA, van Breukelen BM, Juhasz-Holterman M, Stuyfzand PJ (2013) Iron-hydroxide clogging of public supply wells receiving artificial recharge: near-well and in-well hydrological and hydrochemical observations. Hydrogeol J 21(7):1393–1412.  https://doi.org/10.1007/s10040-013-1005-0 CrossRefGoogle Scholar
  3. Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5:717–727CrossRefGoogle Scholar
  4. de Vet WWJM (2011) Biological drinking water treatment of anaerobic groundwater in trickling filters. Doctoral thesis, Technical University Delft, NetherlandsGoogle Scholar
  5. de Vet WWJM, Dinkla IJT, Rietveld LC, van Loosdrecht MCM (2011) Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Water Res 45:5389–5398.  https://doi.org/10.1016/waters.2011.07.028.
  6. Eggerichs T, Opel O, Otte T, Ruck W (2014) Interdependencies between biotic and abiotic ferrous iron oxidation and influence of pH, oxygen and ferric iron deposits. Geomicrobiol J 31:461–472.  https://doi.org/10.1080/01490451.2013.870620 CrossRefGoogle Scholar
  7. Emerson D, de Vet W (2015) The role of FeOB in engineered water ecosystems: a review. J Am Water Works Assoc 107(1):E47–E57.  https://doi.org/10.5942/jawwa.2015.107.0004 CrossRefGoogle Scholar
  8. Houben G (2003) Iron hydroxide incrustations in wells, part 1: genesis, mineralogy and geochemistry. Appl Geochem 18(6):927–939CrossRefGoogle Scholar
  9. Houben GJ, Weihe U (2010) Spatial distribution of incrustations around a water well after 38 years of use. Groundwater 48(1):53–58.  https://doi.org/10.1111/j.1745-6584.2009.00641.x CrossRefGoogle Scholar
  10. Houben GJ, Treskatis C (2007) Water well rehabilitation and reconstruction. McGraw-Hill, New York, 391 ppGoogle Scholar
  11. Howsam P, Misstear B, Jones C (1995) Monitoring, maintenance and rehabilitation of water supply boreholes. CIRIA, LondonGoogle Scholar
  12. Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725CrossRefGoogle Scholar
  13. Kobus EJM, Vlasblom WJ (1975) Well clogging by iron-precipitates at well field Castricum. Kiwa-communication 38, Rijswijk (in Dutch)Google Scholar
  14. Krems G (1979) Clogging and rehabilitation of wells. DVGW Schriftenreihe Wasser 201:35–284 (in German)Google Scholar
  15. McLaughlan R (2002) Managing water well deterioration. IAH International Contributions to Hydrogeology 22. Balkema, Lisse, 142 ppGoogle Scholar
  16. Mendizabal I (2011) Public supply well fields as a valuable groundwater quality monitoring network. Doctoral thesis, VU University AmsterdamGoogle Scholar
  17. Menz C (2016) Oxygen delivering processes in groundwater and their relevance for iron-related well clogging processes, a case study on the quaternary aquifers of Berlin. Doctoral thesis, Freie Universität BerlinGoogle Scholar
  18. Moser H (1979) The clogging of vertical screenwells, the technical and economical aspects, explained by example of the well-field of the waterwork Mannheim-Käfertal. DVGW Schriftenreihe 201:385–418 (in German)Google Scholar
  19. Neubauer SC, Emerson D, Megonigal JP (2002) Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol 38(8):3988–3995.  https://doi.org/10.1128/AEM.68.8.3988-3995.2002
  20. Posth NR, Canfield DE, Kappler A (2014) Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth-Sci Rev 135:103–121.  https://doi.org/10.1016/j.earscirev.2014.03.012 CrossRefGoogle Scholar
  21. Smith SA, Comeskey AE (2010) Sustainable wells, maintenance, problem, prevention, and rehabilitation. CRC PressGoogle Scholar
  22. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, 1040 ppGoogle Scholar
  23. van Beek CGEM (2010) Cause and prevention of clogging of wells abstracting groundwater from unconsolidated aquifers. Doctoral thesis, VU University, AmsterdamGoogle Scholar
  24. van Beek CGEM (1984) Restoring well yield in the Netherlands. J Am Water Works Assoc 76(10):66–72CrossRefGoogle Scholar
  25. van Beek CGEM, Hubeek AA, de la Loma Gonzalez B, Stuyfzand PJ (2017) Chemical and mechanical clogging of groundwater abstraction wells at well field Heel, the Netherlands. Hydrogeol J 25(1):67–78.  https://doi.org/10.1007/s10040-016-1469-9 CrossRefGoogle Scholar
  26. van Beek CGEM, Dusseldorp J, Joris K, Huysman K, Leijssen H, Schoonenberg Kegel F, de Vet WWJM, van de Wetering S, Hofs B (2016) Contribution of homogeneous, heterogeneous and biological iron(II) oxidation in aeration and rapid sand filtration (RSF) in field sites. J Water Supply Res Technol AQUA 65(3):195–207.  https://doi.org/10.2166/aqua.2015.059 CrossRefGoogle Scholar
  27. van Beek CGEM, Breedveld RJM, Juhász-Holterman M, Oosterhof A, Stuyfzand PJ (2009) Cause and prevention of well bore clogging by particles. Hydrogeol J 2009 17(8):1877–1886.  https://doi.org/10.1007/s10040-009-0537-9 Google Scholar
  28. Wang J, Sickinger M, Ciobota V, Hermann M, Rasch H, Rösch P, Popp J, Küsel K (2014) Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area. Water Res 63(15):222–233.  https://doi.org/10.1016/j.watres.2014.06.021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.KWR Watercycle Research InstituteNieuwegeinthe Netherlands

Personalised recommendations