Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China

  • Zhuo Zhang
  • Huaming Guo
  • Weiguang Zhao
  • Shuai Liu
  • Yongsheng Cao
  • Yongfeng Jia
Paper
  • 57 Downloads

Abstract

Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.

Keywords

Arsenic Groundwater extraction Spatiotemporal trends Salinization China 

Influence de l’exploitation des eaux souterraines sur la dynamique des écoulements et les concentrations en arsenic dans l’ouest du bassin de Hetao, Mongolie intérieure, Chine

Résumé

Les données spatio-temporelles des variations des niveaux piézométriques sont cruciales pour la compréhension du comportement de l’arsenic (As) et la dynamique des systèmes aquifères. On dispose de peu de connaissance sur l’influence de l’exploitation des eaux souterraines sur le transport et la mobilisation de l’As dans le bassin de l’Hetao, Mongolie intérieure (Chine). Ainsi les niveaux d’eau souterraines ont été enregistrés sur 5 piézomètres de 2011 à 2017 et sur 57 puits d’irrigation et deux forages multiniveaux en 2016. Les résultats montrent que les niveaux piézométriques dans la zone irriguée à partir des eaux souterraines présentent deux baisses chaque année du fait de prélèvements très importants d’eau souterraine alors que les niveaux piézométriques du secteur irrigué par dérivation de la rivière (Fleuve Jaune) présentent deux pics chaque année résultant de l’irrigation par les eaux de surface. De 2011 à 2016, les niveaux piézométriques du secteur irrigué par les eaux souterraines présentent une tendance à la baisse du fait d’une surexploitation. Des échantillons d’eau souterraine ont permis une analyse géochimique chaque année de juillet 2011 à 2016. Une augmentation des tendances d’évolution des concentrations en éléments totaux dissous et As dans les eaux souterraines a été observée. Du fait d’une inversion de la direction des écoulements des eaux souterraines, le lac Shakai devient une nouvelle source de recharge des aquifères. Les eaux du lac renferment des sédiments en surface du fonds du lac, caractérisés par une forte composante d’éléments solubles qui entraine une augmentation de la salinité des eaux souterraines. De plus, l’exploitation des eaux souterraines induit un fort gradient hydraulique à la baisse, ce qui amène un drainage des eaux souterraines superficielles de forte teneur en éléments dissous (TDS) vers les parties profondes de l’aquifère semi-captif. L’explication la plus plausible à des variations similaires des concentrations en As, Fe(II) et organique total dissous (TOC) est. la réduction dissimilatrice attendue des oxyhydroxydes de Fe(III).

Influencias de la extracción de agua subterránea en la dinámica del flujo y en los niveles de arsénico en la cuenca occidental de Hetao, Mongolia Interior, China

Resumen

Los datos sobre las variaciones espaciotemporales en los niveles de agua subterránea son cruciales para comprender el comportamiento y la dinámica del arsénico (As) en los sistemas de agua subterránea. Poco se sabe sobre las influencias de la extracción de agua subterránea en el transporte y la movilización de As en la cuenca de Hetao, Mongolia Interior (China), por lo que se registraron niveles de agua subterránea en cinco pozos de monitoreo desde 2011 a 2016 y en 57 pozos de riego y dos pozos multinivel en 2016. Los resultados mostraron que el nivel freático en el área de riego de agua subterránea tenía dos depresiones cada año, inducido por la extracción de agua subterránea, mientras que los niveles de agua subterránea en el área de riego de agua derivada del río tenían dos picos cada año, como resultado del riego de agua superficial. De 2011 a 2016, los niveles de agua subterránea en el área de riego con aguas subterráneas presentaron una tendencia decreciente debido a la extracción excesiva. Las muestras de agua subterránea se tomaron para análisis geoquímicos cada año en julio desde 2011 a 2016. Se observaron tendencias crecientes en sólidos totales disueltos (TDS) y As. Debido a la dirección inversa del flujo del agua subterránea, el lago Shahai actúa como una nueva fuente de recarga de agua subterránea. El agua del lago había inundado los sedimentos cercanos a la superficie, que contienen abundantes componentes solubles y una mayor salinidad del agua subterránea. Además, la extracción de agua subterránea indujo a fuertes gradientes hidráulicos descendentes, que llevaron a la reposición de filtraciones desde aguas subterráneas poco profundas de alta TDS hasta el acuífero semi confinado profundo. La explicación más plausible para variaciones similares entre las concentraciones de As, Fe (II) y carbono orgánico total (TOC) es la reducción disimilatoria esperada de los oxihidróxidos de Fe (III).

中国内蒙古河套盆地西部地下水开采对水流动力特征和砷含量的影响

摘要

地下水时空变化的数据对于了解地下水系统中砷特性和动力特征至关重要。有关(中国)内蒙古河套盆地地下水开采对砷的运移和活动化的影响知之甚少,因此,从2011年到2016年在5个观测井以及2016年在57个灌溉井记录了地下水位。结果显示,在地下水灌溉区地下水位每年有两个低槽;这两个低槽由地下水开采引起,而在引河(黄河)水灌溉区,地下水位每年有两个高峰,这是由于地表水灌溉造成的。2011年到2016年,由于地下水超采,地下水灌溉区的地下水水位呈现下降趋势。2011年到2016年每年7月为进行地球化学分析而采取地下水采样。观测到地下水中总溶解固体含量和砷都有增长的趋势。由于地下水流方向反转,沙海湖成为新的地下水补给源。湖水冲刷含有大量溶解成分的近地表沉积物,增加了地下水的盐度。另外,地下水开采引起了强烈向下的水力梯度,导致浅层总固体含量高的地下水向深部半承压含水层越流补给。针对砷、铁和总有机碳含量类似的变化,似乎最可信的解释就是预料中的铁氢氧化合物异化还原反应。

Influências da extração de águas subterrâneas na dinâmica do fluxo e níveis de arsênio na Bacia do oeste de Hetao, Mongólia Interior, China

Resumo

Dados de variações espaçotemporais nos níveis das águas subterrâneas são cruciais para a compreensão do comportamento e dinâmica do arsênio (As) em sistemas de águas subterrâneas. Pouco se sabe a respeito das influências da extração de águas subterrâneas sobre o transporte e mobilização de As na Bacia de Hetao, Mongólia Interior (China), assim, níveis de águas subterrâneas foram registrados em cinco poços de monitoramento de 2011 a 2016 e em 57 poços de irrigação e dois poços multiníveis em 2016. Os resultados mostraram que o nível das águas subterrâneas na área irrigada com águas subterrâneas teve duas recessões a cada ano, induzidas pela extração extensiva de águas subterrâneas, enquanto os níveis das águas subterrâneas na área irrigada com água desviada do rio (Rio Amarelo) tinham dois picos por ano, resultantes da irrigação com águas superficiais. De 2011 a 2016, os níveis de águas subterrâneas na área de irrigação com águas subterrâneas apresentaram tendência decrescente devido à superextração. Realizou-se amostragens de águas subterrâneas para análise geoquímica anualmente, em julho, de 2011 a 2016. Foram observadas tendências crescentes sólidos solúveis totais (SST) e As. Devido à direção inversa do fluxo de águas subterrâneas, o Lago Shahai atua como uma nova fonte de recarga de águas subterrâneas. A água do lago carreou sedimentos próximos da superfície, com abundantes componentes solúveis, e aumentou a salinidade das águas subterrâneas. Além disso, a extração de águas subterrâneas induziu fortes gradientes hidráulicos descendentes, encaminhando a recarga de vazamento de águas subterrâneas rasas de alto SST para o aquífero semiconfinado profundo. A explicação mais plausível para variações semelhantes entre as concentrações de As, Fe (II) e carbono orgânico total (COT) é a redução dissimilatória esperada de oxihidróxidos de Fe (III).

Supplementary material

10040_2018_1763_MOESM1_ESM.pdf (719 kb)
ESM 1 (PDF 718 kb)

References

  1. Burgess WG, Hoque MA, Michael HA (2010) Vulnerability of deep groundwater in the Bengal aquifer system to contamination by arsenic. Nat Geosci 3:83–87.  https://doi.org/10.1038/ngeo750 CrossRefGoogle Scholar
  2. Desbarats AJ, Koenig CEM, Pal T, Mukherjee PK, Beckie RD (2014) Groundwater flow dynamics and arsenic source characterization in an aquifer system of West Bengal, India. Water Resour Res 50(6):4974–5002.  https://doi.org/10.1002/2013WR014034 CrossRefGoogle Scholar
  3. Eiche E, Neumann T, Berg M, Weinman B, van Geen A, Norra S, Berner Z, Kim Trang PT, Viet PH, Stüben D (2008) Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River Delta, Vietnam. Appl Geochem 23:3143–3154.  https://doi.org/10.1016/j.apgeochem.2008.06.023 CrossRefGoogle Scholar
  4. Erban LE, Gorelick SM, Fendorf S (2014) Arsenic in the multi-aquifer system of the Mekong Delta, Vietnam: analysis of large-scale spatial trends and controlling factors. Environ Sci Technol 48:6081–6088.  https://doi.org/10.1021/es403932t CrossRefGoogle Scholar
  5. Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34(12):1591–1600.  https://doi.org/10.1016/j.orggeochem.2003.08.007 CrossRefGoogle Scholar
  6. Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127.  https://doi.org/10.1126/science.1172974 CrossRefGoogle Scholar
  7. Guo HM, Wang Y, Grigoriy MS, Yan SL (2003) Natural occurrence of arsenic in shallow groundwater, Shanyin, Datong Basin, China. J Environ Sci Health A 38(11):2565–2580.  https://doi.org/10.1081/ESE-120024447 CrossRefGoogle Scholar
  8. Guo HM, Yang SZ, Tang XH, Li Y, Shen ZL (2008a) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao basin, Inner Mongolia. Sci Total Environ 393:131–144.  https://doi.org/10.1016/j.scitotenv.2007.12.025 CrossRefGoogle Scholar
  9. Guo HM, Tang XH, Yang SZ (2008b) Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubation. Appl Geochem 23:3267–3277.  https://doi.org/10.1016/j.apgeochem.2008.07.010 CrossRefGoogle Scholar
  10. Guo HM, Zhang B, Li Y, Berner Z, Tang XH, Norra S (2011) Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ Pollut 159:876–883.  https://doi.org/10.1016/j.envpol.2010.12.029 CrossRefGoogle Scholar
  11. Guo HM, Liu C, Lu H, Wanty R, Wang J, Zhou YZ (2013a) Pathways of coupled arsenic and Fe cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an Fe isotope approach. Geochim Cosmochim Acta 112:130–145.  https://doi.org/10.1016/j.gca.2013.02.031 CrossRefGoogle Scholar
  12. Guo HM, Zhang Y, Jia YF, Zhao K, Li Y, Tang XH (2013b) Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia. J Geochem Explor 135:130–140.  https://doi.org/10.1016/j.gexplo.2012.06.010 CrossRefGoogle Scholar
  13. Guo HM, Wen DG, Liu ZY, Jia YF, Guo Q (2014a) A review of high arsenic groundwater in mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl Geochem 41:196–217.  https://doi.org/10.1016/j.apgeochem.2013.12.016 CrossRefGoogle Scholar
  14. Guo HM, Zhang D, Wen DG, Wu Y, Ni P, Jiang YX, Guo Q, Li FL, Zheng H, Zhou YZ (2014b) Arsenic mobilization in aquifers of the southwest Songnen basin, PR China: evidences from chemical and isotopic characteristics. Sci Total Environ 490:590–602.  https://doi.org/10.1016/j.scitotenv.2014.05.050 CrossRefGoogle Scholar
  15. Guo Q, Guo HM, Yang YC, Han SB, Zhang FC (2014c) Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the North Yinchuan basin, PR China. J Hydrol 518:464–476.  https://doi.org/10.1016/j.jhydrol.2014.06.026 CrossRefGoogle Scholar
  16. Guo HM, Jia YF, Wanty R, Jiang YX, Zhao WG, Xiu W (2016a) Contrasting distributions of groundwater arsenic and uranium in the Hetao basin, Inner Mongolia: implication for origins and fate controls. Sci Total Environ 541:1172–1190.  https://doi.org/10.1016/j.scitotenv.2015.10.018 CrossRefGoogle Scholar
  17. Guo HM, Zhou YZ, Jia YF (2016b) Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin, China: evidence from multiple isotope approaches. Environ Sci Technol. 50(23):12650–12659.  https://doi.org/10.1021/acs.est.6b03460 CrossRefGoogle Scholar
  18. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606.  https://doi.org/10.1126/science.1076978 CrossRefGoogle Scholar
  19. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA (2005) Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. C R Geosci 337:285–296.  https://doi.org/10.1016/j.crte.2004.10.015 CrossRefGoogle Scholar
  20. Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228(1):112–136.  https://doi.org/10.1016/j.chemgeo.2005.11.025 CrossRefGoogle Scholar
  21. Inner Mongolia Institute of Hydrogeology (1982) Hydrogeological setting and remediation: approaches of soil salinity in the Hetao Basin, Inner Mongolia (in Chinese). Scientific report, Inner Mongolia Institute of Hydrogeology, Hohhot City, Inner MongoliaGoogle Scholar
  22. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68–71.  https://doi.org/10.1038/nature02638 CrossRefGoogle Scholar
  23. Jia YF, Guo HM, Xi B, Jiang YX, Zhang Z (2017) Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Sci Total Environ 601:691–702.  https://doi.org/10.1016/j.scitotenv.2017.05.196 CrossRefGoogle Scholar
  24. Jin YL, Liang CH, He GL, Cao JX, Ma F, Wang HZ, Ying B, Ji RD (2003) Study on distribution of endemic arsenism in China (In Chinese with English abstract). J Hygiene Res 23(6):519–540Google Scholar
  25. Li B, Shi B (2011) Hydrochemical characteristics of groundwater before and after water-saving reform in Hetao Irrigation District, Inner Mongolia (in Chinese with English abstract). Trans Chin Soc Agric Eng 30(21):99–110Google Scholar
  26. Li SY, Guo HM, Huang SF, Ma JW, Liu HY, Sun YY (2016) Variation in Hetao Basin wetlands from 1973 to 2014 (in Chinese with English abstract). Resour Sci 38(1):0019–0029Google Scholar
  27. Luo T, Hu S, Cui JL, Tian H, Jing C (2012) Comparison of arsenic geochemical evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), China. Appl Geochem 27:2315–2323.  https://doi.org/10.1016/j.apgeochem.2012.08.012 CrossRefGoogle Scholar
  28. Lawson M, Polya DA, Boyce AJ, Bryant C, Mondal D, Shantz A, Ballentine CJ (2013) Pond-derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ Sci Technol 47(13):7085–7094.  https://doi.org/10.1021/es400114q CrossRefGoogle Scholar
  29. Li P, Li B, Webster G, Wang YH, Jiang DW, Dai XY, Jiang Z, Dong HL, Wang YX (2014a) Abundance and diversity of sulfate-reducing bacteria in high arsenic shallow aquifers. Geomicrobiol J 31(9):802–812.  https://doi.org/10.1080/01490451.2014.893181 CrossRefGoogle Scholar
  30. Li Y, Guo HM, Hao CB (2014b) Arsenic release from shallow aquifers of the Hetao Basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater. Ecotoxicology 23:1900–1914.  https://doi.org/10.1007/s10646-014-1313-8 CrossRefGoogle Scholar
  31. McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Lowry D (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19(8):1255–1293.  https://doi.org/10.1016/j.apgeochem.2004.02.001 CrossRefGoogle Scholar
  32. Michael HA, Voss CI (2009) Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh. Hydrogeol J 17:1329–1346.  https://doi.org/10.1007/s10040-009-0443-1 CrossRefGoogle Scholar
  33. Mladenov N, Zheng Y, Miller MP, Nemergut DR, Legg T, Simone B, McKnight DM (2009) Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ Sci Technol 44(1):123–128.  https://doi.org/10.1021/es901472g CrossRefGoogle Scholar
  34. Neumann RB, Ashfaque KN, Badruzzaman ABM, Ali MA, Shoemaker JK, Harvey CF (2010) Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat Geosci 3(1):46–52.  https://doi.org/10.1038/ngeo685 CrossRefGoogle Scholar
  35. Neumann RB, Pracht LE, Polizzotto ML, Badruzzaman ABM, Ali MA (2014) Biodegradable organic carbon in sediments of an arsenic-contaminated aquifer in Bangladesh. Environ Sci Technol Lett 1:221–225.  https://doi.org/10.1021/ez5000644 CrossRefGoogle Scholar
  36. Neidhardt H, Berner Z, Freikowski D, Biswas A, Winter J, Chatterjee D, Norra S (2013) Influences of groundwater extraction on the distribution of dissolved as in shallow aquifers of West Bengal, India. J Hazard Mater 262:941–950.  https://doi.org/10.1016/j.jhazmat.2013.01.044 CrossRefGoogle Scholar
  37. Norrman J, Sparrenbom CJ, Berg M, Nhan DD, Nhan PQ, Rosqvist H, Harms-Ringdahl P (2008) Arsenic mobilisation in a new well field for drinking water production along the Red River, Nam Du, Hanoi. Appl Geochem 23(11):3127–3142.  https://doi.org/10.1016/j.apgeochem.2008.06.016 CrossRefGoogle Scholar
  38. Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454:505–508.  https://doi.org/10.1038/nature07093 CrossRefGoogle Scholar
  39. Postma D, Mai NTH, Lan VM, Trang PTK, Sø HU, Nhan PQ, Jakobsen R (2016) Fate of arsenic during Red River water infiltration into aquifers beneath Hanoi, Vietnam. Environ Sci Technol 51(2):838–845.  https://doi.org/10.1021/acs.est.6b05065 CrossRefGoogle Scholar
  40. Radloff KA, Zheng Y, Michael HA (2011) Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat Geosci 11(4):793–798.  https://doi.org/10.1038/ngeo1283 CrossRefGoogle Scholar
  41. Ravenscroft P, Brammer H, Richards KS (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Singapore, 114 pp Google Scholar
  42. Rowland HAL, Omoregie EO, Millot R, Jimenez C, Mertens J, Baciu C, Hug SJ, Berg M (2011) Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl Geochem 26:1–17.  https://doi.org/10.1016/j.apgeochem.2010.10.006 CrossRefGoogle Scholar
  43. Schaefer MV, Ying SC, Benner SG, Duan Y, Wang Y, Fendorf S (2016) Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River basin. Environ Sci Technol 50(7):3521–3529.  https://doi.org/10.1021/acs.est.5b04986 CrossRefGoogle Scholar
  44. Shanafield M, Cook PG, Gutiérrez-Jurado HA, Faux R, Cleverly J, Eamus D (2015) Field comparison of methods for estimating groundwater discharge by evaporation and evapotranspiration in an arid-zone playa. J Hydrol 527:1073–1083.  https://doi.org/10.1016/j.jhydrol.2015.06.003 CrossRefGoogle Scholar
  45. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568.  https://doi.org/10.1016/S0883-2927(02)00018-5 CrossRefGoogle Scholar
  46. Stahl MO, Harvey CF, van Geen A, Sun J (2016) River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi, Vietnam. Water Resour Res 52(8):6321–6334.  https://doi.org/10.1002/2016WR018891 CrossRefGoogle Scholar
  47. Stuckey JW, Schaefer MV, Kocar BD, Benner SG, Fendorf S (2016) Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nat Geosci 9(1):70–76.  https://doi.org/10.1038/ngeo2589 CrossRefGoogle Scholar
  48. Ujević M, Duić Ž, Casiot C, Sipos L, Santo V, Dadić Ž, Halamić J (2010) Occurrence and geochemistry of arsenic in the groundwater of eastern Croatia. Appl Geochem 25:1017–1029.  https://doi.org/10.1016/j.apgeochem.2010.04.008 CrossRefGoogle Scholar
  49. Wang Y, Jiao JJ, Cherry JA (2012) Occurrence and geochemical behavior of arsenic in a coastal aquifer–aquitard system of the Pearl River Delta, China. Sci Total Environ 427:286–297.  https://doi.org/10.1016/j.scitotenv.2012.04.006 CrossRefGoogle Scholar
  50. Yuan R, Guo H, Zhang D, Li Y, Zhang Y, Cao W (2017) Soluble components of sediments and their relation with dissolved arsenic in aquifers from the Hetao Basin, Inner Mongolia. J Soil Sediment 17(12):2899–2911.  https://doi.org/10.1007/s11368-017-1770-9
  51. Zhang Y, Cao W, Wang W, Dong Q (2013) Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain, northern China. J Geochem Explor 135:31–39.  https://doi.org/10.1016/j.gexplo.2012.12.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhuo Zhang
    • 1
    • 2
  • Huaming Guo
    • 1
    • 2
  • Weiguang Zhao
    • 2
  • Shuai Liu
    • 2
  • Yongsheng Cao
    • 2
  • Yongfeng Jia
    • 2
  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesBeijingPeople’s Republic of China
  2. 2.MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and EnvironmentChina University of Geosciences (Beijing)BeijingPeople’s Republic of China

Personalised recommendations