Advertisement

Hydrogeology Journal

, Volume 26, Issue 4, pp 1083–1097 | Cite as

Revisiting groundwater overdraft based on the experience of the Mancha Occidental Aquifer, Spain

  • P. Martínez-Santos
  • S. Castaño-Castaño
  • A. Hernández-Espriú
Paper

Abstract

Aquifers provide a reliable freshwater source in arid and semiarid regions, where droughts are common and irrigated crops present significant water requirements, so intensive pumping is generally needed. Over-extraction leads to dropping water tables, which in turn threatens the survival of groundwater-dependent ecosystems and water supplies. This calls for strategies to channel hydrological, environmental, agricultural, political and social change. Based on the experience of the Mancha Occidental aquifer, Spain, this paper explores some of the complexities of managing groundwater, dealing with the long-term changes that intensive groundwater use has generated in the region. The Mancha experience shows how environmental conservation may drive social and economic change at the regional scale for periods spanning several decades. What makes this case study unique, however, is the combination of social and environmental conflicts, most of which stem from the prevalence of illegal water use, and their detrimental effect on Ramsar wetlands. The situation exposed a paradox, namely that subsidies for farmers to cut down on water use were actually detrimental to the welfare of groundwater-dependent ecosystems. The unexpected (and timely) occurrence of extreme rainfall events in recent times, after 40 years of ineffective management measures and sustained environmental degradation, enabled the aquifer and its associated wetlands to recover spectacularly to a near-pristine condition. As groundwater-dependent wetlands are highly sensitive ecosystems, it is concluded that it is up to society to decide how much environmental damage can be tolerated in exchange for the social and economic benefits of groundwater-based development.

Keywords

Socio-economic aspects Overdraft Groundwater management Climate change Spain 

Revisiter la surexploitation des eaux souterraines à partir de l’expérience de l’aquifère de la Mancha occidentale, Espagne

Résumé

Les aquifères fournissent une ressource en eau douce dans les régions arides et semi-arides, où les sécheresses sont fréquentes et où les cultures irriguées présentent des besoins en eau importants, de sorte que des pompages intensifs sont généralement nécessaires. La surexploitation entraîne une chute des niveaux des nappes phréatiques, ce qui menace à son tour la survie des écosystèmes tributaires des eaux souterraines ainsi que l’approvisionnement en eau. Cela demande des stratégies pour canaliser les changements hydrologiques, environnementaux, agricoles, politiques et sociaux. A partir de l’expérience de l’aquifère de la Mancha Occidentale en Espagne, cet article explore certaines des complexités de la gestion des eaux souterraines, traitant des changements à long terme générés par l’utilization intensive des eaux souterraines dans la région. L’expérience de la Mancha montre comment la conservation environnementale peut conduire à des changements socio-économiques à l’échelle régionale pour des périodes couvrant plusieurs décennies. Ce qui rend cette étude de cas unique, cependant, est. la combinaison des conflits sociaux et environnementaux, dont la plupart provient de la prévalence de l’utilization illégale de l’eau, et de son effet néfaste sur les zones humides Ramsar. La situation a révélé un paradoxe, à savoir que les subventions aux agriculteurs pour réduire l’utilization de l’eau étaient actuellement au détriment du bon état des zones humides. L’apparition inattendue (et opportune) d’événements pluvieux extrêmes ces derniers temps, après 40 ans de mesures de gestion inefficaces et une dégradation soutenue de l’environnement, a permis à l’aquifère et aux zones humides associées de se rétablir de façon spectaculaire, proche des conditions non influencées. Etant donné que les zones humides tributaires des eaux souterraines sont des écosystèmes très sensibles, on peut conclure qu’il appartient à la société de décider de la quantité de dommages environnementaux qui peut être toléré en échange des avantages socio-économiques d’un développement basé sur les eaux souterraines.

Reflexiones sobre el concepto de sobreexplotación de acuíferos en relación al caso del acuífero de la Mancha Occidental, España

Resumen

Las aguas subterráneas proporcionan una fuente fiable de agua en regiones áridas y semiáridas, donde las sequías son frecuentes y resulta necesaria la actividad de regadío. El uso intensivo de las aguas subterráneas se traduce habitualmente en descensos de nivel, lo que amenaza tanto la supervivencia de los ecosistemas acuáticos de superficie asociados a los acuíferos como la propia existencia del recurso. Así, es necesario desarrollar estrategias que permitan canalizar los cambios de tipo hidrogeológico, ambiental, económico, social y político. Tomando como referencia el caso del acuífero de la Mancha Occidental, España, este artículo explora algunos de los aspectos más complejos de la gestión de las aguas subterráneas, poniendo en énfasis en los cambios que el bombeo intensivo ha generado en la región en las últimas décadas. Lo que convierte este caso en algo inusual y digno de estudio es la combinación de conflictos entre desarrollo y medio ambiente, muchos de los cuales se derivan del uso ilegal de las aguas subterráneas. Esto se ha traducido en importantes descensos de nivel (decenas de metros en algunos casos) que han causado importantes daños a humedales Ramsar. La inesperada recuperación del sistema en tiempos recientes, tras cuarenta años de sobreexplotación, ha tenido como resultado una mejora significativa, si bien posiblemente puntual, en el estado de los humedales. Sabiendo que estos últimos son altamente sensibles, incluso cuando el bombeo de agua subterránea es moderado, se concluye que es la sociedad quien debe decidir el grado de degradación ambiental que puede tolerarse a cambio de los cuantiosos beneficios sociales y económicos del uso intensivo de los acuíferos.

根据西班牙Mancha Occidental含水层的经历重新调查地下水超采情况

摘要

在旱灾频繁及农作物需求大量水的干旱和半干旱地区,含水层提供了可靠的淡水水源,因此,通常需要大量抽取地下水。过量开采导致水位下降,反过来,水位下降威胁到了依赖于地下水的生态系统的生存及供水。这就需要引导水文、环境、农业、政治和社会方面发生变化的策略。根据西班牙Mancha Occidental含水层的经历,本文通过研究该地区大量利用地下水产生的长期变化探索了管理地下水的复杂性。Mancha的经历显示了环境保持在几十年的岁月中是怎样引起区域尺度上的社会和经济变化的。然而,使本研究案例独一无二的就是社会和环境冲突及其这些冲突对Ramsar湿地负面影响的组合,大部分冲突起源于很普遍的非法用水。情况暴露了似是而非的论点,这就是对农民减少用水的补贴实际上对湿地的福利有害。无效管理措施及持续的环境退化40年之后,近年来极端降雨事件的意外(及时)出现使含水层及其相关湿地竟然恢复到近原始状态。因为依赖于地下水的湿地是高度敏感的生态系统,因此,结论就是,由社会来决定在基于地下水发展的社会和经济利益交换中多少环境损失可以忍受。

Revisitando a exploração exagerada das águas subterrâneas baseado na experiência do Aquífero Mancha Ocidental, Espanha

Resumo

Aquíferos provêm uma fonte segura de águas doces em regiões áridas e semiáridas, onde secas são comuns e campos irrigados apresentam necessidades hídricas importantes, sendo então o bombeamento intensivo geralmente necessário. Superexploração leva a níveis freáticos em queda, o que, por sua vez, ameaça a sobrevivência dos ecossistemas dependentes das águas subterrâneas e do abastecimento de água. Isso exige estratégias que direcionem mudanças hidrológicas, ambientais, agrícolas, políticas e sociais. Com base na experiência do aquífero Mancha Ocidental, na Espanha, este trabalho explora algumas das complexidades da gestão das águas subterrâneas, lidando com as mudanças de longo prazo que o uso intensivo de águas subterrâneas gerou na região. A experiência da Mancha mostra como a conservação ambiental pode impulsionar a mudança social e econômica na escala regional por períodos que variam várias décadas. O que torna este estudo de caso único, no entanto, é a combinação de conflitos sociais e ambientais, a maioria decorrente da prevalência do uso ilegal de água e seu efeito prejudicial nas áreas úmidas de Ramsar. A situação expôs um paradoxo, a saber, que os subsídios aos agricultores para reduzir o uso da água eram realmente prejudiciais ao bem-estar das áreas húmidas. A ocorrência inesperada (e atempada) de eventos de precipitação extrema nos últimos tempos, após 40 anos de medidas de manejo ineficazes e degradação ambiental sustentada, permitiu que o aquífero e suas áreas úmidas associadas se recuperassem espetacularmente até uma condição quase intocada. Como as zonas úmidas dependentes das águas subterrâneas são ecossistemas altamente sensíveis, conclui-se que cabe à sociedade decidir quanto dano ambiental pode ser tolerado em troca dos benefícios sociais e econômicos do desenvolvimento baseado nas águas subterrâneas.

Notes

Funding Information

This research was carried out under grant number CGL2011-30302-C02-01 by the Ministerio de Economía y Competitividad, Spain.

References

  1. Abanades JC, Cuadrat JM, De Castro M, Fernández F, Gallastegui C, Garrote L, Jiménez LM, Juliá R, Losada I, Monzón A, Moreno JM, Pérez JI, Ruiz V, Sanz MJ, Vallejo R (2007) El cambio climático en España: estado de situación. Documento resumen [Climate change in Spain: situation status. Document summary]. Report for the President of the Spanish Government by Climate Change Experts, Madrid, 50 ppGoogle Scholar
  2. Afrifa GY, Sakyi PA, Chegbeleh LP (2017) Estimation of groundwater recharge in sedimentary rock aquifer systems in the Oti basin of Gushiegu District, northern Ghana. J Afr Earth Sci 131(2017):272–283CrossRefGoogle Scholar
  3. Al Naber M, Molle F (2017) Water and sand: is groundwater-based farming in Jordan’s desert sustainable? Groundwater Sustain Dev 5(2017):28–37CrossRefGoogle Scholar
  4. Alley WA, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16CrossRefGoogle Scholar
  5. Allocca V, De Vita P, Manna F, Nimmo JR (2015) Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy. J Hydrol 529(3):843–853CrossRefGoogle Scholar
  6. Andreu JM, Pulido-Bosch A, Llamas MR, Bru C, Martínez-Santos P, García-Sánchez E, Villacampa L (2008) Over-exploitation and water quality in the Crevillente aquifer (Alicante, SE Spain). In: Prats Rico D, Brebbia CA, Villacampa Y (eds) Water pollution IX. WIT, Southampton, UKGoogle Scholar
  7. Bea M, Montesinos S, Morugán C, Moraleda S (2010) Análisis comparativo de las superficies regadas en los acuíferos del campo de Montiel y la Mancha occidental en el período 2004–2008 [Comparative analysis of irrigated areas in the aquifers of Campo de Montiel and la Mancha Occidental in the period 2004–2008]. Rev Teledetección 34(2010):22–28Google Scholar
  8. Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35:929CrossRefGoogle Scholar
  9. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345CrossRefGoogle Scholar
  10. Calera A, Jochum A, Cuesta A, Montoso A, González J (2005) Irrigation management from space: towards user-friendly products. Irrig Drain Syst 19:337–353CrossRefGoogle Scholar
  11. Castaño S, Sanz D, Gómez-Alday (2010) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manag 24(4):795–814CrossRefGoogle Scholar
  12. Castaño-Castaño S, Martínez-Santos P, Martínez-Alfaro PE (2008) Evaluating infiltration losses in a Mediterranean wetland: Las Tablas de Daimiel National Park, Spain. Hydrol Process 22(26):5048–5053CrossRefGoogle Scholar
  13. Castaño-Castaño S, De la Losa A, Martínez-Santos P, Mediavilla R, Santisteban JI (2014) Caracterización de la composición química del río Guadiana y su influencia en el Parque Nacional de Las Tablas de Daimiel [Characterization of the chemical composition of the Guadiana River and its influence in the Las Tablas de Daimiel National Park]. Geogaceta 56(2014):95–98Google Scholar
  14. CHG (2006) Plan Especial del Alto Guadiana. Programa de medidas agrarias [Special Plan of Alto Guadiana. Program of agricultural measures]. Technical report, Ministerio de Medio Ambiente, Madrid, 25 ppGoogle Scholar
  15. CHG (2009) Contaminación difusa por nitratos procedentes de fuentes agrarias en la Demarcación Hidrográfica del Guadiana (parte española) [Diffuse contamination due to agricultural nitrate in the Spanish part of the Guadiana catchment]. Report, Confederación Hidrográfica del Guadiana, Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid, 64 ppGoogle Scholar
  16. Closas A, Molle F, Hernandez-Mora N (2015) Sticks and carrots to manage groundwater over-abstraction in La Mancha, Spain. Agric Water Manag 194:113–124CrossRefGoogle Scholar
  17. Cruces J, Casado M, Llamas MR, De la Hera A, Martínez-Cortina L (1996) El desarrollo sostenible de la cuenca alta del río Guadiana: aspectos hidrológicos [Sustainable groundwater development in the upper Guadiana basin: hydrological aspects]. Rev Obras Públicas 3362:7–18Google Scholar
  18. Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10(2):254–277CrossRefGoogle Scholar
  19. De la Hera A, Villarroya F (2013) Services evolution of two groundwater dependent wetland ecosystems in the “Mancha Húmeda” biosphere reserve (Spain). Resources 2(2013):128–150.  https://doi.org/10.3390/resources2020128 CrossRefGoogle Scholar
  20. De la Losa A, Martínez-Santos P, Castaño-Castaño S, Stoykova E, Díaz-Alcaide S, Vázquez I (2013a) Los plaguicidas en la nueva situación hídrica del Parque Nacional de Las Tablas de Daimiel [Pesticides in the new hydrological situation in Las Tablas de Daimiel National Park]. Proceedings of the IX Congreso Ibérico/XI Congreso Nacional de Geoquímica, Soria, Spain, September 2013Google Scholar
  21. De la Losa A, Aguilera H, Jiménez-Hernández E, Castaño-Castaño S, Moreno L (2013b) Las Tablas de Daimiel: Agua y sedimentos [Las Tablas de Daimiel: water and sediments]. Serie Medio Ambiente 14, Publicaciones del Instituto Geológico y Minero de España, Madrid, pp 87–124Google Scholar
  22. De Stefano L, Lopez-Gunn E (2012) Non-authorized groundwater use: institutional, social and ethical considerations. Water Policy 14(S1):147–160Google Scholar
  23. De Stefano L, Martínez-Santos P, Villarroya F, Chico D, Martínez-Cortina L (2013) Easier said than done? The establishment of baseline groundwater conditions for the implementation of the water framework directive in Spain. Water Resour Manag 27(7):2691–2707CrossRefGoogle Scholar
  24. EASAC (2010) Groundwater in the southern member states of the European Union: an assessment of current knowledge and future prospects. Country report for Spain, European Academies Science Advisory Council, Appendix, 39 ppGoogle Scholar
  25. Esteban E, Albiac J (2012) The problem of sustainable groundwater management: the case of La Mancha aquifers, Spain. Hydrogeol J 20:851–863CrossRefGoogle Scholar
  26. Fornés J, Rodríguez JA, Hernandez-Mora N, Llamas MR (2000) Possible solutions to avoid conflicts between water resources development and wetland conservation in the Mancha Humeda biosphere reserve, Spain. Phys Chem Earth 25(7):623–627CrossRefGoogle Scholar
  27. Fornés J, De la Hera A, Llamas MR, Martínez-Santos P (2007) Legal aspects of groundwater ownership in Spain. Water Int 32(4):676–685CrossRefGoogle Scholar
  28. García-Carretero M (2003) Situación legal de las aguas subterráneas en la cuenca del Alto Guadiana [Legal status of groundwater in the Upper Guadiana basin]. In: Coleto C, Martinez-Cortina L, Llamas MR (eds) Conflictos entre el desarrollo de las aguas subterráneas y la conservación de los humedales. Fundación Marcelino Botín, Ediciones Mundiprensa, Madrid, pp 103–144Google Scholar
  29. Garrido A, Martinez-Santos P, Llamas MR (2006) Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience. Hydrogeol J 14(3):340–349CrossRefGoogle Scholar
  30. Harou JJ, Lund J (2008) Ending groundwater overdraft in hydrologic-economic systems. Hydrogeol J 16(2008):1039–1055CrossRefGoogle Scholar
  31. Hartmann A, Barberá JA, Lange J, Andreo B, Weiler M (2013) Progress in the hydrologic simulation of time variant recharge areas of karst systems: exemplified at a karst spring in southern Spain. Adv Water Resour 54(2013):149–160CrossRefGoogle Scholar
  32. Hernandez-Mora N, Llamas MR, Martinez-Cortina L (2001) Misconceptions in aquifer overexploitation: implications for water policy in southern Europe. In: Dosi C (ed) Agricultural use of groundwater: towards integration between agricultural policy and water resources management. Kluwer, Dordretcht, The Netherlands, pp 107–125CrossRefGoogle Scholar
  33. Hernandez-Mora N, Martinez-Cortina L, Fornes J (2003) Intensive groundwater use in Spain. In: Llamas MR, Custodio E (eds) Intensive use of groundwater: challenges and opportunities. Balkema, Lisse, The Netherlands, pp 387–414Google Scholar
  34. Hornero J, Manzano M, Ortega L, Custodio E (2016) Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: application to the Alcadozo aquifer system (SE Spain). Sci Total Environ 568(2016):415–432CrossRefGoogle Scholar
  35. IDR (2009) Estudio sobre la evapotranspiración y el agua de riego aplicada en las superficies de regadío mediante teledetección en las masas de agua 04–04 y 04–06. Alto Guadiana: años 2007 y 2008 [A remote-sensing study of evapotranspiration and irrigation water in groundwater bodies 04–04 and 04–06: years 2007 and 2008]. Technical report, Sección de Teledetección y SIG, IDR, Universidad de Castilla-La Mancha, Albacete, Spain, 27 ppGoogle Scholar
  36. IDR (2011) Estudio sobre la evapotranspiración y el agua de riego aplicada en las superficies de regadío mediante teledetección en los acuíferos sobreexplotados del Alto Guadiana: años 2005, 2009 y 2010 [A remote-sensing study of evapotranspiration and irrigation water in groundwater bodies 04–04 and 04–06: years 2005, 2009 and 2010].Technical report, Sección de Teledetección y SIG, IDR, Universidad de Castilla-La Mancha, Albacete, Spain, 130 ppGoogle Scholar
  37. IGME (1985) Calidad y contaminación de las aguas subterráneas en España [Groundwater quality and contamination in Spain]. IGME, Madrid, 388 ppGoogle Scholar
  38. IGME (2004) Evolución piezométrica de la UH04.04 Mancha Occidental y del entorno del Parque Nacional de Las Tablas de Daimiel [Piezometric evolution of UH04.04 Mancha Occidental and around Las Tablas de Daimiel National Park]. Report 4, Geological Survey of Spain Ministerio de Educación y Ciencia, Madrid, Spain, 19 ppGoogle Scholar
  39. IGME (2005) Trabajos técnicos para la aplicación de la Directiva Marco del Agua en materia de aguas subterráneas: caracterización adicional Mancha Occidental I y II [Technical works for the application of the Water Framework Directive to groundwater: additional characterization of Mancha Occidental I and II]. Geological Survey of Spain Ministerio de Educación y Ciencia and Ministerio de Medio Ambiente, Madrid, Spain, 101 ppGoogle Scholar
  40. ITGE (1989) Mancha Occidental: Sistema acuífero n°23 [Mancha Occidental: aquifer system 23]. Serie de Manuales de Explotación de Acuíferos, ITGE, MadridGoogle Scholar
  41. ITGE (2000) Redes de control de las aguas subterráneas. Cuenca del Guadiana [Groundwater monitoring network. Guadiana basin]. Semester report June 1999, ITGE, Madrid, 109 ppGoogle Scholar
  42. Kretsinger V, Narasimhan TN (2006) California’s evolution toward integrated regional water management: a long-term view. Hydrogeol J 14(3):407–423CrossRefGoogle Scholar
  43. Lee CH (1915) The determination of safe yield of underground reservoirs of the closed basin type. Trans Am Soc Civ Eng 78:148–251Google Scholar
  44. Llamas MR (1988) Conflicts between wetland conservation and groundwater exploitation: two case histories in Spain. Environ Geol Water Sci 11(3):241–251CrossRefGoogle Scholar
  45. Llamas MR (1992) La sobreexplotación de las aguas subterráneas ¿bendición, maldición o entelequia? [Groundwater overdraft: blessing, curse or entelechy?]. Tecnol Agua 91:54–68Google Scholar
  46. Llamas MR, Martinez-Santos P (2005) Intensive groundwater use, silent revolution and potential source of social conflicts. J Water Resour Plan Manag 131:337–341CrossRefGoogle Scholar
  47. Llamas R, Back W, Margat J (1992) Groundwater use: equilibrium between social and potential environmental costs. Appl Hydrogeol 1(2):3–14Google Scholar
  48. Lockwood S, Sarteel M, Mugdal S, Osann A, Calera A (2014) Applying Earth observation to support the detection of non-authorised water abstractions. Annexes to the proposed guidance document report for the European Commission, DG Environment. Deloitte and Universidad de Castilla-La Mancha, Spain, 122 ppGoogle Scholar
  49. López Gutiérrez J, Plata Torres JL, Mejías Moreno M (2013) Caracterización de la divisoria hidrogeológica Guadiana-Júcar en la Llanura Manchega mediante técnicas geológicas y geofísicas [Characterization of the Guadiana-Júcar hydrogeological divide in the Mancha region by means of geological and geophysical methods]. Bol Geol Min 124(3):381–404Google Scholar
  50. López-Gunn E (2003) The role of collective action in water governance: a comparative study of groundwater user associations in La Mancha aquifers in Spain. Water Int 28(3):367–378CrossRefGoogle Scholar
  51. López-Gunn E, Martinez-Cortina L (2006) Is self-regulation a myth? Case study on Spanish groundwater user associations and the role of higher-level authorities. Hydrogeol J 14(3):361–379.  https://doi.org/10.1007/s10040-005-0014-z CrossRefGoogle Scholar
  52. Martínez-Cortina L (2003) Marco hidrológico de la cuenca alta del Guadiana [Hydrological description of the Upper Guadiana basin]. In: Coleto C, Martinez-Cortina L, Llamas MR (eds) Conflictos entre el desarrollo de las aguas subterráneas y la conservación de los humedales. Fundación Marcelino Botín, Ediciones Mundiprensa, Madrid, pp 3–68Google Scholar
  53. Martínez-Cortina L, Cruces J (2005) The analysis of the intensive use of groundwater in the Upper Guadiana basin, central Spain by using a numerical model. In: A. Sahuquillo, J. Capilla, L. Martinez-Cortina and X Sanchez-Villa (eds) Groundwater intensive use. Balkema, Leiden, The Netherlands, pp 285–294Google Scholar
  54. Martinez-Santos P (2007). Hacia la gestion adaptable del acuifero de la Mancha Occidental [Towards adaptive groundwater management in the Mancha Occidental Aquifer]. PhD Thesis, Universidad Complutense de Madrid, Spain, 383 ppGoogle Scholar
  55. Martínez-Santos P, Andreu JM (2010) Lumped and distributed approaches to model natural recharge in semiarid karst aquifers. J Hydrol 388(3–4):389–398CrossRefGoogle Scholar
  56. Martínez-Santos P, Llamas MR, Martínez-Alfaro PE (2008a) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental Aquifer, Spain. Environ Model Softw 23(9):1145–1162CrossRefGoogle Scholar
  57. Martínez-Santos P, De Stefano L, Martínez-Alfaro PE, Llamas MR (2008b) Wetland restoration in the Mancha Occidental Aquifer, Spain: a critical perspective on water, agricultural and environmental policies. Restor Ecol 16(3):511–521CrossRefGoogle Scholar
  58. Martínez-Santos P, Aldaya MM, Llamas MR (2014) Integrated water resources management: state of the art and the way forward. In: Martínez-Santos P, Aldaya MM, llamas MR (eds) Integrated water resources management in the 21st century: revisiting the paradigm. Taylor and Francis, London, pp 17–36Google Scholar
  59. Meinzer OE (1923) Outline of groundwater hydrology with definitions. US Geol Surv Water Suppl Pap 494Google Scholar
  60. Mejías Moreno M, López Gutiérrez J, Martínez-Cortina L (2012) Características hidrogeológicas y evolución piezométrica de La Mancha occidental. Influencia del periodo húmedo 2009–2011 [Hydrogeological characteristics and piezometric evolution of the Mancha Occidental Aquifer: influence of the 2009–2011 wet period]. Bol Geol Min 123(2):91–108Google Scholar
  61. MMA (2006) Síntesis de la información remitida por España para dar cumplimiento a los Artículos 5 y 6 de la Directiva Marco del Agua, en materia de aguas subterráneas [Synthesis of the information produced by Spain in order to comply with Articles 5 and 6 of the Water Framework Directive in relation to groundwater]. Memoria, Dirección General del Agua, Ministerio de Medio Ambiente, Madrid, pp 1–85Google Scholar
  62. MMA (2007) Precios y Costes de los Servicios del Agua en España: Informe Integrado de recuperación de costes de los servicios de agua en España [Price and cost of water services in Spain: an integrated cost-recovery report for water services in Spain]. Articulo 5 y Anejo III de la Directiva Marco de Agua, MMA working document, Spanish Ministry of Environment, MadridGoogle Scholar
  63. Moreno L, Jiménez ME, Aguilera H, Jiménez P, De la Losa A (2011) The 2009 smouldering peat fire in Las Tablas de Daimiel National Park (Spain). Fire Technol 47(2011):519–538CrossRefGoogle Scholar
  64. Novo P, Dumont A, López-Gunn E, Willaarts B (2015) More cash and jobs per illegal drop? The legal and illegal water footprint of the western Mancha aquifer (Spain). Environ Sci Pol 51:256–266CrossRefGoogle Scholar
  65. OECD (2015) Drying wells, rising stakes: towards sustainable agricultural groundwater use. OECD, Paris.  https://doi.org/10.1787/9789264238701-en
  66. Plaza Hidalgo P (2016) Informe de cálculo del consumo de agua para riego procedente de extracciones de las masas de Aguas Subterráneas “Rus-Valdelobos”, “Mancha Occidental I y II” pertenecientes a la Cofederación Hidrográfica del Guadiana en Base a las Solicitudes de Ayuda de la Política Agraria Comunitaria durante el trienio 2014–16 [A report on water consumption in groundwater bodies “Mancha Occidental I and II” and “Rus-Valdelobos”]. Technical report, Comunidades de Regantes, Albacete, Spain, 1900 ppGoogle Scholar
  67. Ross A, Martinez-Santos P (2009) The challenge of groundwater governance: case studies from Spain and Australia. Reg Environ Chang.  https://doi.org/10.1007/s10113-009-0086-8
  68. Ruiz G (2015) Estimation of the groundwater recharge in the aquifer of the Mexico City. Procedia Environ Sci 25(2015):220–226CrossRefGoogle Scholar
  69. Rupérez-Moreno C, Senent-Aparicio J, Martinez-Vicente D, García-Aróstegui JL, Cabezas F, Pérez-Sánchez J (2017) Sustainability of irrigated agriculture with overexploited aquifers: the case of Segura basin (SE, Spain). Agric Water Manag 182(2017):67–76CrossRefGoogle Scholar
  70. Ruud N, Harter T, Naugle A (2004) Estimation of groundwater pumping as closure to the water balance of a semi-arid, irrigated agricultural basin. J Hydrol 297(1–4):51–73CrossRefGoogle Scholar
  71. Sanchez A (2003) Major challenges to future groundwater policy in Spain. Water Int 28(3):321–325CrossRefGoogle Scholar
  72. SGDGOH (1991) Evolución de extracciones y niveles piezométricos en los acuíferos de la Llanura Manchega y del Campo de Montiel [Evolution of groundwater extraction and piezometric level in the Mancha and Campo de Montiel aquifers]. Technical report 05/91, Ministerio de Obras Públicas y Urbanismo, Madrid, Spain. 60 ppGoogle Scholar
  73. Shah T (2005) Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Sci Technol 51(8):27–37CrossRefGoogle Scholar
  74. Shah T (2008) Taming the anarchy: groundwater governance in South Asia. RFF, Washington, DCGoogle Scholar
  75. Shah T (2014) Towards a managed aquifer recharge strategy for Gujarat, India: an economist’s dialogue with hydro-geologists. J Hydrol 518(2014):94–107CrossRefGoogle Scholar
  76. Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the 21st century. UNESCO International Hydrology Series, Cambridge University Press, CambridgeGoogle Scholar
  77. Steward DR, Allen AJ (2016) Peak groundwater depletion in the High Plains aquifer, projections from 1930 to 2110. Agric Water Manag 170(2016):36–48CrossRefGoogle Scholar
  78. Todd DK (1959) Ground water hydrology. Wiley, New YorkGoogle Scholar
  79. Van der Gun J, Lipponen A (2010) Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2(2010):3418–3435.  https://doi.org/10.3390/su2113418 Google Scholar
  80. Viladomiu L, Rossell J (1997) Gestión del agua y política agroambiental: el Programa de Compensación de Rentas por reducción de regadíos en La Mancha Occidental y Campo de Montiel [Water management and agro-environmental policy: the compensation plan in the Mancha Occidental and Campo de Montiel]. Rev Española Econom Agrar 179:331–350Google Scholar
  81. Viladomiu L, Rossell J (2003) Intensificación agraria, agua y humedales en la cuenca alta del Guadiana [Agricultural intensification, water and wetlands in the upper Guadiana basin]. In: Coleto C, Martinez-Cortina L, Llamas MR (eds) Conflictos entre el desarrollo de las aguas subterráneas y la conservación de los humedales. Fundación Marcelino Botín, Ediciones Mundiprensa, Madrid, pp 277–290Google Scholar
  82. Vives R (2003) Economic and social profitability of water use for irrigation in Andalucia. Water Int 28(3):326–333CrossRefGoogle Scholar
  83. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402.  https://doi.org/10.1029/2010GL044571 CrossRefGoogle Scholar
  84. Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06.  https://doi.org/10.1029/2011WR010562 CrossRefGoogle Scholar
  85. Wang J, Huang J, Huang Q, Rozelle S (2006) Privatization of tubewells in North China: determinants and impacts on irrigated area, productivity and the water table. Hydrogeol J 14(3):275–285CrossRefGoogle Scholar
  86. WWF (2012) El fiasco del agua en el Alto Guadiana [The water fiasco in the Upper Guadiana basin]. Factsheet, World Wildlife Fund Spain, Madrid, 14 ppGoogle Scholar
  87. Younger PL (2006) Groundwater in the environment: an introduction. Wiley-Blackwell, London, 336 ppGoogle Scholar
  88. Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. IHP-VI Series on Groundwater no. 6. UNESCO, Paris 346 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Martínez-Santos
    • 1
    • 2
  • S. Castaño-Castaño
    • 3
  • A. Hernández-Espriú
    • 4
    • 5
  1. 1.Departamento de Geodinámica. Facultad de Ciencias Geológicas, C/ José Antonio Novais 2, Universidad Complutense de MadridCiudad UniversitariaMadridSpain
  2. 2.UNESCO Chair “Appropriate Technologies for Human Development”, Universidad Complutense de MadridCiudad UniversitariaMadridSpain
  3. 3.Centro de Estudios de Técnicas Aplicadas (CEDEX)MadridSpain
  4. 4.Hydrogeology Group, Earth Sciences Division, Faculty of EngineeringUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  5. 5.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations