Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada

  • Marie-Pier Ethier
  • Bruno Bussière
  • Stefan Broda
  • Michel Aubertin
Report
  • 141 Downloads

Abstract

The Manitou Mine sulphidic-tailings storage facility No. 2, near Val D’Or, Canada, was reclaimed in 2009 by elevating the water table and applying a monolayer cover made of tailings from nearby Goldex Mine. Previous studies showed that production of acid mine drainage can be controlled by lowering the oxygen flux through Manitou tailings with a water table maintained at the interface between the cover and reactive tailings. Simulations of different scenarios were performed using numerical hydrogeological modeling to evaluate the capacity of the reclamation works to maintain the phreatic surface at this interface. A large-scale numerical model was constructed and calibrated using 3 years of field measurements. This model reproduced the field measurements, including the existence of a western zone on the site where the phreatic level targeted is not always met during the summer. A sensitivity analysis was performed to assess the response of the model to varying saturated hydraulic conductivities, porosities, and grain-size distributions. Higher variations of the hydraulic heads, with respect to the calibrated scenario results, were observed when simulating a looser or coarser cover material. Long-term responses were simulated using: the normal climatic data, data for a normal climate with a 2-month dry spell, and a simplified climate-change case. Environmental quality targets were reached less frequently during summer for the dry spell simulation as well as for the simplified climate-change scenario. This study illustrates how numerical simulations can be used as a key tool to assess the eventual performance of various mine-site reclamation scenarios.

Keywords

Reclamation Numerical modeling Mining Climate change Canada 

Modélisation hydrogéologique tridimensionnelle pour évaluer la technique de la nappe phréatique surélevée pour contrôler la génération d’acide d’un site de résidus miniers abandonné au Québec, Canada

Résumé

Le parc 2 de résidus sulfurés de la mine de Manitou, près de Val D’Or au Canada, a été restauré en 2009 en élevant la surface de la nappe et en appliquant une couverture monocouche faite de résidus miniers provenant de la mine Goldex située à proximité. Des études antérieures ont montré que la production de drainage minier acide peut être contrôlée en abaissant le flux de l’oxygène à travers les résidus Manitou en maintenant la surface de la nappe à l’interface entre la couverture et les résidus miniers. Des simulations de différents scénarios ont été effectuées en utilisant un modèle hydrogéologique numérique pour évaluer la capacité des travaux de restauration à maintenir la surface phréatique à cette interface. Le modèle numérique à grande échelle a été construit et calibré en utilisant trois ans de mesures de terrain. Ce modèle a reproduit les observations de terrain, y compris l’identification d’une zone à l’ouest du site où le niveau phréatique visé n’est pas toujours atteint pendant l’été. Une analyse de sensibilité a été réalisée pour évaluer la réponse du modèle à des variations de conductivité hydraulique à saturation, de porosité et de granulométrie. Des variations plus importantes des charges hydrauliques par rapport aux résultats du calage ont été obtenues en simulant un matériau de couverture plus lâche ou plus grossier. Des réponses à long terme ont été simulées à partir: des données climatiques normales, des données climatiques normal avec deux mois de sècheresse et un scénario de changement climatique simplifié. Les cibles de qualité environnementale ont été atteintes moins fréquemment pendant l’été pour la simulation de période sèche, ainsi que pour le scénario de changement climatique simplifié. Cette étude illustre comment des simulations numériques peuvent être utilisées comme un outil clé pour évaluer l’efficacité de divers scénarios de restauration de sites miniers.

Modelado hidrogeológico tridimensional para evaluar una técnica de nivel freático elevado para controlar la generación de ácido en un sitio de relaves abandonados en Quebec, Canadá

Resumen

El almacenamiento de relaves sulfurosos en la Mina Manitou No. 2, cerca de Val D’Or, Canadá, fue recuperado en 2009 por la elevación de la capa freática y por la aplicación de una cubierta monocapa hecha de relaves de la cercana Mina Goldex. Estudios previos mostraron que la producción de drenaje ácido de la mina puede controlarse reduciendo el flujo de oxígeno a través de los relaves de Manitou con un nivel freático mantenido en la interfaz entre la cubierta y los relaves reactivos. Se realizaron simulaciones de diferentes escenarios utilizando modelos hidrogeológicos numéricos para evaluar la capacidad de los trabajos de recuperación para mantener la superficie freática en esta interfaz. Se construyó y calibró un modelo numérico a gran escala utilizando tres años de mediciones de campo. Este modelo reprodujo las mediciones de campo, incluida la existencia de una zona occidental en el sitio donde el nivel freático definido no siempre se cumple durante el verano. Se realizó un análisis de sensibilidad para evaluar la respuesta del modelo a diferentes conductividades hidráulicas saturadas, porosidades y distribuciones de tamaño de grano. Se observaron mayores variaciones de las cargas hidráulicas, con respecto a los resultados del escenario calibrado, al simular un material de cubierta más suelto o más grueso. Las respuestas a largo plazo se simularon utilizando: los datos climáticos normales, los datos para un clima normal con una sequía de dos meses y un caso simplificado de cambio climático. Los objetivos de calidad ambiental se alcanzaron con menos frecuencia durante el verano para la simulación de un episodio seco, así como para el escenario simplificado de cambio climático. Este estudio ilustra cómo las simulaciones numéricas se pueden usar como una herramienta clave para evaluar el rendimiento final de varios escenarios para recuperación de sitios mineros.

三维水文地质模拟评估用于控制加拿大魁北克废弃尾矿场产酸的高水位技术

摘要

 Manitou矿硫尾矿储存设施 2号位于加拿大Val D’Or附近,2009年通过提高地下水位,并采用附近的Goldex矿尾矿单层覆盖层进行回收。以前的研究表明,酸性矿山排水的生产可以通过降低通过马尼图尾矿的氧气流量来控制,并且在覆盖层和反应性尾矿之间的界面上保持一个水位。对不同情景的模拟采用数值水文地质模型来评估填海工程在这个界面维持潜水面的能力。使用三年的现场测量,构建和校准了一个大型数值模型。这个模型再现了现场测量,包括在夏季并不总是遇到潜在水平的场地上存在一个西部地区。进行敏感性分析以评估模型对不同饱和水力传导率,孔隙度和粒度分布的响应。当模拟较松散或较粗糙的覆盖材料时,观察到相对于校准的情景结果的液压头的较大变化。长期反应模拟使用:正常气候资料,正常气候资料和两个月干旱资料,以及简化的气候变化案例。环境质量指标在夏季用于干旱模拟以及简化的气候变化情景的频率较低。这项研究说明了如何使用数值模拟作为评估各种矿山开垦情景的最终性能的关键工具。

Modelagem hidrogeológica tridimensional para avaliar a técnica de nível freático elevado para controle da geração ácida em local de rejeito abandonado em Quebec, Canadá

Resumo

A instalação de armazenamento de rejeito sulfídrico número 2 da Mina Manitou, próxima ao Val D’Or, Canadá, foi recuperada em 2009 através da elevação do nível freático a pela aplicação de uma cobertura monocamada feita de rejeitos da Mina Goldex nas proximidades. Estudos prévios mostraram que a produção de drenagem ácida da mina pode ser controlada pelo rebaixamento do fluxo de oxigênio através dos rejeitos de Manitou com um nível freático mantido na interface entre a cobertura e rejeitos reativos. Simulações de diferente s cenários foram realizadas usando modelagem numérica hidrogeológica para avaliar a capacidade do trabalho de recuperação em manter a superfície freática nessa interface. Um modelo numérico em grande escala foi construído e calibrado usando três anos de medições a campo. Esse modelo reproduziu as medições a campo, incluindo a existência de uma zona à oeste do local onde o lençol freático atingido nem sempre é encontrado no verão. Uma análise de sensibilidade foi realizada para avaliar a resposta do modelo a condições de condutividade hidráulica saturada, porosidade e distribuições de partículas variáveis. Elevadas variações de carga hidráulica, com respeito aos resultados dos cenários calibrados foram observadas nas simulações incluindo um material desagregado ou grosseiro. Respostas de longo prazo foram simuladas usando: dados climatológicos normais, dados de uma normal climatológica com dois meses de intervalo seco, e um caso simplificado de mudança climática. Os objetivos de qualidade ambiental foram atingidos com menor frequência durante o verão para a simulação do intervalo seco, bem como para o cenário de mudança climática simplificado. Este estudo ilustra como as simulações numéricas podem ser utilizadas como uma ferramenta chave para avaliar o eventual desempenho de vários cenários de recuperação de locais de minas.

Notes

Acknowledgements

The authors thank the Research Institute on Mines and the Environment (RIME UQAT-Polytechnique, www.RIME-IRME.ca) for providing funding for this project. We also acknowledge the NSERC-UQAT Industrial Chair on Mine Site Reclamation, to NSERC for the Alexander Graham Bell Canada Doctoral Scholarship, and the FRQNT for the Doctoral B2 Scholarship granted to the first author. Additional support was also provided by the employees at URSTM-IRME who assisted with the field work and by the Ministère de l’Énergie et des Ressources naturelles du Québec and Agnico-Eagle Mines who enabled access to the Manitou site.

References

  1. Adu-Wusu C, Yanful EK, Mian MH (2001) Field evidence of resuspension in a mine tailings pond. Can Geotech J 38:796–808.  https://doi.org/10.1139/cgj-38-4-796CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage paper 56. http://www.fao.org/docrep/x0490e/x0490e00.HTM. Accessed 16 March 2017
  3. Anderson MP, Woessner WW, Randall JH (2015) Applied groundwater modeling: simulation of flow and advective transport, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  4. ASTM (2008) Standard guide for calibrating a groundwater flow model application D5981–96(2008). American Society of Testing Materials, West Conshohocken, PA, 6 ppGoogle Scholar
  5. Aubertin M, Chapuis RP, Aachib M, Bussière B, Ricard J-F, Tremblay L (1995) Évaluation en laboratoire de barrières sèches construites à partir de résidus miniers [Laboratory evaluation of dry covers constructed from mine tailings]. Report NEDEM/MEND. http://www.mend-nedem.org. Accessed December 2017
  6. Aubertin M, Dionne J, Marcoux L (1997) Design guidelines and stability criteria of engineering works for water covers. 4th ICARD, Vancouver, BC, May 31–June 6, 1997, pp 1849–1866Google Scholar
  7. Aubertin M, Bussière B, Monzon M, Joanes AM, Gagnon D, Barbera JM, Aachib M, Bédard C, Chapuis RP, Bernier L (1999) Étude sur les barrières sèches construites à partir de résidus miniers Phase II – Essais en place [A study of dry covers constructed from mine tailings, Phase II: In-situ test]. Mine Environment Neutral Drainage Report (NEDEM/MEND) 2.22.2c. CANMET, Ottawa, 395 ppGoogle Scholar
  8. Aubertin M, Bussière B, Bernier L (2002) Environnement et gestion des rejets miniers [Environment and mine wastes management]. Manual on CD-ROM, Presses Internationales Polytechnique, MontrealGoogle Scholar
  9. Aubertin M, Mbonimpa M, Bussière B, Chapuis RP (2003) A model to predict the water retention curve from basic geotechnical properties. Can Geotech J 40:1104–1122.  https://doi.org/10.1139/T03-054CrossRefGoogle Scholar
  10. Aubertin M, Pépin N, Mbonimpa M, James M, Prétot F, Maknoon M, Bussière B (2011) Vers une mise à jour des critères de stabilité géotechnique pour la conception des ouvrages de retenue de résidus miniers [Towards an update of the geotechnical stability criteria for the design of tailings impoundments]. Symposium on mines and the environment, Rouyn-Noranda, QC, 38 ppGoogle Scholar
  11. Aubertin M, Bussière B, Pabst T, James M, Mbonimpa M (2016) Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal sites. 2nd Geo-Chicago Conf, Chicago, August 2016, pp 343–358Google Scholar
  12. Awoh AS, Mbonimpa M, Bussière B (2013) Field study of the chemical and physical stability of highly sulphide-rich tailings stored under a shallow water cover. Mine Water Environ 32:42–55.  https://doi.org/10.1007/s10230-012-0213-5CrossRefGoogle Scholar
  13. Ben Abdelghani F, Aubertin M, Simon R, Therrien R (2015) Numerical simulations of water flow and contaminants transport near mining wastes disposed in a fractured rock mass. Int J Min Sci Technol 25:37–45.  https://doi.org/10.1016/j.ijmst.2014.11.003CrossRefGoogle Scholar
  14. Blessent D, Therrien R, MacQuarrie K (2009) Coupling geological and numerical models to simulate groundwater flow and contaminant transport in fractured media. Comput Geosci 35:1897–1906.  https://doi.org/10.1016/j.cageo.2008.12.008CrossRefGoogle Scholar
  15. Blight GE (2010) Geotechnical engineering for mine waste storage facilities. CRC, Boca Raton, FLGoogle Scholar
  16. Broda S, Aubertin M, Blessent D, Maqsoud A, Bussière B (2014) Simulating the variation of the phreatic surface level to assess reclamation techniques for an acidic tailings impoundment: a field-scale study. 67th CGS Conf, Regina, SK, 28 September–1 October 2017, 7 ppGoogle Scholar
  17. Bussière B (1999) Étude du comportement hydrique de couvertures avec effet de barrières capillaires inclinées à l’aide de modélisations physiques et numériques [Study of the hydraulic behaviour of inclined covers with capillary barrier effects with physical and numerical modelings]. PhD Thesis, Polytechnique, MontrealGoogle Scholar
  18. Bussière B (2009) Acid mine drainage from abandoned mine sites: problematic and reclamation approaches. Int Symp Geoenviron Eng, ISGE2009, Adv Environ Geotech, Hangzhou, China, September 2009, pp 111–125Google Scholar
  19. Bussière B, Aubertin M, Zagury GJ, Potvin R, Benzaazoua M (2005) Principaux défis et pistes de solution pour la restauration des aires d’entreposage de rejets miniers abandonnées [Key challenges and possible solutions for reclamation of abandoned mine waste storage areas]. Symp 2005 sur l’environnement et les mines, CD-ROM, Rouyn-Noranda, QC, May 2005Google Scholar
  20. Bussière B, Maqsoud A, Demers I, Éthier M-P, Aubertin M, Chapuis RP (2008) Modélisation physique de divers scénarios de recouvrement et étude du comportement hydrogéologique: site Manitou, Rapport intermédiaire PU-2008-03-371 [Physical modeling of reclamation different scenarios and assessment of the hydrogeological behaviour: Manitou site. Interim report PU-2008-03-371]. URSTM-UQAT, Rouyn, QC, 15 ppGoogle Scholar
  21. Bussière B, Maqsoud A, Demers I, Doumbouya I, Aubertin M, Chapuis RP (2009) Modélisation physique de divers scénarios de recouvrement et étude du comportement hydrogéologique: site Manitou, Rapport d’avancement no. 2 PU-2008-03-371 [Physical modeling of reclamation for different scenarios and assessment of the hydrogeological behaviour: Manitou site. Interim report No. 2 PU-2008-03-371]. URSTM-UQAT, Rouyn, QC, 38 ppGoogle Scholar
  22. Bussière B, Maqsoud A, Demers I, Rousselle M, Aubertin M, Chapuis RP (2011) Modélisation physique de divers scénarios de recouvrement et étude du comportement hydrogéologique : site Manitou, Rapport final PU-2008-03-371 [Physical modeling of reclamation for different scenarios and assessment of the hydrogeological behaviour: Manitou site. Final report PU-2008-03-371]. URSTM-UQAT, Rouyn, QC, 81 ppGoogle Scholar
  23. Carrera-Hernández JJ, Mendoza CA, Devito KJ, Petrone RM, Smerdon BD (2012) Reclamation for aspen revegetation in the Athabasca oil sands: understanding soil water dynamics through unsaturated flow modelling. Can J Soil Sci 92:103–116.  https://doi.org/10.4141/CJSS2010-035CrossRefGoogle Scholar
  24. Catalan LJJ, Yanful EK (2002) Sediment-trap measurements of suspended mine tailings in shallow water cover. J Environ Eng 128:19–30.  https://doi.org/10.1061/(ASCE)0733-9372(2002)128:1(19)CrossRefGoogle Scholar
  25. Cavalcante ALB, Ribeiro LFM, de Assis AP (2013) Experimental and physical analysis applied to tailing dams. Electron J Geotech Eng 18(C):485–495Google Scholar
  26. Chapuis RP, Aubertin M (2003) On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40:616–628.  https://doi.org/10.1139/T03-013CrossRefGoogle Scholar
  27. Charlier J, Charlier-Vanderschraege D, Rodolphe DK, Dorval G (2014) Le Grand atlas du Canada et du monde [The Great Atlas of Canada and the World], 4th edn. Pearson ERPI, BrusselsGoogle Scholar
  28. Collin M (1987) Mathematical modeling of water and oxygen transport in layered soil covers for deposits of pyritic mine tailings. Licenciate, Royal Institute of Technology, StockholmGoogle Scholar
  29. Cooley RL (1982) Some new procedures for numerical solution of variably saturated flow problems. Water Resour Res 19:1271–1285.  https://doi.org/10.1029/WR019i005p01271CrossRefGoogle Scholar
  30. Cosset G, Aubertin M (2010) Physical and numerical modelling of a monolayer cover placed on reactive tailings. 63rd CGC & 1st Joint CGS/CNC-IPA Permafr. Spec. Conf., Calgary, AB, 2010Google Scholar
  31. Dagenais A-M (2005) Techniques de contrôle du drainage minier acide basées sur les effets capillaires [Techniques to control acid mine drainage based on capillary barrier effects]. PhD Thesis, Polytechnique, MontrealGoogle Scholar
  32. Dagenais AM, Aubertin M, Bussière B (2006) Parametric study on the water content profiles and oxidation rates in nearly saturated tailings above the water table. In: Barnhisel RI (ed) Proceeding of the 7th ICARD, The American Society of Mining and Reclamation, St. Louis, MI, pp 405–420Google Scholar
  33. Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Miner Eng 21:317–329.  https://doi.org/10.1016/j.mineng.2007.11.006CrossRefGoogle Scholar
  34. Demers I, Bussière B, Rousselle M, Aubertin M, Pabst T, Lacroix R (2013) Laboratory evaluation of reclamation scenarios for the spillage areas of the abandoned Manitou site using Goldex tailings. 23rd World Mining Congress, Montreal, August 2013Google Scholar
  35. Dobchuk B, Nichol C, Wilson GW, Aubertin M (2013) Evaluation of a single-layer desulphurized tailings cover. Canadian Geotechnical Journal 50 (7):777-792.  https://doi.org/10.1139/cgj-2012-0119
  36. Dripps WR, Hunt RJ, Anderson MP (2006) Estimating recharge rates with analytic element models and parameter estimation. Ground Water 44:47–55.  https://doi.org/10.1111/j.1745-6584.2005.00115.xCrossRefGoogle Scholar
  37. Environment Canada (2016) Climatic database for the Val D’Or station, Québec, Canada. http://www.climate.weather.gc.ca. Accessed 11 November 2016
  38. Ethier M-P (2018) Évaluation de la performance du système de recouvrement monocouche avec nappe surélevée pour la restauration d’un parc à résidus abandonné [Evaluation of the performance of the monolayer cover combined with an elevated water table system for the reclamation of an abandoned tailings storage facility]. PhD Thesis, UQAT, Rouyn-Noranda, QCGoogle Scholar
  39. Ethier M-P, Bussière B, Aubertin M, Maqsoud A, Demers I, Lacroix R (2013) In-situ evaluation of the elevated water table technique combined with a monolayer cover on reactive tailings: monitoring strategy and preliminary results. 66th CGS & 11th Joint CGS/IAH-CNC Groundwater Conf, Montreal, September 29–October 3, 2013Google Scholar
  40. Ethier M-P, Bussière B, Aubertin M, Demers I, Maqsoud A, Dionne J, Roy M (2014) Results from a field investigation of the elevated water table technique combined with a monolayer cover on reactive tailings. 67th CGS Conf, Regina, SK, 28 September–1 October 2017Google Scholar
  41. Gosselin M (2007) Étude de l’influence des caractéristiques hydrogéochimiques des résidus miniers réactifs sur la diffusion et la consommation de l’oxygène [Study of the influence of hydrogeochemical characteristics of reactive mine tailings on the oxygen diffusion and consumption]. MSc Thesis, Polytechnique, MontrealGoogle Scholar
  42. Gosselin M, Mbonimpa M, Pabst T, Aubertin M (2012) Evaluating the oxygen reaction rate coefficient of sulphidic tailings using laboratory and field tests. 9th ICARD, Ottawa, ON, May 2012Google Scholar
  43. Huyakorn PS, Thomas SD, Thompson BM (1984) Techniques for making finite elements competitive in modeling flow in variably saturated porous media. Water Resour Res 20:1099–1115.  https://doi.org/10.1007/978-3-662-11744-6_17CrossRefGoogle Scholar
  44. Khalil B, Broda S, Adamowski J, Ozga-Zielinski B, Donohoe (2015) Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models. Hydrogeol J 23:121–141.  https://doi.org/10.1007/s10040-014-1204-3CrossRefGoogle Scholar
  45. Leblanc Y (2010) Étude hydrogéologique, Site Manitou, Val D’Or [Hydrogeological study, Manitou Site, Val D’Or]. Richelieu Hydrogéologie, Richelieu, QC, 22 ppGoogle Scholar
  46. L’Écuyer M, Chapuis RP, Aubertin M (1992) Propriétés hydro-géotechniques des résidus miniers de Solbec et Cupra, Québec [Hydro-geotechnical properties of Solbec and Cupra mine tailings, Quebec]. 45th CGS Conf, Toronto, October 1992Google Scholar
  47. Lesmes DP, Friedman SP (2005) Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Heidelberg, Germany, pp 87–128Google Scholar
  48. Li M, Aubé B, St-Arnaud L (1997) Considerations in the use of shallow water covers for decommissioning reactive tailings. 4th ICARD, Vancouver, May 31–June 6, 1997, pp 117–130Google Scholar
  49. Mbonimpa M, Aubertin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20:235–259.  https://doi.org/10.1023/A:1016046214724CrossRefGoogle Scholar
  50. Mbonimpa M, Aubertin M, Aachib M, Bussière B (2003b) Diffusion and consumption of oxygen in unsaturated cover materials. Can Geotech J 40:916–932.  https://doi.org/10.1139/T03-040CrossRefGoogle Scholar
  51. MEND (2001) Manual report 5.4.2, vols 1–6. CANMET, OttawaGoogle Scholar
  52. Mian MH, Yanful EK (2004) Analysis of wind-driven resuspension of metal mine sludge in a tailings pond. J Environ Eng Sci 3:119–135.  https://doi.org/10.1139/s03-076CrossRefGoogle Scholar
  53. Miller SD, Jeffery JJ, Wong JWC (1991) Use and misuse of the acid-base account for “AMD” prediction. 2nd ICARD, Montreal, pp 489–506Google Scholar
  54. Mualem Y (1976) A new model to predict the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522.  https://doi.org/10.1029/WR012i003p00513CrossRefGoogle Scholar
  55. Nastev M, Aubertin M (2000) Hydrogeological modelling for the reclamation work at Lorraine site, Québec. 1st joint IAH-CNC and CGS Groundwater Specialty Conf, Montreal, October 2000, pp 311–318Google Scholar
  56. Newman GP, Wilson GW (1997) Heat and mass transfer in unsaturated soils during freezing. Can Geotech J 34:63–70.  https://doi.org/10.1139/t96-085CrossRefGoogle Scholar
  57. Orava DA, Tremblay GA, Tibble A, Nicholson R (1997) Prevention of acid rock drainage through the application of in-pit disposal and elevated water table concepts. 4th ICARD, Vancouver, May 31–June 6, 1997, pp 973–983Google Scholar
  58. Ouangrawa M (2007) Étude expérimentale et analyse numérique des facteurs qui influencent le comportement hydrogéochimique de résidus miniers sulfureux partiellement saturés [Experimental study and numerical analysis of the factors that influence the hydrogeochemical behavior of partially saturated sulphidic mining residues]. PhD Thesis, Polytechnique, MontrealGoogle Scholar
  59. Ouangrawa M, Molson J, Aubertin M, Zagury GJ, Bussière B (2006) The effect of water table elevation on acid mine drainage from reactive tailings: a laboratory and numerical modeling study. In: Barnhisel RI (ed) Proceedings of the 7th ICARD, St. Louis, MI, March 2006, pp 1473–1482Google Scholar
  60. Ouangrawa M, Molson J, Aubertin M, Bussière B, Zagury GJ (2009) Reactive transport modelling of mine tailings columns with capillarity-induced high water saturation for preventing sulfide oxidation. Appl Geochem 24:1312–1323.  https://doi.org/10.1016/j.apgeochem.2009.04.005CrossRefGoogle Scholar
  61. Ouangrawa M, Aubertin M, Molson JW, Bussière B, Zagury GJ (2010) Preventing acid mine drainage with an elevated water table: long-term column experiments and parameter analysis. Water Air Soil Pollut 213:437–458.  https://doi.org/10.1007/s11270-010-0397-xCrossRefGoogle Scholar
  62. Ouranos (2015) Synthèse des connaissances sur les changements climatiques au Québec: partie 1, évolution climatique au Québec [Synthesis of knowledge on climate change in Quebec: part 1, evolution of the climate in Quebec]. Ouranos, Montreal, 105 ppGoogle Scholar
  63. Pabst T (2011) Étude expérimentale et numérique du comportement hydro-géochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés [Experimental and numerical study of the hydro-geochemical behaviour of covers placed on partly oxidized sulphidic tailings]. PhD Thesis, Polytechnique, MontrealGoogle Scholar
  64. Pabst T, Molson J, Aubertin M, Bussière B (2011) Physical and geochemical transport modelling of pre-oxidized acid-generating tailings with a monolayer cover. 2011 Mine Clos Conf, Lake Louise, AB, September 2011Google Scholar
  65. Pabst T, Aubertin M, Bussière B, Molson J (2014) Column tests to characterise the hydrogeochemical response of pre-oxidised acid-generating tailings with a monolayer cover. Water Air Soil Pollut 225:1–21.  https://doi.org/10.1007/s11270-013-1841-5CrossRefGoogle Scholar
  66. Plante B, Bussière B, Benzaazoua M (2014) Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. J Geochem Explor 137:37–47.  https://doi.org/10.1016/j.gexplo.2013.11.004CrossRefGoogle Scholar
  67. Ricard JF, Aubertin M, Firlotte FW, Knapp R, McMullen J (1997) Design and construction of a dry cover made of tailings for the closure of Les Terrains Aurifères site, Malartic, QC. 4th ICARD, Vancouver, May 31–June 6, 1997, pp 1515–1530Google Scholar
  68. Ricard JF, Aubertin M, Pelletier P, Poirier P, McMullen J (1999) Performance of a dry cover made of tailings for the closure of Les Terrains Aurifères site, Malartic, Québec, Canada. Sudbury ‘99-Min and Environ, Sudbury, ON, September 1999, pp 155–164Google Scholar
  69. Rivard C, Lefebvre R, Paradis D (2014) Regional recharge estimation using multiple methods: an application in the Annapolis Valley, Nova Scotia (Canada). Environ Earth Sci 71:1389–1408.  https://doi.org/10.1007/s12665-013-2545-2CrossRefGoogle Scholar
  70. SENES (1996) Review of use of an elevated water table as a method to control and reduce acidic drainage from tailings. MEND Report 2.17.1, CANMET, OttawaGoogle Scholar
  71. SRK (Steffen Robertson and Kirsten) (1989) Draft acid rock technical guide. BC AMD Task Force, SRK, VancouverGoogle Scholar
  72. Talmon AM, van Kesteren WGM, Sittoni L, Hedblom EP (2014) Shear cell tests for quantification of tailings segregation. Can J Chem Eng 92:362–373.  https://doi.org/10.1002/cjce.21856CrossRefGoogle Scholar
  73. Tassé N, Germain D (1999) Le parc à résidus miniers Manitou et ses épandages: caractérisation et options de restauration [Manitou tailings storage impoundment and its spilling areas: characterization and options of resaturation]. Report INRS-Géoressources, Quebec, QCGoogle Scholar
  74. Thériault V (2004) Étude de l’écoulement autour d’une fosse remblayée par une approche de fracturation discrète [Flow study around a backfilled pit with a discrete fracture approach]. Master Thesis, Polytechnique, MontrealGoogle Scholar
  75. Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23:1–44.  https://doi.org/10.1016/0169-7722(95)00088-7CrossRefGoogle Scholar
  76. Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) Hydrogeosphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute. Groundwater Simulations Group, University of Waterloo, Waterloo, ONGoogle Scholar
  77. USDA (2012) Snowmelt, chap 11. In: National engineering handbook: part 630, hydrology. http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17753.wba. Accessed 17 January 2017
  78. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898.  https://doi.org/10.2136/sssaj1980.03615995004400050002xCrossRefGoogle Scholar
  79. Vick SG (1990) Planning, design and analysis of tailings dams. BiTech, VancouverGoogle Scholar
  80. Yanful EK, Catalan LJJ (2002) Predicted and field-measured resuspension of flooded mine tailings. J Environ Eng 128:341–351.  https://doi.org/10.1061/(ASCE)0733-9372(2002)128:4(341)CrossRefGoogle Scholar
  81. Yanful EK, Verma A, Straatman G (2000) Turbulence driven metal release from suspended pyrrhotite tailings. J Geotech Geoenviron Eng 126:1157–1165.  https://doi.org/10.1061/(ASCE)0733-9372(2002)128:4(341)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marie-Pier Ethier
    • 1
  • Bruno Bussière
    • 1
  • Stefan Broda
    • 2
    • 3
  • Michel Aubertin
    • 2
  1. 1.Research Institute on Mines and the Environment (RIME)Université du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  2. 2.Research Institute on Mines and the Environment (RIME), Département des génies civil, géologique et des mines, Polytechnique MontréalMontréalCanada
  3. 3.Federal Institute for Geosciences and Natural Resources (BGR)BerlinGermany

Personalised recommendations