Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 837–851 | Cite as

Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy

  • Matteo Cultrera
  • Jacopo Boaga
  • Eloisa Di Sipio
  • Giorgia Dalla Santa
  • Massimiliano De Seta
  • Antonio Galgaro
Paper
  • 277 Downloads

Abstract

Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water’s chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.

Keywords

Electrical resistivity tomography Numerical modeling Tracer tests Thermal response test Distributed temperature sensing 

Modélisation d’un panache thermal induit avec des données de tomographie de résistivité électrique et de détection de la distribution des températures : cas d’étude dans le nord-est de l’Italie

Résumé

Les essais de traçage des eaux souterraines sont souvent utilisés pour améliorer la caractérisation d’un aquifère, mais ils présentent plusieurs inconvénients, tels que la nécessité d’injecter des solutions ou colorants dans l’aquifère et l’altération des propriétés chimiques de l’eau. Ainsi, les traceurs peuvent affecter les écoulements d’eau souterraine, rendant l’interprétation des données plus complexe, entravant l’étude des pompages à chaleur pour les systèmes géothermaux de basse enthalpie. Cet article présente une méthode préliminaire basée sur une application pluri-disciplinaire de la chaleur comme traceur pour définir les principaux paramètres d’aquifères superficiels. Les mesures de tomographie électrique (ERT) et la détection des températures distribuées (DTD) sont non invasives et ont été appliquées sur un site test d’aquifère peu profond dans le Nord Est de l’Italie. La combinaison de ces techniques de mesure satisfait la définition des principaux paramètres de l’aquifère et donc l’élaboration d’un modèle conceptuel fiable, qui est ensuite décrit à l’aide du code numérique FEFLOW. Ce modèle est paramétré avec DTD et validé par les sorties ERT. La fiabilité du modèle numérique en termes du devenir et du transport est par là renforcée, pouvant conduire à une meilleure gestion de l’environnement et à une meilleure protection des ressources en eau souterraine à l’aide de solutions d’un meilleur rapport coût-efficacité.

Modelado de una pluma térmica inducida con datos de una tomografía de resistividad eléctrica y detección de temperatura distribuida: un estudio de caso en el noreste de Italia

Resumen

Los ensayos con trazadores en agua subterránea se utilizan a menudo para mejorar la caracterización del acuífero, pero presentan varias desventajas, como la necesidad de verter soluciones o colorantes en el sistema acuífero y la alteración de las propiedades químicas del agua. Por lo tanto, los trazadores pueden afectar la mecánica del flujo del agua subterránea y la interpretación de los datos se torna más compleja, lo que dificulta el estudio efectivo de las bombas de calor terrestre para los sistemas geotérmicos de baja entalpía. Este artículo presenta una metodología preliminar basada en una aplicación multidisciplinaria del calor como trazador para definir los principales parámetros de acuíferos poco profundos. Las técnicas de monitoreo de campo, la tomografía de resistividad eléctrica (ERT) y la detección de temperatura distribuida (DTS) no son invasivas y se aplicaron a un sitio de prueba en un acuífero somero en el noreste de Italia. La combinación de estas técnicas de medición respalda la definición de los principales parámetros del acuífero y, por lo tanto, la construcción de un modelo conceptual confiable, que luego se describe a través del código numérico FEFLOW. Este modelo está calibrado con DTS y validado por los resultados de ERT. Por lo tanto, se mejora la confiabilidad del modelo numérico en términos de destino y transporte, lo que permite una mejor gestión ambiental y protección de los recursos de aguas subterráneas a través de soluciones más rentables.

利用电阻断层摄影和分布温度传感数据建立感应热羽模型:意大利北部的一个研究案例

摘要

常常采用地下水示踪试验提高含水层特征描述水平,但是其也显示出几个缺点,诸如需要把溶剂或者燃料灌入含水层系统,改变水的化学特性。因此,示踪剂可影响地下水流机理,数据解译变得更加复杂,阻碍了低热焓地热系统地下水热泵的有效研究。本文展示了基于多学科应用热量作为示踪剂确定浅层含水层主要参数的初步方法。野外监测技术如电阻断层摄影和分布式温度传感技术为非侵入式的,应用于意大利北部一个浅层含水层中。这些测量技术结合一起可以支持主要含水层参数的定义,因此,进而支持建立一个可靠的概念模型,然后通过数值编码FEFLOW对模型进行描述。这个模型利用分布式温度传感技术进行校正,利用电阻断层摄影技术进行验证。因此在热羽和传输方面,提高了数值模型的可靠性,就有可能通过更加合算的解决方法对地下水资源进行更好地进行环境管理和保护。

Modelando uma pluma térmica induzida conforme dados de tomografia de resistividade elétrica e detecção de temperatura distribuída: um estudo de caso no nordeste da Itália

Resumo

Os testes de rastreamento de águas subterrâneas são frequentemente utilizados para melhorar a caracterização do aquífero, mas apresentam várias desvantagens, como a necessidade de derramar soluções ou corantes no sistema aquífero e a alteração das propriedades químicas da água. Assim, os traçadores podem afetar a mecânica do fluxo de águas subterrâneas e a interpretação dos dados torna-se mais complexa, dificultando o estudo efetivo de bombas de calor terrestres para sistemas geotérmicos de baixa entalpia. Este artigo apresenta uma metodologia preliminar baseada em uma aplicação multidisciplinar de calor como um traçador para a definição dos principais parâmetros dos aquíferos rasos. As técnicas de monitoramento de campo, tomografia de resistividade elétrica (TRE) e detecção de temperatura distribuída (DTD), não são invasivas e foram aplicadas em um local de teste de um aquífero raso no nordeste da Itália. A combinação dessas técnicas de medição sustenta a definição dos principais parâmetros do aquífero e, portanto, a construção de um modelo conceitual confiável, que então é descrito através do código numérico FEFLOW. Este modelo é calibrado com DTD e validado pelos resultados de TRE. A confiabilidade do modelo numérico em termos de destino e transporte é, assim, aprimorada, conduzindo ao potencial para uma melhor gestão ambiental e proteção dos recursos de águas subterrâneas através de soluções mais viáveis economicamente.

Notes

Acknowledgements

The authors are very grateful to the reviewers for their careful and meticulous reading of the manuscript, which resulted in improvement of this paper. The authors are also grateful to Dr. Lorenzo Altissimo of “Centro Idrico di Novoledo” (Villaverla, Vicenza; Italy). Eng. Alberto Salmistraro and Eng. Zeno Farina from the local renewable energies firm Eneren S.r.l. performed the TRT measurements using their devices and software. The thesis work of Mr. Liuzzo Scorpo and Mr. Capellari provided additional support for field data and geophysical surveys. The use of the ETR inversion software provided by A. Binley is also gratefully acknowledged.

Funding Information

The funds of the 2014 PRAT (Progetto di Ricerca di Ateneo of Padua University, 2014) supported this project. The grant number is CPDA144544.

References

  1. Alfonso L, Price R (2012) Coupling hydrodynamic models and value of information for designing stage monitoring networks. Water Resour Res 48:W08530.  https://doi.org/10.1029/2012WR012040 CrossRefGoogle Scholar
  2. Al-Khoury R, Kölbel T, Schramedei R (2010) Efficient numerical modeling of borehole heat exchangers. Comput Geosci 36:1301–1315.  https://doi.org/10.1016/j.cageo.2009.12.010 CrossRefGoogle Scholar
  3. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968.  https://doi.org/10.1111/j.1745-6584.2005.00052.x CrossRefGoogle Scholar
  4. Applied Precision (2013) ISOMET 2114: thermal properties analyzer. User’s guide, Applied Precision, Issaquah, WAGoogle Scholar
  5. Arato A, Boaga J, Comina C, De Seta M, Di Sipio E, Galgaro A, Giordano N, Mandrone G (2015) Geophysical monitoring for shallow geothermal applications: two Italian case histories. First Break 33:75–79Google Scholar
  6. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62CrossRefGoogle Scholar
  7. ASTM (2017) ASTM D5334-14, standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM, West Conshohocken, PA. www.astm.org. Accessed November 2017
  8. Banks D (2012) Thermogeological assessment of open loop well doublet schemes–an analytical approach. In: Proceedings of the IAH (Irish Group) 27th Annual Groundwater Conference, International Association of Hydrogeologists (Irish Group), Tullamore, IrelandGoogle Scholar
  9. Barbieri C, Bertotti G, Di Giulio A, Fantoni R, Zoetemeijer R (2004) Flexural response of the Venetian foreland to the Southalpine tectonics along the TRANSALP profile. Terra Nova 16:273–280.  https://doi.org/10.1111/j.1365-3121.2004.00561.x CrossRefGoogle Scholar
  10. Batu V (2006) Applied flow and solute transport modeling in aquifers: fundamental principles and analytical and numerical methods. Taylor & Francis, Boca RatonGoogle Scholar
  11. Binley A (2016) R2. Lancaster University, UKGoogle Scholar
  12. Binley A, Kemma A (2005) DC resistivity and induced polarization methods. In: Hydrogeophysics. Springer, Heidelberg, GermanyGoogle Scholar
  13. Boaga J, D’Alpaos A, Cassiani G, Marani M, Putti M (2014) Plant-soil interactions in salt marsh environments: experimental evidence from electrical resistivity tomography in the Venice Lagoon. Geophys Res Lett 41(17):6160–6166.  https://doi.org/10.1002/2014GL060983 CrossRefGoogle Scholar
  14. Cassiani G, Bruno V, Villa A, Fusi N, Binley AM (2006) A saline trace test monitored via time-lapse surface electrical resistivity tomography. J Appl Geophys 59:244–259.  https://doi.org/10.1016/j.jappgeo.2005.10.007 CrossRefGoogle Scholar
  15. Cassiani G, Boaga J, Vanella D, Perri MT, Consoli S (2015) Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol Earth Syst Sci 19:2213–2225.  https://doi.org/10.5194/hess-19-2213-2015 CrossRefGoogle Scholar
  16. Cultrera M, Antonelli R, Teza G, Castellaro S (2012) A new hydrostratigraphic model of Venice area (Italy). Environ Earth Sci 66:1021–1030.  https://doi.org/10.1007/s12665-011-1307-2
  17. Dehkordi SE, Schincariol RA (2014) Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems. Hydrogeol J 22:189–203.  https://doi.org/10.1007/s10040-013-1060-6 CrossRefGoogle Scholar
  18. Di Sipio E, Bertermann D (2017) Influence of different moisture and load conditions on heat transfer within soils in very shallow geothermal application: an overview of ITER Project. 42nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, February 2017Google Scholar
  19. Di Sipio E, Chiesa S, Destro E, Galgaro A, Giaretta A, Gola G, Manzella A (2013) Rock thermal conductivity as key parameter for geothermal numerical models. Energy Procedia 40:87–94Google Scholar
  20. Diersch H-JG (2014) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Heidelberg, GermanyGoogle Scholar
  21. Diersch H-JG, Kolditz O (2009) Variable-density flow and transport in porous media: approaches and challenges. In: FEFLOW White Papers vol 2. DHI-WASY, BerlinGoogle Scholar
  22. Diersch H-JG, Bauer D, Heidemann W, Ruhaak W, Schätzl P (2010) Finite element formulation for heat exchanges in modelling geothermal heating system by FEFLOW. In: White Papers vol 5. DHI-WASY, Berlin, 93 ppGoogle Scholar
  23. Doetsch J, Linde N, Binley A (2010) Structural joint inversion of time-lapse crosshole ERT and GPR traveltime data. Geophys Res Lett 37:L24404.  https://doi.org/10.1029/2010GL045482 CrossRefGoogle Scholar
  24. Domenico PA, Schwartz FW (1997) Physical and chemical hydrogeology. John Wiley & Son Inc., ChichesterGoogle Scholar
  25. Dong Y, McCartney JS, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33:207–221.  https://doi.org/10.1007/s10706-015-9843-2 CrossRefGoogle Scholar
  26. Duque C, Müller S, Sebok E, Haider K, Engesgaard P (2016) Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: the role of thermal conductivity—thermal conductivity estimating groundwater discharge. Hydrol Process 30:383–395.  https://doi.org/10.1002/hyp.10568 CrossRefGoogle Scholar
  27. Eppelbaum L, Kutasov I, Pilchin A (2014) Applied geothermics. Lecture Notes in Earth System Sciences. Springer, Berlin, HeidelbergGoogle Scholar
  28. Ferguson G (2015) Screening for heat transport by groundwater in closed geothermal systems. Groundwater 53:503–506.  https://doi.org/10.1111/gwat.12162 CrossRefGoogle Scholar
  29. Fetter CW (1992) Contaminant hydrogeology. Macmillan, New YorkGoogle Scholar
  30. Fetter CW (2000) Applied hydrogeology, 4th edn. XVII. Prentice Hall, New JerseyGoogle Scholar
  31. Fontana A, Mozzi P, Bondesan A (2008) Alluvial megafans in the Venetian-Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quat Int 189:71–90.  https://doi.org/10.1016/j.quaint.2007.08.044 CrossRefGoogle Scholar
  32. Fontana A, Mozzi P, Marchetti M (2014) Alluvial fans and megafans along the southern side of the Alps. Sediment Geol 301:150–171.  https://doi.org/10.1016/j.sedgeo.2013.09.003 CrossRefGoogle Scholar
  33. Gobeyn S, Van Wesemael A, Neal J, Lievens H, Eerdenbrugh KV, De Vleeschouwer N, Vernieuwe H, Schumann GJP, Di BG, Baets BD, Bates PD, Verhoest NEC (2017) Impact of the timing of a SAR image acquisition on the calibration of a flood inundation model. Adv Water Resour 100:126–138.  https://doi.org/10.1016/j.advwatres.2016.12.005 CrossRefGoogle Scholar
  34. Hayashi M (2004) Temperature–electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ Monit Assess 96:119–128CrossRefGoogle Scholar
  35. Hayley K, Bentley LR, Gharibi M, Nightingale M (2007) Low temperature dependence of electrical resistivity: implications for near surface geophysical monitoring. Geophys Res Lett 34:L18402.  https://doi.org/10.1029/2007GL031124 CrossRefGoogle Scholar
  36. Hayley K, Bentley LR, Pidlisecky A (2010) Compensating for temperature variations in time-lapse electrical resistivity difference imaging. Geophysics 75:WA51–WA59.  https://doi.org/10.1190/1.3478208 CrossRefGoogle Scholar
  37. Healey P (1986) Instrumentation principles for optical time domain reflectometry. J Phys E 19(5):334–341CrossRefGoogle Scholar
  38. Hermans T, Vandenbohede A, Lebbe L, Nguyen F (2012) A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. Geophysics 77:B11–B21.  https://doi.org/10.1190/geo2011-0199.1 CrossRefGoogle Scholar
  39. Hermans T, Nguyen F, Robert T, Revil A (2014) Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies 7:5083–5118.  https://doi.org/10.3390/en7085083 CrossRefGoogle Scholar
  40. Hermans T, Wildemeersch S, Jamin P, Orban P, Brouyère S, Dassargues A, Nguyen F (2015) Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT. Geothermics 53:14–26.  https://doi.org/10.1016/j.geothermics.2014.03.013 CrossRefGoogle Scholar
  41. Hermans T, Kemna A, Nguyen F (2016) Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data. Geophysics 81:E311–E322.  https://doi.org/10.1190/geo2015-0491.1 CrossRefGoogle Scholar
  42. Irvine DJ, Simmons CT, Werner AD, Graf T (2015) Heat and solute tracers: how do they compare in heterogeneous aquifers? Groundwater 53:10–20.  https://doi.org/10.1111/gwat.12146 CrossRefGoogle Scholar
  43. Kelly (Letcher) RA, Jakeman AJ, Barreteau O, Borsuk ME, ElSawah S, Hamilton SH, Henriksen HJ, Kuikka S, Maier HR, Rizzoli AE, van Delden H, Voinov AA (2013) Selecting among five common modelling approaches for integrated environmental assessment and management. Environ Model Softw 47:159–181.  https://doi.org/10.1016/j.envsoft.2013.05.005 CrossRefGoogle Scholar
  44. Kløve B, Ala-aho P, Bertrand G, Bertrand G, Boukalova Z, Ertürk A, Goldscheider N, Ilmonen J, Karakaya N, Kupfersberger H, Kvœrner J, Lundberg A, Mileusnić M, Moszczynska A, Muotka T, Preda E, Rossi P, Siergieiev D, Šimek J, Wachniew P, Angheluta V, Widerlund A (2011) Groundwater dependent ecosystems, part I: hydroecological status and trends. Environ Sci Policy 14:770–781.  https://doi.org/10.1016/j.envsci.2011.04.002 CrossRefGoogle Scholar
  45. Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, Peckham S, Reaney S, Gaber N, Kennedy R, Hughes A (2013) Integrated environmental modeling: a vision and roadmap for the future. Environ Model Softw 39:3–23.  https://doi.org/10.1016/j.envsoft.2012.09.006 CrossRefGoogle Scholar
  46. Lienhard JHI, Lienhard JHV (2011) A heat transfer textbook, 4th, edn. Dover, Mineola, NYGoogle Scholar
  47. Liu G, Knobbe S, Butler JJ (2013) Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls. Geophys Res Lett 40(6):1098–1103.  https://doi.org/10.1002/grl.50282
  48. Low JE, Loveridge FA, Powrie W (2013) Measuring soil thermal properties for use in energy foundation design. 18th International Conference for Soil Mechanics and Geotechnical Engineering, Paris, September 2013, pp 3375–3378Google Scholar
  49. Márton E, Zampieri D, Kázmér M, Dunkl I, Frisch W (2011) New Paleocene–Eocene paleomagnetic results from the foreland of the Southern Alps confirm decoupling of stable Adria from the African plate. Tectonophysics 504:89–99.  https://doi.org/10.1016/j.tecto.2011.03.006 CrossRefGoogle Scholar
  50. Misstear B, Banks D, Clark L (2006) Water wells and boreholes. Wiley. http://onlinelibrary.wiley.com/book/10.1002/0470031344. Accessed November 2017
  51. Monego M, Cassiani G, Deiana R, Putti M, PAssadore G, Altissimo L (2010) A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography. Geophysics 75:WA61–WA73.  https://doi.org/10.1190/1.3474601 CrossRefGoogle Scholar
  52. Palmieri L, Schenato L (2013) Distributed optical fiber sensing based on Rayleigh scattering. Open Opt J 7(1):104–127.  https://doi.org/10.2174/1874328501307010104 CrossRefGoogle Scholar
  53. Passadore G, Monego M, Altissimo L, Sottani A, Putti M, Rinaldo A (2012) Alternative conceptual models and the robustness of groundwater management scenarios in the multi-aquifer system of the Central Veneto Basin, Italy. Hydrogeol J 20(3):419–433.  https://doi.org/10.1007/s10040-011-0818-y CrossRefGoogle Scholar
  54. Rivera JA, Blum P, Bayer P (2015) Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers. Appl Energy 146:421–433.  https://doi.org/10.1016/j.apenergy.2015.02.035 CrossRefGoogle Scholar
  55. Rivera JA, Blum P, Bayer P (2016) A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers. Energy 98:50–63.  https://doi.org/10.1016/j.energy.2015.12.129 CrossRefGoogle Scholar
  56. Rossato S, Monegato G, Mozzi P, Cucato M, Caudioso B, Miola A (2013) Late Quaternary glaciations and connections to the piedmont plain in the prealpine environment: the middle and lower Astico Valley (NE Italy). Quat Int 288:8–24.  https://doi.org/10.1016/j.quaint.2012.03.005 CrossRefGoogle Scholar
  57. Rouleau J, Gosselin L (2016) Inverse heat transfer applied to a hydrogeological and thermal response test for geothermal applications. Int J Therm Sci 109:70–80.  https://doi.org/10.1016/j.ijthermalsci.2016.05.021 CrossRefGoogle Scholar
  58. Schenato L, Aneesh R, Palmieri L, Galtarossa A, Pasuto A (2016) Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring. Opt Laser Technol 82:57–62.  https://doi.org/10.1016/j.optlastec.2016.02.015 CrossRefGoogle Scholar
  59. Schirmer M, Leschik S, Musolff A (2013) Current research in urban hydrogeology: a review. Adv Water Resour 51:280–291.  https://doi.org/10.1016/j.advwatres.2012.06.015 CrossRefGoogle Scholar
  60. Schön JH (2011) Physical properties of rocks: a workbook. Elsevier, AmsterdamGoogle Scholar
  61. Sous D, Petitjean L, Bouchette F, Rey V, Meulè S, Sabatier F, Martins K (2016) Field evidence of swash groundwater circulation in the microtidal Rousty beach, France. Adv Water Resour 97:144–155.  https://doi.org/10.1016/j.advwatres.2016.09.009 CrossRefGoogle Scholar
  62. Teza G, Galgaro A, Destro E, Di Sipio E (2015) Stratigraphy modeling and thermal conductivity computation in areas characterized by Quaternary sediments. Geothermics 57:145–156.  https://doi.org/10.1016/j.geothermics.2015.06.016 CrossRefGoogle Scholar
  63. Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. John Wiley & Sons Inc., ChichesterGoogle Scholar
  64. Tositti L, Cinelli G, Brattich E, Galgaro A, Mostacci D, Mazzoli C, Massironi M, Sassi R (2017) Assessment of lithogenic radioactivity in the Euganean Hills magmatic district (NE Italy). J Environ Radioact 166:259–269.  https://doi.org/10.1016/j.jenvrad.2016.07.011 CrossRefGoogle Scholar
  65. Trefry MG, Muffels C (2007) FEFLOW: a finite-element ground water flow and transport modeling tool. Ground Water 45:525–528.  https://doi.org/10.1111/j.1745-6584.2007.00358.x CrossRefGoogle Scholar
  66. Ukil A, Braendle H, Krippner P (2012) Distributed temperature sensing: review of technology and applications. IEEE Sens J 12:885–892.  https://doi.org/10.1109/JSEN.2011.2162060 CrossRefGoogle Scholar
  67. Vandenbohede A, Hermans T, Nguyen F, Lebbe L (2011) Shallow heat injection and storage experiment: heat transport simulation and sensitivity analysis. J Hydrol 409:262–272.  https://doi.org/10.1016/j.jhydrol.2011.08.024 CrossRefGoogle Scholar
  68. Vasin S, Carle A, Lang U, Kirchholtes HJ (2016) A groundwater management plan for Stuttgart. Sci Total Environ 563–564:704–712.  https://doi.org/10.1016/j.scitotenv.2015.10.078 CrossRefGoogle Scholar
  69. Visser PW, Kooi H, Stuyfzand PJ (2015) The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling. Hydrogeol J 23:507–532.  https://doi.org/10.1007/s10040-014-1224-z CrossRefGoogle Scholar
  70. Weill S, Altissimo M, Cassiani G, Deiana R, Marani M, Putti M (2013) Saturated area dynamics and streamflow generation from coupled surface–subsurface simulations and field observations. Adv Water Resour 59:196–208.  https://doi.org/10.1016/j.advwatres.2013.06.007 CrossRefGoogle Scholar
  71. Wolkersdorfer C, LeBlanc J (2012) Regulations, legislation, and guidelines for artificial surface water and groundwater tracer tests in Canada. Water Qual Res J Can 47(1):42–55.  https://doi.org/10.2166/wqrjc.2012.042 CrossRefGoogle Scholar
  72. Zarrella A, Emmi G, De Carli M (2017a) A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: a case study. Energy Convers Manag 131:135–150.  https://doi.org/10.1016/j.enconman.2016.10.061 CrossRefGoogle Scholar
  73. Zarrella A, Emmi G, Graci S, De Carli M, Cultrera M, Dalla Santa G, Galgaro A, Bertermann MJ, Pockelè L, Mezzasalma G, Righini D, Psyk M, Bernardi A (2017b) Thermal response testing results of different types of borehole heat exchangers: an analysis and comparison of interpretation methods. Energies 10:801–819.  https://doi.org/10.3390/en10060801 CrossRefGoogle Scholar
  74. Zarrella A, Emmi G, Zecchin R, De Carli M (2017c) An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits. Energy Build 134:259–270.  https://doi.org/10.1016/j.enbuild.2016.10.053 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of PaduaPadovaItaly
  2. 2.University of Erlangen –NurembergErlangenGermany
  3. 3.CNR – IGG, Institute of Geosciences and GeoresourcesPadovaItaly

Personalised recommendations