Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 819–835 | Cite as

Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

  • Christian Anibas
  • Abebe Debele Tolche
  • Gert Ghysels
  • Jiri Nossent
  • Uwe Schneidewind
  • Marijke Huysmans
  • Okke Batelaan
Paper

Abstract

Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached −90 mm d−1, while in spring and early summer fluxes were −42 mm d−1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

Keywords

Groundwater/surface-water relations Thermal conditions Inverse modeling Heterogeneity Belgium 

Délimitation des modalités spatio-temporelles d’interactions entre eaux souterraines et eaux de surface le long d’une rivière (rivière Aa, Belgique) à l’aide d’une modélisation thermique en régime transitoire

Résumé

Parmi les avancées des méthodes analytiques et d’analyse numérique pour quantifier les interactions eaux souterraines/eaux de surface, la méthode qui se démarque est celle utilisant la température comme traceur environnemental. Un important jeu de données sur les rivières et profils de températures dans le lit de rivière a été utilisé pour l’examen des variations spatio-temporelles des interactions eaux souterraines / eaux de surface. Les flux échangés ont été calculés à l’aide du code numérique de transport de chaleur STRIVE. Le code a été utilisé en régime transitoire afin de s’affranchir des limites d’une analyse en régime stationnaire, et a permis le calcul de la qualité du modèle. En automne et en hiver les flux moyens d’échange atteignent −90 mm j−1, alors qu’au printemps et début de l’été les flux sont de −42 mm j−1. Les situations de gain prédominent le long de la rivière ; toutefois, dans quelques secteurs, les directions de flux changent avec le temps. Les berges de la rivière ont montré des flux élevés jusqu’à un facteur de 3 par rapport au centre de la rivière. Des flux plus importants sont détectés sur les sections amont. En raison de l’influence des flux échangés le long des berges de la rivière, des variations temporelles plus importantes sont trouvées dans la section aval. Les flux échangés au niveau des berges de la rivière semblent guidés plus particulièrement par des flux d’échange localement variables, alors que le centre de la rivière est dominé par des écoulements d’eaux souterraines profondes et permanents au niveau régional. Ces différences spatio-temporelles des échanges eaux souterraines/eaux de surface montrent l’importance des investigations à long terme des forces pilotant les processus hyporhéiques à différentes échelles.

Delimitación de los patrones espacio-temporales de la interacción agua subterránea/agua superficial a lo largo de un río (Aa River, Bélgica) con un modelado térmico transitorio

Resumen

Entre los avances realizados en los métodos analíticos y de análisis numérico para cuantificar la interacción agua subterránea/agua superficial se destaca una metodología que es el uso del calor como un trazador ambiental. Se ha utilizado un gran conjunto de datos de perfiles de temperatura de ríos y cauces del río Aa en Bélgica para examinar las variaciones espacio-temporales de la interacción agua subterránea/agua superficial. Los intercambios de flujos se calcularon con el código numérico de transporte de calor STRIVE. El código se aplicó en modo transitorio para superar las limitaciones previas del análisis del estado estacionario y permitió el cálculo de la calidad del modelo. En otoño e invierno, los flujos medios de intercambio alcanzaron −90 mm d−1, mientras que en primavera y principios de verano los flujos fueron de −42 mm d−1. Las condiciones predominantemente ganadoras ocurrieron a lo largo del tramo del río; sin embargo, en algunas áreas, la dirección del flujo cambió con el tiempo. Las márgenes del río mostraron flujos elevados hasta un factor de 3 en comparación con el centro del río. Se detectaron flujos más altos en la sección aguas arriba del tramo. Debido a la influencia de los intercambios de flujos a lo largo de las márgenes de los ríos, se encontraron mayores variaciones temporales en la sección aguas abajo. Los intercambios de flujos en las márgenes de los ríos parecían estar más impulsados ​​por los flujos variables del intercambio local, mientras que el centro del río estaba dominado por los flujos regionales de agua subterránea profundas y constantes. Estas diferencias espaciales y temporales en el intercambio agua subterránea/agua superficial muestran la importancia de las investigaciones a largo plazo sobre las forzantes de los procesos hiporreicos en diferentes escalas.

采用瞬时热建模描述沿河段(比利时Aa河)地下水-地表水相互作用时空模式

摘要

在量化地下水-地表水相互作用解析和数值分析方法取得的进展中,一个突出的方法就是使用热量作为环境示踪剂。利用比利时Aa河河流和河床温度剖面大的数据集查明地下水-地表水相互作用的时空变化。在数值热量传送代码STRIVE内计算了交换通量。编码用在瞬时模式中以克服先前稳态分析的局限,能够计算模型质量。在秋季和冬季,平均交换通量达到大约−90 mm d−1,而春季和夏季交换通量为大约−42 mm d−1。沿河段出现主要袭夺条件,然而,在少数区域,水流方向随时间变化而改变。与河中心相比,河岸显示出增高的通量,系数达到3。在河的上游地段检测出较高的通量。由于沿河岸交换通量的影响,在下游地段发现有较大的时间变化。河岸处的交换通量似乎更受到变化的局部交换水流的驱使,而河中央主要受到深的、稳定的区域地下水流控制。这些地下水-地表水交换中的空间和时间上的差别显示了不同尺度长期调查伏流过程驱动力的重要性。

Delineamento de padrões espaço-temporais de interação águas subterrâneas/águas superficiais ao longo de um trecho de rio (Rio Aa, Bélgica) com modelagem termal transiente

Resumo

Entre os avanços feitos em métodos de análises analíticos e numéricos para quantificar a interação águas subterrâneas/águas superficial, uma metodologia que se destaca é o uso do calor como um traçador ambiental. Um grande conjunto de dados de perfis de temperatura do rio e do leito do rio Aa na Bélgica tem sido usado para examinar as variações espaço-temporais da interação entre águas subterrâneas e águas superficiais. Os fluxos de troca foram calculados com o código numérico de transporte de calor STRIVE. O código foi aplicado em modo transiente para superar as limitações anteriores da análise em estado estacionário, e permitiu o cálculo da qualidade do modelo. No outono e no inverno, os fluxos médios de troca atingiram −90 mm d−1, enquanto que na primavera e no início do verão os fluxos foram de −42 mm d−1. Condições predominantes de ganho ocorreram ao longo do trecho do rio, entretanto, em algumas áreas a direção do fluxo mudou com o tempo. As margens do rio apresentaram fluxos até 3 vezes mais elevados em comparação ao centro do rio. Maiores fluxos foram detectados na seção a montante do trecho. Devido a influência dos fluxos de troca ao longo das margens do rio, maiores variações temporais foram encontradas na seção a jusante. Os fluxos de troca nas margens do rio pareciam mais influenciados por fluxos variáveis de troca locais, enquanto o centro do rio era dominado por fluxos regionais profundos e estáveis de águas subterrâneas. Essas diferenças espaciais e temporais na troca de águas subterrâneas/águas superficiais mostram a importância das investigações a longo prazo nas forças que regem os processos hiporréicos em diferentes escalas.

Notes

Acknowledgements

We would like to thank the numerous assistants for their invaluable help in the field and the two anonymous reviewers for their constructive comments to improve this paper.

Funding Information

Financial support from the Research Foundation-Flanders (FWO) for the work on the Aa River as part of the project ‘A fundamental study on exchange processes in river ecosystems’ (G.0306.04) is greatly appreciated.

Supplementary material

10040_2017_1695_MOESM1_ESM.pdf (707 kb)
ESM 1 (PDF 707 kb)

References

  1. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968.  https://doi.org/10.1111/j.1745-6584.2005.00052.x CrossRefGoogle Scholar
  2. Anibas C, Buis K, Getatchew A, Batelaan O, Verhoeven R, Meire P (2008) Determination of groundwater fluxes in the Belgian Aa River by sensing and simulation of streambed temperatures. In: Proc. of Groundwater–Surface Water Interaction: Process Understanding, Conceptualization and Modelling - IUGG2007 IAHS, Perugia, Italy, July 2007, pp 46–53Google Scholar
  3. Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady-state? Using vertical temperature profiles to quantify groundwater−surface water exchange. Hydrol Process 23(15):2165–2177.  https://doi.org/10.1002/Hyp.7289 CrossRefGoogle Scholar
  4. Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397(1–2):93–104CrossRefGoogle Scholar
  5. Anibas C, Verbeiren B, Buis K, Chormanski J, De Doncker L, Okruszko T, Meire P, Batelaan O (2012) A hierarchical approach on groundwater−surface water interaction in wetlands along the upper Biebrza River, Poland. Hydrol Earth Syst Sci 16(7):2329–2346.  https://doi.org/10.5194/hess-16-2329-2012 CrossRefGoogle Scholar
  6. Anibas C, Schneidewind U, Vandersteen G, Joris I, Seuntjens P, Batelaan O (2016) From streambed temperature measurements to spatial-temporal flux quantification: using the LPML method to study groundwater−surface water interaction. Hydrol Process 30(2):203–216.  https://doi.org/10.1002/hyp.10588 CrossRefGoogle Scholar
  7. Arriaga MA, Leap DI (2004) Using solver to determine vertical groundwater velocities by temperature variations, Purdue University, Indiana, USA. Hydrogeol J 14(1–2):253–263.  https://doi.org/10.1007/s10040-004-0381-x Google Scholar
  8. Bencala KE, McKnight DM, Zellweger GW (1990) Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage. Water Resour Res 26(5):989–1000.  https://doi.org/10.1029/WR026i005p00989 CrossRefGoogle Scholar
  9. Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A (2014) Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev Geophys 52(4):2012RG000417.  https://doi.org/10.1002/2012rg000417 CrossRefGoogle Scholar
  10. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81.  https://doi.org/10.1146/annurev.ecolsys.29.1.59 CrossRefGoogle Scholar
  11. Bredehoeft JD, Papadopulos IS (1965) Rates of vertical ground-water movement estimated from the Earth’s thermal profile. Water Resour Res 1(2):325–328CrossRefGoogle Scholar
  12. Buis K, Anibas C, Bal K, Banasiak R, De Doncker L, DeSmet N, Gerard M, van Belleghem S, Batelaan O, Troch P, Verhoeven R, Meire P (2007) Fundamentele studie van uitwisselingsprocessen in rivierecosystemen: geintegreerde modelontwikkeling [Fundamental study of exchange processes in river ecosystems: integrated model development]. Water 32:51–54Google Scholar
  13. Caissie D, Kurylyk BL, St-Hilaire A, El-Jabi N, MacQuarrie KTB (2014) Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. J Hydrol 519:1441–1452.  https://doi.org/10.1016/j.jhydrol.2014.09.034 CrossRefGoogle Scholar
  14. Cardenas MB (2015) Hyporheic zone hydrologic science: a historical account of its emergence and a prospectus. Water Resour Res 51(5):3601–3616.  https://doi.org/10.1002/2015wr017028 CrossRefGoogle Scholar
  15. Conant B Jr, Cherry JA, Gillham RW (2004) A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. J Contam Hydrol 73(1–4):249–279.  https://doi.org/10.1016/j.jconhyd.2004.04.001 CrossRefGoogle Scholar
  16. Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44. doi  https://doi.org/10.1029/2008wr006996
  17. Dams J, Nossent J, Senbeta TB, Willems P, Batelaan O (2015) Multi-modal approach to assess the impact of climate change on runoff. J Hydrol 529(3):1601–1616.  https://doi.org/10.1016/j.jhydrol.2015.08.023 CrossRefGoogle Scholar
  18. de Marsily G, Delay F, Goncalves J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13(1):161–183CrossRefGoogle Scholar
  19. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  20. DOV (2017) Databank Ondergrond Vlaanderen [Subsurface database Flanders]. https://dov.vlaanderen.be/dovweb/html/index.html. Accessed March 2017
  21. Elliott AH, Brooks NH (1997) Transfer of nonsorbing solutes to a streambed with bed forms: theory. Water Resour Res 33(1):123–136.  https://doi.org/10.1029/96wr02784 CrossRefGoogle Scholar
  22. Engelhardt I, Piepenbrink M, Trauth N, Stadler S, Kludt C, Schulz M, Schuth C, Ternes TA (2011) Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone. J Hydrol 400(1–2):255–266.  https://doi.org/10.1016/j.jhydrol.2011.01.033 CrossRefGoogle Scholar
  23. Ferguson G, Bense V (2011) Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream. Ground Water 49(3):336–347.  https://doi.org/10.1111/j.1745-6584.2010.00735.x CrossRefGoogle Scholar
  24. Gonzalez-Pinzon R, Ward AS, Hatch CE, Wlostowski AN, Singha K, Gooseff MN, Haggerty R, Harvey JW, Cirpka OA, Brock JT (2015) A field comparison of multiple techniques to quantify groundwater–surface-water interactions. Freshw Sci 34(1):139–160.  https://doi.org/10.1086/679738 CrossRefGoogle Scholar
  25. Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(1):98–111.  https://doi.org/10.1007/s10040-004-0421-6 CrossRefGoogle Scholar
  26. Hannah DM, Malcolm IA, Soulsby C, Youngson AF (2004) Heat exchanges and temperatures within a salmon spawning stream in the cairngorms, Scotland: seasonal and sub-seasonal dynamics. River Res Appl 20(6):635–652.  https://doi.org/10.1002/rra.771 CrossRefGoogle Scholar
  27. Harvey JW, Newlin JT, Krupa SL (2006) Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA. J Hydrol 320(3–4):400–420.  https://doi.org/10.1016/j.jhydrol.2005.07.024 CrossRefGoogle Scholar
  28. Irvine DJ, Briggs MA, Lautz LK, Gordon RP, McKenzie JM, Cartwright I (2016) Using diurnal temperature signals to infer vertical groundwater−surface water exchange. Ground Water.  https://doi.org/10.1111/gwat.12459
  29. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10(6):873–887CrossRefGoogle Scholar
  30. Krause S, Hannah DM, Blume T (2011) Interstitial pore-water temperature dynamics across a pool-riffle-pool sequence. Ecohydrology 4(4):549–563.  https://doi.org/10.1002/Eco.199 CrossRefGoogle Scholar
  31. Lapham WW (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water Suppl Pap 2337Google Scholar
  32. Lautz LK (2010) Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour Res 46.  https://doi.org/10.1029/2009wr007917
  33. Lautz LK, Ribaudo RE (2012) Scaling up point-in-space heat tracing of seepage flux using bed temperatures as a quantitative proxy. Hydrogeol J 20(7):1223–1238.  https://doi.org/10.1007/s10040-012-0870-2 CrossRefGoogle Scholar
  34. Lewandowski J, Nützmann G (2010) Nutrient retention and release in a floodplain’s aquifer and in the hyporheic zone of a lowland river. Ecol Eng 36(9):1156–1166.  https://doi.org/10.1016/j.ecoleng.2010.01.005 CrossRefGoogle Scholar
  35. Luce CH, Tonina D, Gariglio F, Applebee R (2013) Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series. Water Resour Res 49(1):488–506.  https://doi.org/10.1029/2012wr012380 CrossRefGoogle Scholar
  36. Orghidan T (1959) Ein neuer lebensraum des unterirdischen Wassers, der hyporheische biotop [A new habitat of underground water, the hyporheic biotope]. Arch Hydrobiol 55:392–414Google Scholar
  37. Poole GC, O’Daniel SJ, Jones KL, Woessner WW, Bernhardt ES, Helton AM, Stanford JA, Boer BR, Beechie TJ (2008) Hydrologic spiraling: the role of multiple interactive flow paths in stream ecosystems. River Res Appl 24(7):1018–1031.  https://doi.org/10.1002/Rra.1099 CrossRefGoogle Scholar
  38. Rau GC, Andersen MS, McCallum AM, Acworth RI (2010) Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol J 18(5):1093–1110.  https://doi.org/10.1007/s10040-010-0586-0 CrossRefGoogle Scholar
  39. Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI (2014) Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci Rev 129:40–58.  https://doi.org/10.1016/j.earscirev.2013.10.015 CrossRefGoogle Scholar
  40. Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge, UKGoogle Scholar
  41. Schmidt C, Conant B, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347(3–4):292–307.  https://doi.org/10.1016/j.jhydrol.2007.08.022 CrossRefGoogle Scholar
  42. Schmidt C, Buttner O, Musolff A, Fleckenstein JH (2014) A method for automated, daily, temperature-based vertical streambed water-fluxes. Fundam Appl Limnol 184(3):173–181.  https://doi.org/10.1127/1863-9135/2014/0548 CrossRefGoogle Scholar
  43. Schneidewind U, van Berkel M, Anibas C, Vandersteen G, Schmidt C, Joris I, Seuntjens P, Batelaan O, Zwart HJ (2016) LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer. Water Resour Res 52(8):6596–6610.  https://doi.org/10.1002/2015wr017453 CrossRefGoogle Scholar
  44. Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures: implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319.  https://doi.org/10.1016/j.advwatres.2010.04.007 CrossRefGoogle Scholar
  45. Silliman SE, Booth DF (1993) Analysis of time-series measurements of sediment temperature for identification of gaining vs losing portions of Juday-Creek, Indiana. J Hydrol 146(1–4):131–148.  https://doi.org/10.1016/0022-1694(93)90273-c CrossRefGoogle Scholar
  46. Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J Hydrol 167(1–4):99–119.  https://doi.org/10.1016/0022-1694(94)02613-g CrossRefGoogle Scholar
  47. Soetaert K, deClippele V, Herman P (2002) FEMME, a flexible environment for mathematically modelling the environment. Ecol Model 151(2–3):177–193.  https://doi.org/10.1016/S0304-3800(01)00469-0 CrossRefGoogle Scholar
  48. Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827CrossRefGoogle Scholar
  49. Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nature 335(6185):64–66.  https://doi.org/10.1038/335064a0 CrossRefGoogle Scholar
  50. Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport groundwater simulations group. University of Waterloo, Waterloo, ON, 483 ppGoogle Scholar
  51. Vandersteen G, Schneidewind U, Anibas C, Schmidt C, Seuntjens P, Batelaan O (2015) Determining groundwater−surface water exchange from temperature-time series: combining a local polynomial method with a maximum likelihood estimator. Water Resour Res 51(2):922–939.  https://doi.org/10.1002/2014wr015994 CrossRefGoogle Scholar
  52. Voytek EB, Drenkelfuss A, Day-Lewis FD, Healy R, Lane JW Jr, Werkema D (2014) 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange. Ground Water 52(2):298–302.  https://doi.org/10.1111/gwat.12051 CrossRefGoogle Scholar
  53. Wang L, Jiang W, Song J, Dou X, Guo H, Xu S, Zhang G, Wen M, Long Y, Li Q (2017) Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data. Hydrogeol J.  https://doi.org/10.1007/s10040-017-1539-7
  54. Waterinfo (2011) https://www.waterinfo.be. Accessed August 2011
  55. Wörman A, Riml J, Schmadel N, Neilson BT, Bottacin-Busolin A, Heavilin JE (2012) Spectral scaling of heat fluxes in streambed sediments. Geophys Res Lett 39.  https://doi.org/10.1029/2012gl053922
  56. Zheng L, Cardenas MB, Wang L (2016) Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. J Geophys Res Biogeosci 121(4):1086–1103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Christian Anibas
    • 1
  • Abebe Debele Tolche
    • 1
    • 2
  • Gert Ghysels
    • 1
  • Jiri Nossent
    • 1
    • 3
  • Uwe Schneidewind
    • 4
  • Marijke Huysmans
    • 1
  • Okke Batelaan
    • 5
  1. 1.Department of Hydrology and Hydraulic EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Institute of TechnologyHaramaya UniversityDire DawaEthiopia
  3. 3.Flanders Hydraulics Research, Department of Mobility and Public WorksFlemish GovernmentAntwerpBelgium
  4. 4.Department of Engineering Geology and HydrogeologyRWTH Aachen UniversityAachenGermany
  5. 5.College of Science and EngineeringFlinders UniversityAdelaideAustralia

Personalised recommendations