Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 721–732 | Cite as

Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA)

  • Benjamin W. TobinEmail author
  • Abraham E. Springer
  • David K. Kreamer
  • Edward Schenk
Paper

Abstract

An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The ~750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.

Keywords

Karst Hydrochemistry Groundwater monitoring Springs USA 

Revue: Distribution, flux et qualité des sources du Grand Canyon, Arizona (Etats-Unis d’Amérique)

Résumé

Une compréhension de l’hydrogéologie du Parc National du Grand Canyon (GRCA) dans le nord de l’Arizona, Etats-Unis d’Amérique, est. nécessaire pour la future protection de la ressource. Les quelques 750 sources du GRCA apportent des flux aussi bien pérennes que saisonniers à de nombreux cours d’eau du désert, de l’eau de boisson à la faune sauvage et aux visiteurs dans un environnement aride sans cela, et un habitat pour des espèces rares, endémiques et menacées. Le comportement des sources et modalités de flux représentent les schémas locaux et régionaux de la recharge des aquifères, reflètent la structure géologique et stratigraphique, et sont des indicateurs de la santé globale du biote du canyon. Ces sources, toutefois, sont sujettes à diverses pressions exercées par le développement de l’approvisionnement en eau, par les modifications de la recharge du fait des feux de forêts et d’autres activités de gestion du territoire, et à des contaminations potentielles. La source Roaring est. l’unique approvisionnement en eau pour les résidents et les visiteurs (>6 millions/an), et toutes les sources soutiennent les habitats riverains caractérisés par une très grande diversité d’espèces. La plupart du flux des sources provient de l’aquifère karstique de Redwall-Muay et montre une variabilité saisonnière de flux et de qualité des eaux indiquant des porosités d’aquifère variables, y compris les écoulements en conduits. Elles ont une chimie de type Ca/Mg-HCO3 dominant et des éléments traces en accord avec celle des puits profonds forés dans l’aquifère de Redwall-Muav. Les techniques de traçage et de datation des eaux indiquent une large gamme de temps de résidence pour de nombreuses sources, confirmant ainsi le concept de porosité multiple. Un aquifère perché produit des petites sources au niveau des contacts entre les grès et les schistes, caractérisées par des temps de résidence variable des eaux souterraines. Les données d’isotopes stables suggèrent à la fois une différence d’altitude et de saison de la recharge entre les sources du Nord et du Sud de Rim. Cette revue met en évidence la nature complexe du système aquifère.

Revisión: La distribución, el flujo y la calidad de manantiales de Grand Canyon, Arizona (EE.UU.)

Resumen

Una comprensión de la hidrogeología del Parque Nacional del Gran Cañón (GRCA) en el norte de Arizona, EE.UU., es fundamental para la futura protección de los recursos. Los ~750 manantiales en GRCA proporcionan el flujo estacional y perenne a las numerosas corrientes del desierto, agua de bebida para la fauna y los visitantes en un ambiente de otra manera árido, y el hábitat para las especies raras, endémicas y amenazadas. Los patrones de comportamiento y flujo del manantial representan patrones locales y regionales en la recarga del acuífero, reflejan la estructura geológica y la estratigrafía, y son indicadores de la salud biótica general del cañón. Estos manantiales, sin embargo, están sujetos a presiones del desarrollo del suministro de agua, cambios en la recarga a partir de los incendios forestales y otras actividades de manejo de la tierra, y la potencial contaminación. Roaring Springs es el único abastecimiento de agua para residentes y visitantes (> 6 millones/año), y todos los manantiales apoyan hábitats ribereños valiosos con una diversidad muy alta de especies. La mayoría de los manantiales fluyen por el acuífero kárstico de Redwall-Muav y muestran patrones estacionales en el flujo y la química del agua indicativa de porosidades variables del acuífero, incluyendo el flujo de conducto. La química dominante es Ca/Mg-HCO3 y elementos trazas congruentes con los pozos profundos cercanos perforados en el acuífero Redwall-Muav. Las técnicas de trazabilidad y la datación de la edad del agua indican un amplio rango de tiempos de residencia para muchos manantiales, apoyando el concepto de porosidades múltiples. Un acuífero colgado produce pequeños manantiales que descargan en los contactos entre unidades de arenisca y pizarra, con tiempos variables de residencia en el agua subterránea. Los datos de isótopos estables sugieren una diferencia de elevación y estacional en la recarga entre los manantiales del borde Norte y Sur. Esta revisión destaca la naturaleza compleja del sistema de agua subterránea.

论述:(美国)亚利桑那州大峡谷泉的分布、流量及水质

摘要

了解美国亚利桑那州北部大峡谷国家公园的水文地质状况对于未来的资源保护至关重要。大峡谷国家公园内的大约750个泉常年及季节性地流向众多的沙漠河流、为原本干旱环境中的野生动物和造访者提供饮用水、为稀有、地方性和受到威胁的五种提供栖息地。泉的特性和水流模式在含水层补给中代表局部和区域模式,反映着地质构造和地层状况,是大峡谷所有生物健康的指示。然而,这些泉遭受着供水开发、由于森立火灾导致的补给变化、其它土地管理活动导致的补给变化以及潜在污染等等方面的压力。吼泉群是居民和造访者( > 6百万/年)唯一的供水水源,所有的泉支撑宝贵的、具有高度种群多样性的河边栖息地。大多数分泉从Redwall-Muav岩溶含水层流出,在水流和水化学上显示出季节特征,表明多变的含水层多孔性,包括管道水流。这些水主要的化学类型为Ca/Mg-HCO3,化学类型和示踪元素与附近的位于Redwall-Muav含水层的深井的化学类型和失踪元素一致。示踪技术和水年龄测年表明,许多泉的滞留时间范围很宽,这种现象支持多重多孔性的概念。上层滞水含水层产生很小的泉,从砂岩和页岩之间的接触带流出,地下水的滞留时间各异。稳定同位素数据表明,北缘和南缘的泉在补给上存在着海拔和季节性差异。本篇论述着重强调了地下水系统的复杂性质。

Revisão: A distribuição, escoamento, e qualidade das Nascentes do Grand Canyon, Arizona (EUA)

Resumo

O entendimento da hidrogeologia do Parque Nacional do Grand Canyon (PNGC) no norte do Arizona, EUA, é crítico para a proteção futura de recursos. As ~750 nascentes no PNGC fornecem tanto o escoamento perene quanto sazonal para numerosos cursos d’água do deserto, água para consumo da vida selvagem e para visitantes em um ambiente que, de outra forma, seria árido, e habitat para espécies raras, endêmicas e ameaçadas. O comportamento das nascentes e padrões de escoamento representam os padrões locais e regionais na recarga subterrânea, refletem a estrutura geológica e estratigráfica, e são indicadores da saúde biótica do canyon em geral. Essas nascentes, no entanto, estão sujeitas à pressões geradas em razão da demanda de água necessárias ao desenvolvimento, mudanças na recarga devido aos incêndios nas florestas e outras atividades de gestão da terra, e contaminação potencial. “Roaring Springs” é o único abastecimento de água para residentes e visitantes (> 6 milhões/ano), e todas as nascentes dão suporte para habitats ripários valiosos com uma diversidade de espécies bastante elevada. A maioria das nascentes fluem do aquífero cárstico Redwall-Muav e apresentam padrões sazonais no escoamento e química da água indicando porosidades variáveis do aquífero, inclusive escoamento preferencial por condutos. Quimicamente, essas nascentes são dominadas por Ca/Mg-HCO3 e elementos traço consistentes com poços profundos da redondeza perfurados no aquífero Redwall-Muav. Técnicas com traçadores e datação da idade da água indicam ampla variedade de tempos de residência para muitas nascentes, embasando o conceito de múltiplas porosidades. Um aquitardo produz pequenas nascentes que fluem dos contatos entre unidades de arenito e xisto, com variáveis tempos de residência da água subterrânea. Dados de isótopos estáveis sugerem tanto uma elevação quanto uma diferença sazonal na recarga entre as nascentes da borda/margem norte e sul. Essa revisão destaca a natureza complexa do sistema da água subterrânea.

Notes

Acknowledgements

This manuscript relied on the work of many researchers over many years. Their contributions to the science of the Grand Canyon is gratefully acknowledged. The authors would like to particularly note thanks to Donald Bills, Peter Huntoon, Larry Stevens, Jeri Ledbetter, Stephen Monroe, Laura Crossey, former Grand Canyon staff (Cynthia Valle, Steve Rice, and John Rihs) and numerous students (Casey Korby, Andres Guerrero, Marcio Pinto, Casey Jones, and Nathan Noble).

Supplementary material

10040_2017_1688_MOESM1_ESM.pdf (255 kb)
ESM 1 (PDF 254 kb)

References

  1. Adams EA, Monroe SA, Springer AE, Blasch KW, Bills DJ (2006) Flow timing of south Rim Springs of Grand Canyon Arizona using electrical resistance sensors. Ground Water 44:630–641.  https://doi.org/10.1111/j.1745-6584.2006.00223.x Google Scholar
  2. Alpine AE (ed) (2010) Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in northern Arizona. US Geol Surv Sci Invest Rep 2010-5025, 353 pp, 1 plate, scale 1:375,000Google Scholar
  3. Beisner KR, Tillman FD, Anderson JR, Antweiler RC, Bills DJ (2017) Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016. US Geol Surv Sci Invest Rep 2017-5068Google Scholar
  4. Billingsley GH (2000) Geologic map of the Grand Canyon 30′ by 60′ Quadrangle, Coconino and Mohave Counties, Northwestern Arizona. US Geol Surv Geologic Invest Ser I-2688. Available online at: http://pubs.usgs.gov/imap/i-2688/. 15 May 2017
  5. Bills DJ, Flyn ME Monroe SA (2007) Hydrogeology of the Coconino Plateau and adjacent areas, Coconino and Yavapai counties, Arizona. US Geol Surv Sci Invest Rep 2005-5222, 101 p., 4 platesGoogle Scholar
  6. Brown C (2011) Physical, geochemical, and isotopic analyses of Redwall-Aquifer springs, North Rim, Grand Canyon, Arizona. MSc Thesis, Northern Arizona University, Flagstaff, AZ, 135 ppGoogle Scholar
  7. Brown BT, Moran MS (1979) An inventory of surface water resources in Grand Canyon National Park, Arizona. Final Report, October 1979, Part I of the 208 Water Quality Project, Division of Resource Management, Grand Canyon National Park, Grand Canyon, AZ, 60 ppGoogle Scholar
  8. Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys Res Lett 41. doi:  https://doi.org/10.1002/2014GL061055
  9. Crossey LJ, Fischer TB, Patchett PJ, Karlstrom KE, Hilton DR, Newell DL, Huntoon P, Reynolds AC (2006) Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34:25–28Google Scholar
  10. Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton DR, Fischer T (2009) Degassing of mantle-derived CO2 and He from springs in the southern Colorado plateau region: neotectonic connections and implications for groundwater systems. GSA Bull.  https://doi.org/10.1130/B26394.1
  11. Dutton CE (1882) The tertiary history of the Grand Canyon district with atlas. US Geol Surv Monograph 2, 264 pp, Atlas, 23 sheetsGoogle Scholar
  12. Fitzgerald J (1996) Subsurface residence time and geochemical evolution of spring waters issuing from the South Rim Aquifer in the Eastern Grand Canyon, Arizona. MSc Thesis, University of Nevada, Las Vegas, 103 ppGoogle Scholar
  13. Foust RD, Hoppe S (1985) Seasonal trends in the chemical composition of Grand Canyon Waters. Flagstaff, AZ. Report prepared for US National Park Service, Ralph M. Bilby Research Ctr., University of Northern Arizona, Flagstaff, AZ, pp 30–35Google Scholar
  14. Grand Canyon Wildlands Council (2004) Biological inventory and assessment of ten South Rim springs in Grand Canyon National Park. Revised final report, 21 July 2004. Report submitted to Grand Canyon National Park. Grand Canyon Wildlands Council, Grand Canyon, AZGoogle Scholar
  15. Grand Canyon National Park (2015) Back country management plan draft environmental impact statement. Grand Canyon NP. National Park Service, Grand Canyon, AZGoogle Scholar
  16. Goings DB (1985) Spring flow in a portion of Grand Canyon National Park, Arizona. MSc Thesis, University of Nevada, Las Vegas, and published by Cooperative National Park Resources Unit, UNLV, Contribution no. CPSU/UNLV 033/01, University of Arizona, Tuscon, AZ, 58 ppGoogle Scholar
  17. Hill CA, Eberz N, Buecher RH (2008) A karst connection model for Grand Canyon, Arizona, USA. Geomorphology 95:316–334Google Scholar
  18. Hill CA, Polyak VJ (2010) Karst hydrology of Grand Canyon, Arizona, USA. J Hydrol 390:169–181Google Scholar
  19. Huntoon PW (1974) The post-Paleozoic structural geology of the Eastern Grand Canyon, Arizona. In: Breed WJ, Roast EC (eds) Geology of the Grand Canyon. Museum of Northern Arizona and Grand Canyon Natural History Association, Flagstaff, AZ, pp 82–115Google Scholar
  20. Huntoon PW (1982) The ground water systems that drain to the Grand Canyon of Arizona. Department of Geology and Water Resources Institute, University of Wyoming, Laramie, WY, pp 1–25Google Scholar
  21. Huntoon PW (2000) Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region Arizona. Environ Eng Sci 6(2):155–170Google Scholar
  22. Ingraham N, Zukosky KA, Kreamer DK (2001) The application of stable isotopes to identify problems in large-scale water transfer in Grand Canyon National Park. Environ Sci Tech 35(7):1299–1302Google Scholar
  23. Jones CJR, Springer AE, Tobin BW, Zappitello SJ, Jones NA (2017) Hydraulic response of the shallow and deep Karst Systems of the Kaibab Plateau and Grand Canyon National Park as revealed by dye tracing and recession analysis. In: Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) Advances in karst research: theory, fieldworrk and application. Geol Soc Lond Spec Publ 466Google Scholar
  24. Klimchouk A (2004) Towards defining, delimiting and classifying Epikarst: it’s origin, processes and variants of geomorphic evolution. Speleogenesis Evol Karst Aquifers 2(1):1–13Google Scholar
  25. Kobor J (2004) Simulating water availability in a spring-fed aquifer with surface water/groundwater flow models, Grand Canyon, Arizona. MSc Thesis, Northern Arizona University, Flagstaff, AZ, 125 ppGoogle Scholar
  26. Kreamer DK, Stevens LE, Ledbetter JD (2015) Groundwater dependent ecosystems: policy challenges and technical solutions. In: Adelana SE (ed) Groundwater: hydrochemistry, environmental impacts, and management practices, Nova, Hauppauge, NY, pp 205–230Google Scholar
  27. Liebe D (2003) The use of the 234U/238U activity ratio for the characterization of springs and surface streams in Grand Canyon National Park, Arizona. MSC Thesis Hochschule Fur Technik Und Wirtschaft, Dresden, GermanyGoogle Scholar
  28. Macy JP, Monroe SA (2006) Water-quality data for selected national park units within the Southern Colorado Plateau Network, Arizona, Utah, Colorado, and New Mexico, water years 2005 and 2006. US Geol Surv Sci Invest Rep 2006-1300Google Scholar
  29. McKee ED (1933) The Coconino sandstone: its history and origin. CIW Publ 440, Carnegie Institution of Washington, Washington, DC, pp 77–115Google Scholar
  30. McKee ED (1938) The environment and history of the Toroweap and Kaibab formations of northern Arizona and southern Utah. CIW Publ 492, Carnegie Institution of Washington, Washington, DC, 268 ppGoogle Scholar
  31. McKee ED, Resser CE (1945) Cambrian history of the Grand Canyon region. CIW Publ 563, Carnegie Institution of Washington, Washington, DC, 232 ppGoogle Scholar
  32. McQuarrie N, Chase CG (2000) Raising the Colorado plateau. Geology 28(1):91–94CrossRefGoogle Scholar
  33. Metzger DG (1961) Geology in relation to water availability along the South Rim Grand Canyon National Park Arizona. US Geol Surv Water Suppl Pap 1475-c, pp 105–135Google Scholar
  34. Milanovic PT (1981) Karst hydrogeology, Water Resour Publ., Lansing, MI, pp 209–220Google Scholar
  35. Monroe SA, Antweiler RC, Hart RJ, Taylor HE, Truini M, Rihs JR, Felger TJ (2005) Chemical characteristics of ground-water discharge at selected springs, South Rim Grand Canyon, Arizona. US Geol Surv Sci Invest Rep 04-5146, 59 pp, 1 plateGoogle Scholar
  36. National Park Service (2017) Grand Canyon climate overview. www.nps.gov/grca/planyourvisit/weather-condition.htm. Accessed 27 June 2017
  37. Palmer AN (1999) Patterns of dissolution porosity in carbonate rock. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst Modeling. Karst Waters Institute, Charlestown, VA, pp 71–78Google Scholar
  38. Parkhurst DL, Thorstenson DC, Plummer LN (1993) PHREEQE: a geochemical reaction model based on an ion pairing aqueous model. Institute for Ground-Water Research and Education, Colorado School of Mines, Golden, CA, pp 533–546Google Scholar
  39. Polyak VJ, Hill CA, Asmerom J (2008) Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science 319:1377–1380Google Scholar
  40. Pool DR, Blasch KW, Callegary JB, Leake SA, Graser LF (2010) Regional groundwater-flow model of the Redwall-Muav, Coconino and Alluvial Basin Aquifer Systems of Northern and Central Arizona. US Geol Surv Sci Invest Rep 2010-5180Google Scholar
  41. Powell JW (1874) Report on the exploration in 1873 of the Colorado of the West and its tributaries. Smithsonian Institution annual report, Smithsonian, Washington, DC, pp 18–21Google Scholar
  42. Rice S (2008) Monitoring Grand Canyon Springs as an assessment of water resources response to climate change and groundwater withdraw, 1994–2007. National Park Service internal report, National Park Service, Washington, DC, 81 ppGoogle Scholar
  43. Ross LE (2005) Interpretive three-dimensional numerical groundwater flow modeling: Roaring Springs, Grand Canyon. MSc Thesis, Northern Arizona University, Flagstaff, AZ, 120 ppGoogle Scholar
  44. Schindel GM (2015) Determining groundwater residence times of the Kaibab plateau, R-Aquifer using temperature, Grand Canyon National Park, Arizona. MSc Thesis, Northern Arizona University, Flagstaff, AZ, 112 ppGoogle Scholar
  45. Springer AE, Stevens LE (2009) Spheres of discharge of springs. Hydrogeol J 17:83–93CrossRefGoogle Scholar
  46. Springer AE, Schaller EM, Junghans KM (2017) Local vs regional groundwater flow from stable isotopes at western North America springs. Groundwater 55(1):100–109.  https://doi.org/10.1111/gwat1242 CrossRefGoogle Scholar
  47. Stevens LE, Meretsky VJ (eds) 2008 Aridland Springs in North America: ecology and conservation. University of Arizona, Tuscon, AZ, 432 ppGoogle Scholar
  48. USDA (1986) Final environmental impact statement canyon uranium mining proposal, Coconino County, Arizona. US Forest Service, Kaibab National Forest, Williams, AZ, 178 ppGoogle Scholar
  49. USDA 1999 Supplemental assessment of the hydrologic conditions and potential effects of proposed groundwater withdrawal, Coconino Plateau Groundwater Sub Basin, Coconino County, Arizona. In: Appendix of the Final Environmental Impact Statement of Tusayan Growth, Kaibab National Forest, Williams, AZ, 85 ppGoogle Scholar
  50. Wenrich KJ (1985) Mineralization of breccia pipes in northern Arizona. Econ Geol 80:1722–1735CrossRefGoogle Scholar
  51. Wenric KJ, Boundy SQ, Aumente-Modreski RM Schwarz SP, Sutphin HB, Been JM (1994) A hydrogeochemical survey for mineralized breccia pipes: data from springs, wells, and streams on the Hualapai Indian Reservation, northwestern Arizona. US Geol Surv Open-File Rep 93-619, 66 ppGoogle Scholar
  52. Wilso E (2000) Geologic framework and numerical groundwater models of the South Rim of the Grand Canyon, Arizona. MSC Thesis, Northern Arizona University, Flagstaff, AZ, 72 ppGoogle Scholar
  53. Zukosky KA (1995) An assessment of the potential to use water chemistry parameters to define groundwater flow pathways at Grand Canyon National Park, Arizona. MSc Thesis, University of Nevada, Las Vegas, NV, 105 ppGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2017

Authors and Affiliations

  • Benjamin W. Tobin
    • 1
    Email author
  • Abraham E. Springer
    • 2
  • David K. Kreamer
    • 3
  • Edward Schenk
    • 1
  1. 1.Science and Resource Management, Grand Canyon National ParkGrand CanyonUSA
  2. 2.School of Earth Sciences and Environmental SustainabilityNorthern Arizona UniversityFlagstaffUSA
  3. 3.Department of GeoscienceUniversity of NevadaLas VegasUSA

Personalised recommendations