Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 677–688 | Cite as

Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region

  • Tamás Garamhegyi
  • József Kovács
  • Rita Pongrácz
  • Péter Tanos
  • István Gábor Hatvani
Paper
Part of the following topical collections:
  1. Climate-change research by early-career hydrogeologists

Abstract

The distribution and amount of groundwater, a crucial source of Earth’s drinking and irrigation water, is changing due to climate-change effects. Therefore, it is important to understand groundwater behavior in extreme scenarios, e.g. drought. Shallow groundwater (SGW) level fluctuation under natural conditions displays periodic behavior, i.e. seasonal variation. Thus, the study aims to investigate (1) the periodic behavior of the SGW level time series of an agriculturally important and drought-sensitive region in Central-Eastern Europe – the Carpathian Basin, in the north-eastern part of the Great Hungarian Plain, and (2) its relationship to the European atmospheric pressure action centers. Data from 216 SGW wells were studied using wavelet spectrum analysis and wavelet coherence analyses for 1961–2010. Locally, a clear relationship exists between the absence of annual periodic behavior in the SGW level and the periodicity of droughts, as indicated by the self-calibrating Palmer Drought Severity Index and the Aridity Index. During the non-periodic intervals, significant drops in groundwater levels (average 0.5 m) were recorded in 89% of the wells. This result links the meteorological variables to the periodic behavior of SGW, and consequently, drought. On a regional scale, Mediterranean cyclones from the Gulf of Genoa (northwest Italy) were found to be a driving factor in the 8-yr periodic behavior of the SGW wells. The research documents an important link between SGW levels and local/regional climate variables or indices, thereby facilitating the necessary adaptation strategies on national and/or regional scales, as these must take into account the predictions of drought-related climatic conditions.

Keywords

Climate change Groundwater periodicity Hungary PDSI Wavelet analyses 

Untersuchung der klimatisch verursachten Periodizität von oberflächennahen Grundwasserspiegelschwankungen in einer mittelosteuropäischen Agrarregion

Zusammenfassung

Die Verteilung und die Menge des Grundwassers, eine entscheidende Quelle für das Trink- und Bewässerungswasser der Erde, verändert sich durch Klimawandel. Daher ist es wichtig, das Grundwasserverhalten in extremen Szenarien, z.B. während Dürreperioden zu verstehen. Die Schwankungen des oberflächennahen Grundwasserspiegels (FGW) unter natürlichen Bedingungen zeigen periodisches Verhalten (saisonale Variation). Ziele dieser Studie sind (1) das periodische Verhalten der FGW-Spiegel Zeitreihen einer landwirtschaftlich-bedeutenden und dürreempfindlichen Region in Mittelosteuropa, im nordöstlichen Teil der Großen Ungarischen Tiefebene, zu untersuchen und (2) die Beziehung zwischen periodischem Verhalten und europäischen atmosphärischen Druck-Aktionszentren zu verstehen. Daten von 216 FGW-Brunnen wurden mittels Wavelet Spektralanalyse und Wavelet Kohärenzanalysen in dem Zeitraum zwischen 1961 und 2010 untersucht. Mithilfe von dem selbstkalibrierendem Palmer-Dürre-Index und dem Aridätsindex lässt sich lokal eine klare Beziehung zwischen dem Fehlen eines jährlichen periodischen Verhaltens des FGW-Spiegels und der Periodizität der Dürre erkennen. Während der nichtperiodischen Intervalle wurden in 89% der Brunnen signifikante Absenkungen des Grundwasserspiegels (durchschnittlich 0.5 m) beobachtet. Dieses Ergebnis verbindet die meteorologischen Variablen mit dem periodischen Verhalten von FGW und damit der Dürre. Auf regionaler Ebene wurden Mittelmeer-Zyklone aus dem Golf von Genua (Nordwestitalien) als ein treibender Faktor für das 8-jährige periodische Verhalten der FGW-Brunnen gefunden. Diese Studie dokumentiert ein wichtiges Bindeglied zwischen FGW-Ebenen und lokalen / regionalen Klimadaten oder Indexe und ermöglicht dadurch die notwendigen Anpassungsstrategien auf nationaler und / oder regionaler Ebene, da diese Strategien die Vorhersagen von dürrebezogenen klimatischen Bedingungen auch berücksichtigen müssen.

Analyse de la périodicité dictée par le climat des fluctuations les niveaux d’eau souterraine peu profonde dans une région agricole d’Europe centrale et orientale

Résumé

La répartition et la quantité d’eau souterraine, une source d’eau essentielle d’origine terrestre pour l’alimentation en eau potable et l’irrigation, évoluent en raison des effets du changement climatique. Par conséquent, il est. important de comprendre le comportement des eaux souterraines pour des scénarios extrêmes, par exemple la sécheresse. La fluctuation du niveau des eaux souterraines peu profondes (ESPP) pour des conditions naturelles affiche un comportement périodique, c’est.-à-dire une variation saisonnière. Ainsi, l’étude vise à analyzer (1) le comportement périodique de séries chronologiques du niveau d’ESPP d’une région agricole importante et sensible à la sécheresse en Europe centrale et orientale – le bassin des Carpates, dans le nord-est. de la Grande Plaine Hongroise, et (2) sa relation avec les centers européens d’influence en terme de pression atmosphérique. Les données de 216 puits d’ESPP ont été étudiées en utilisant des analyses de specters d’ondelettes et des analyses de cohérence d’ondelettes pour la période 1961 à 2010. Localement, il existe une relation évidente entre l’absence de comportement périodique annuel des niveaux d’ESPP et la périodicité des sécheresses, comme indiqué par l’indice auto-calibré de Palmer pour caractériser la sévérité de la sécheresse et l’indice d’aridité. Au cours des intervalles non périodiques, des chutes importantes dans les niveaux d’eau souterraine (en moyenne 0.5 m) sont enregistrées dans 89% des puits. Ce résultat associe les variables météorologiques au comportement périodique des niveaux des ESPP, et par conséquent à la sécheresse. A l’échelle régionale, les cyclones méditerranéens du golfe de Gênes (Nord-Ouest de l’Italie) ont été considérés comme un facteur moteur dans le comportement périodique de 8 ans sur les puits d’ESPP. La recherche illustre une relation importante entre les niveaux d’ESPP et les variables ou indices du climat local/régional, facilitant ainsi les stratégies d’adaptation nécessaires à l’échelle national et/ou régionale, car elles doivent tenir compte des prévisions des conditions climatiques associées à la sécheresse.

Investigación de la periodicidad de las fluctuaciones del nivel del agua subterránea somera en una región agrícola de Europa Central y Oriental

Resumen

La distribución y cantidad de agua subterránea, una fuente crucial de agua potable y de riego de la Tierra, está cambiando debido a los efectos del cambio climático. Por lo tanto, es importante entender el comportamiento del agua subterránea en escenarios extremos, por ejemplo, en las sequías. La fluctuación del nivel de agua subterránea (SGW) bajo condiciones naturales muestra comportamientos periódicos, es decir, variación estacional. Por lo tanto, el estudio tiene como objetivo investigar (1) el comportamiento periódico de las series temporales de nivel del SGW de una región agrícola importante y sensible a la sequía en la Europa Central y Oriental - la cuenca de los Cárpatos, en el noreste de la Gran Llanura Húngara, y (2) su relación con la acción de los centros europeos de la presión atmosférica. Se estudiaron los datos de niveles del SGW de 216 pozos utilizando un análisis de espectro de onda y un análisis de coherencia de ondas para 1961–2010. Localmente, existe una clara relación entre la ausencia de comportamiento anual periódico en el nivel del SGW y la periodicidad de las sequías, como lo indica la autocalibración del Índice de Severidad de la Sequía de Palmer y del Índice de Aridez. Durante los intervalos no periódicos, se registraron profundizaciones significativas en los niveles de agua subterránea (promedio de 0.5 m) en el 89% de los pozos. Este resultado vincula las variables meteorológicas al comportamiento periódico del nivel del SGW y, en consecuencia, a las sequías. A escala regional, los ciclones mediterráneos del Golfo de Génova (noroeste de Italia) resultaron ser un factor impulsor en el comportamiento periódico de 8 años del nivel del SGW en los pozos. La investigación documenta un vínculo importante entre los niveles del SGW y las variables o índices climáticos locales/regionales, facilitando así las estrategias de adaptación necesarias a escala nacional y/o regional, ya que deben tener en cuenta las predicciones de las condiciones climáticas relacionadas con la sequía.

欧洲中东部农业区浅层地下水水位波动气候驱使的周期性调查

概要

地下水是地球上饮用水和灌溉水的关键水源,由于气候变化影响,地下水的分布和数量处于变化状态。因此,了解地下水在各种状况下的特性如干旱条件下的特性非常重要。自然条件下浅层地下水水位波动显示出周期性特性,例如季节变化。因此,研究的目的在于调查:(1)欧洲中东部--大匈牙利平原东北部的喀尔巴阡盆地农业上非常重要的及干旱敏感地区浅层地下水水位时间序列的周期性特性;(2)及其与欧洲大气压活动中心的关系。采用微波光谱分析法和微波相干性分析法对1961年到2010年间216个浅层地下水井的数据进行了研究。局部上,浅层地下水位每年的周期性特性缺失和干旱周期性之间存在着非常清楚的关系,如自校正帕尔默干旱严重指数和干旱指数表明的那样。在非周期性间隔中,在89%的水井中发现地下水位大幅下降(平均0.5米)。这个结果把气象变量和浅层地下水的周期性特性联系起来,所以,出现了干旱。区域尺度上,发现来自(意大利北部)热那亚湾的地中海旋风是浅层地下水井8年周期性特性的驱使因素。研究记载了浅层地下水水位和局部/区域气候变量或指数之间的重要联系,因此,促进了国家及/或区域尺度上必要的适应策略,因为这些策略必须考虑干旱有关的气候条件的预测结果。

Sekély, felszín alatti vizek vízszintidősorainak klíma által befolyásolt periodicitásvizsgálata egy kelet-közép-európai mezőgazdasági területen

Összefoglalás

A Földön felhasznált ivó- és öntözővíznek kulcsfontosságú forrása a felszín alatti víz, amelynek a mennyisége és eloszlása is megváltozhat a klímaváltozás hatására. Ezért fontos megértenünk, hogyan reagál a felszín alatti víz az extrém időjárási eseményekre, pl. az aszályra. A sekély, felszín alatti víz szintje (SFAV) – természetes körülmények között – évszakos periodicitást mutat. Ezért a kutatás célja az volt, hogy megvizsgáljuk (1) az SFAV idősorainak periodikus viselkedését egy aszályra érzékeny, mezőgazdasági szempontból is fontos területen: Kelet-Közép-Európában, a Kárpát-medencében, az Alföld északkeleti részén, (2) és hogy ezek milyen kapcsolatban állnak az európai időjárást befolyásoló nyomásközpontokkal. A tanulmányban 216 SFAV-megfigyelőkút adatsorát elemeztük waveletspektum-analízis és waveletkoherencia módszerével az 1961–2010 időszakra vonatkozóan. Lokális kapcsolat rajzolódott ki az SFAV éves periodikus viselkedésének eltűnése és az aszály visszatérési periódusai között, amelyet a Palmer-féle aszályerősségi index és az ariditásindex segítségével vizsgáltunk. A megfigyelt periódus hiányos időszakokban szignifikáns vízszintcsökkenést (átlagosan 0,5 m) tapasztaltunk a megfigyelőkutak 89%-ában. Ez az eredmény rávilágít a kapcsolatra az SFAV periodikus viselkedése és a meteorológiai változókesemények - így az aszály - között. Regionális skálán a Genovai-öbölben (Északnyugat-Olaszország körzetében) keletkező mediterrán ciklonok vezérlik az SFAV idősoraiban 8 évente visszatérő periódus kimaradását. A tanulmány kapcsolatot teremt az SFAV és a lokális/regionális klímaparaméterek/indikátorok között, ezáltal megkönnyítik a klímastratégiák szükséges adaptációját országos vagy regionális léptékben, mivel ezek kidolgozásakor figyelembe kell venni az aszályhoz kapcsolható klíma-előrejelzéseket is.

Investigação da periodicidade derivada do clima de flutuações de níveis superficiais de águas subterrâneas na região agrícola Centro-Oriental Europeia

Resumo

A distribuição e quantidade de águas subterrâneas, uma fonte crucial de água potável e para irrigação, está mudando devido aos efeitos da mudança climática. Portanto, é importante entender o comportamento em cenários extremos, p. ex. seca. A flutuação de nível de águas subterrâneas superficiais (ASS) sob condições naturais mostram comportamento periódico, p. ex. variação sazonal. Assim, o estudo pretende investigar (1) o comportamento periódico das series temporais de ASS de uma região importante em termos agrícolas e sensível a seca na região Centro-Oriental da Europa – a Bacia dos Cárpatos, na porção nordeste da Grande Planície Húngara, e (2) a relação com os centros europeus de ação da pressão atmosférica. Dados de 216 poços de ASS foram estudados usando analises de espectro de ondaleta e analise de coerência de ondaleta para 1961–2010. Localmente, existe uma clara relação entre a ausência de comportamento periódico anual no nível de ASS e a periodicidade das secas, como indicado pela autocalibração do Índice de Severidade de Seca de Palmer e o Índice de Aridez. Durante intervalos não periódicos, registaram-se quedas significativas nos níveis das águas subterrâneas (média de 0.5 m) em 89% dos poços. Estes resultados conectam as variáveis meteorológicas ao comportamento periódico das ASS e, consequentemente, à seca. Em uma escala regional, ciclones Mediterrâneos do Golfo de Genova (noroeste da Itália) foram considerados um fator que controla o comportamento periódico de 8 anos dos poços de ASS. A pesquisa documenta uma ligação importante entre os níveis das ASS e as variáveis ou índices climáticos local/regional, facilitando assim a adaptação estratégica necessária na escala nacional e/ou regional, uma vez que estes devem ter em conta as previsões das condições climáticas relacionadas com a seca.

Investigația periodicității determinate climatic a fluctuației nivelului apelor subterane puțin adânci într-o regiune agrară a Europei Central-Estice

Rezumat

Distribuția și cantitatea apei subterane, resursă esențială a apei potabile și de irigație a Pământului, sunt schimbătoare datorită efectelor climatice. De aceea, este important să se înțeleagă comportamentul apei subterane în cazul unor scenarii extreme, cum sunt secetele. Fluctuația nivelului apei subterane puțin adânci (shallow groundwater - SGW) în condiții naturale indică un comportament periodic, așa cum este variația sezonieră. De aceea, studiul își propune să cerceteze (1) comportamentul periodic al seriei de timp al nivelului SGW într-o regiune importantă din punct de vedere agricol și sensibil la secetă a Europei Central-estice – bazinul Carpatic, în partea nord-estică a Câmpiei Ungare, și (2) relația acestui comportament cu acțiunea centrelor de presiune atmosferică. Au fost studiate datele unui număr de 216 puțuri folosind analiza spectrală a undelor (wavelet spectrum analysis) și analiza coerenței de undă (wavelet coherence analyses) în intervalul de timp 1961–2010. S-a constatat că local există o relația clară între absența comportamentului periodic anual al nivelului SGW și periodicitatea secetelor, așa cum arată Indicele de severitate a secetei Palmer (Palmer Drought Severity Index) autocalibrat și Indicele de Ariditate. În timpul intervalelor non-periodice au fost înregistrate căderi semnificative ale nivelului apei subterane (de 0.5 m în medie) în 89% din puțuri. Acest rezultat leagă variabilele meteorologice cu comportamentul periodic al SGW și, în consecință, cu secetele. Pe scară regională cicloanele mediteraneene din Golful Genovei (nord-vestul Italiei) au fost identificate ca reprezentând factorul care guvernează comportamentul periodic de 8 ani al puțurilor SGW studiate. Cercetarea documentează o legătură importantă între puțurile SGW observate și variabilele sau indicatorii climatici locali/regionali, facilitând astfel elaborarea strategiilor de adaptare la scară națională și/sau regională, care vor trebui să țină seama de predicția condițiilor climatice legate de secetă.

Výskum periodicity časovej osi vodnej hladiny plytkých podpovrchových vôd ovplyvnených klímou vo vybranej stredo-východoeurópskej poľnohospodárskej oblasti

Zhrnutie

Kľúčovým zdrojom na Zemi používanej pitnej a zavlažovacej vody je podpovrchová voda, ktorej množstvo aj rozloženie vplyvom zmeny klímy sa môže zmeniť. Preto je dôležité pochopiť, ako reaguje podpovrchová voda na extrémne poveternostné scenérie, napr. na dlhotrvajúce sucho. Plytká podpovrchová voda (PPV) v prirodzených podmienkach vykazuje sezónnu periodicitu. Preto cieľom výskumu bolo, aby sme preskúmali periodicity časovej osi vodnej hladiny PPV v jednej, aj z poľnohospodárskeho hľadiska dôležitej oblasti v stredovýchodnej Európe, v severovýchodnej časti Panónskej panvy citlivej na dlhotrvajúce sucho – a zistili, v akej sú súvislosti s tlakovými útvarmi ovplyvňujúcimi počasie Európy. V príspevku vyhodnocujeme dáta 216 vrtov PPV metódami wavelet spektrálnej analýzy a wavelet koherencie v časovom období 1961–2010. Lokálne sa vytvorila súvislosť medzi zmiznutím ročného periodického chovania PPV a periódami navrátenia sa dlhotrvajúceho sucha, ktoré sme skúmali Palmerovým indexom intenzity sucha a indexom aridity. V pozorovanom časovom období ročného periodického deficitu sme pozorovali signifikantný pokles vodnej hladiny (v priemere o 0.5 m) v 89% všetkých vrtov. Tento výsledok vytvára bezprostrednú súvislosť medzi periodickým chovaním PPV a meteorologickými parametrami, v dôsledku toho aj s dlhotrvajúcim suchom. Každých 8 rokov vznikajúci výpadok v periodicite časovej osi PPV regionálne riadia mediteránne cyklóny tvoriace sa v Janovskom zálive (severozápadné Taliansko). Tento príspevok vytvára súvislosť medzi PPV a parametrami/indikátormi lokálnej/regionálnej klímy, prostredníctvom čoho uľahčia potrebnú adaptáciu klimatických stratégií v celoštátnom alebo regionálnom merítku, pretože pri ich vypracovaní je potrebné zohľadniť klimatické prognózy vzťahujúce sa na predpoveď dlhotrvajúceho sucha.

Notes

Acknowledgements

The authors would like to thank the data providers: CARPATCLIM Database © European Commission – JRC, 2013; ECMWF and the Water Directorates of the region. In addition, we are grateful for the support of the MTA “Lendület” program (LP2012-27/2012), the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the “Agrárklíma2” Project (VKSZ_12-1-2013-0034). This is contribution No. 52 of 2 ka Palæoclimate Research Group. The authors appreciate the contributions of the Early Career Hydrogeologists’ Network (ECHN) of the International Association of Hydrogeologists (IAH) and the journal editorial team and reviewers.

References

  1. Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1–4):28–40.  https://doi.org/10.1016/j.jhydrol.2011.06.013 CrossRefGoogle Scholar
  2. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861.  https://doi.org/10.1038/ngeo1617 CrossRefGoogle Scholar
  3. Alpert P, Neeman BU, Shay-el Y (1990) Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42(1):65–77.  https://doi.org/10.1034/j.1600-0870.1990.00007.x CrossRefGoogle Scholar
  4. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  5. Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge, LondonCrossRefGoogle Scholar
  6. Bartholy J, Pongrácz R, Pattantyús-Ábrahám M (2006) European cyclone track analysis based on ECMWF ERA-40 datasets. Int J Climatol 26(11):1517–1527.  https://doi.org/10.1002/joc.1392 CrossRefGoogle Scholar
  7. Bartholy J, Pongrácz R, Pattantyús-Ábrahám M (2009) Analyzing the genesis, intensity, and tracks of the western Mediterranean cyclones. Theor Appl Climatol 96(1):133–144.  https://doi.org/10.1007/s00704-008-0082-9 CrossRefGoogle Scholar
  8. Bloomfield JP, Marchant BP (2013) Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol Earth Syst Sci 17(12):4769–4787.  https://doi.org/10.5194/hess-17-4769-2013 CrossRefGoogle Scholar
  9. Burgerné Gimes A (2014) Előadásaim [My presentations]. Agroinform, Budapest, 728 ppGoogle Scholar
  10. Chen Z, Grasby SE, Osadetz KG (2002) Predicting average annual groundwater levels from climatic variables: an empirical model. J Hydrol 260(1–4):102–117.  https://doi.org/10.1016/S0022-1694(01)00606-0 CrossRefGoogle Scholar
  11. Chen Z, Grasby SE, Osadetz KG (2004) Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290(1–2):43–62.  https://doi.org/10.1016/j.jhydrol.2003.11.029 CrossRefGoogle Scholar
  12. Cressie N (1990) The origins of kriging. Math Geol 22:239–252.  https://doi.org/10.1007/BF00889887 CrossRefGoogle Scholar
  13. Edossa DC, Woyessa YE, Welderufael WA (2015) Spatiotemporal analysis of droughts using self-calibrating Palmer’s drought severity index in the central region of South Africa. Theor Appl Climatol 126(3–4):643–657.  https://doi.org/10.1007/s00704-015-1604-x
  14. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943.  https://doi.org/10.1126/science.1229881 CrossRefGoogle Scholar
  15. Gaucherel C (2002) Use of wavelet transform for temporal characterization of remote watersheds. J Hydrol 269(3–4):101–121.  https://doi.org/10.1016/S0022-1694(02)00212-3 CrossRefGoogle Scholar
  16. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3–4):532–560.  https://doi.org/10.1016/j.jhydrol.2011.05.002 CrossRefGoogle Scholar
  17. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566.  https://doi.org/10.5194/npg-11-561-2004 CrossRefGoogle Scholar
  18. Harsányi E, Juhász CS, Nagy A (2013) Land use and management (in Hungarian). http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0085_foldhasznalat_es_tajgazdalkodas/ch04.html. Accessed 23 August 2016
  19. Hatvani IG (2014) Application of state-of-the-art geomathematical methods in water protection: on the example of the data series of the Kis-Balaton Water Protection System. PhD Thesis, Eötvös Loránd University, Budapest, 110 pp. http://teo.elte.hu/minosites/ertekezes2014/hatvani_i_g.pdf. Accessed on 23 August 2016
  20. Hersbach H, Poli P, Dee D (2015) The observation feedback archive for the ICOADS and ISPD data sets. ERA report series no. 18. ECMWF, Reading, UKGoogle Scholar
  21. Holman IP, Rivas-Casado M, Bloomfield JP, Gurdak JJ (2011) Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeol J 19(6):1269–1278.  https://doi.org/10.1007/s10040-011-0755-9 CrossRefGoogle Scholar
  22. Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15(8):1523–1534.  https://doi.org/10.1007/s10040-007-0226-5 CrossRefGoogle Scholar
  23. Horváth F, Bada G, Windhoffer G, Csontos L, Dombrádi E, Dövényi P, Fodor L, Gy G, Síkhegyi F, Péter S, Székely B, Gábor T, Tóth L, Tóth T (2006) Atlas of the present-day geodynamics of the Pannonian basin: euroconform maps with explanatory text (in Hungarian). Magyar Geofizika 47(4):133–137Google Scholar
  24. Kang S, Lin H (2007) Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J Hydrol 338(1–2):1–14.  https://doi.org/10.1016/j.jhydrol.2007.01.047 CrossRefGoogle Scholar
  25. Kelemen FD, Bartholy J, Pongrácz R (2015) Multivariable cyclone analysis in the Mediterranean region. Időjárás 119(2):159–184Google Scholar
  26. Kern Z, Németh A, Gulyás MH, Popa I, Levanic T, Hatvani IG (2016) Natural proxy records of temperature- and hydroclimate variability with annual resolution from the northern Balkan-Carpathian region for the past millennium: review & recalibration. Quat Int 415:109–125.  https://doi.org/10.1016/j.quaint.2016.01.012 CrossRefGoogle Scholar
  27. Khan S, Gabriel HF, Rana T (2008) Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas. Irrig Drain Syst 22(2):159–177.  https://doi.org/10.1007/s10795-008-9049-3 CrossRefGoogle Scholar
  28. Kovács J, Szabó P, Szalai J (2004) Analysis of groundwater time series in the Duna-Tisza Interfluve (in Hungarian). Vízügyi Közlemények 86(3–4):607–624Google Scholar
  29. Kovács J, Hatvani IG, Korponai J, Kovács IS (2010a) Morlet wavelet and autocorrelation analysis of long-term data series of the Kis-Balaton water protection system (KBWPS). Ecol Eng 36(10):1469–1477.  https://doi.org/10.1016/j.ecoleng.2010.06.028 CrossRefGoogle Scholar
  30. Kovács J, Kiszely-Peres B, Szalai J, Kovács IS (2010b) Periodicity in shallow groundwater level fluctuation time series on the Trans–Tisza region, Hungary. Acta Geogr Geol Meteorol Debrecina 4-5:65–70Google Scholar
  31. Kumar R, Musuuza JL, Van Loon AF, Teuling AJ, Barthel R, Broek JT, Mai J, Samaniego L, Attinger S (2016) Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrol Earth Syst Sci 20(3):1117–1131.  https://doi.org/10.5194/hess-20-1117-2016 CrossRefGoogle Scholar
  32. Kuss AJM, Gurdak JJ (2014) Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO. J Hydrol 519:1939–1952.  https://doi.org/10.1016/j.jhydrol.2014.09.069
  33. Kwak JW, Lee SD, Kim YS, Kim HS (2013) Return period estimation of droughts using drought variables from standardized precipitation index. J Korea Water Resour Assoc 46(8):795–805.  https://doi.org/10.3741/JKWRA.2013.46.8.795 CrossRefGoogle Scholar
  34. Labat D (2005) Recent advances in wavelet analyses: part 1, a review of concepts. J Hydrol 314(1):275–288.  https://doi.org/10.1016/j.jhydrol.2005.04.003 CrossRefGoogle Scholar
  35. Mackay JD, Jackson CR, Brookshaw A, Scaife AA, Cook J, Ward RS (2015) Seasonal forecasting of groundwater levels in principal aquifers of the United Kingdom. J Hydrol 530:815–828.  https://doi.org/10.1016/j.jhydrol.2015.10.018 CrossRefGoogle Scholar
  36. Meyers SR (2014) Astrochron: an R package for astrochronology. http://cran.r-project.org/package=astrochron. Accessed 1 May 2016
  37. Mihic D, Spinoni J, Antofie T (2013) Deliverable D3.7, CarpatClim. http://www.carpatclim-eu.org/docs/deliverables/D3_7.pdf. Accessed 24 August 2016
  38. Morlet J, Arens G, Fourgeau E, Giard D (1982) Wave propagation and sampling theory; part I, complex signal and scattering in multilayered media. Geophysics 47(2):203–221.  https://doi.org/10.1190/1.1441328 CrossRefGoogle Scholar
  39. Muskulus M, Jacob D (2005) Tracking cyclones in regional model data: the future of Mediterranean storms. Adv Geosci 2:13–19.  https://doi.org/10.5194/adgeo-2-13-2005 CrossRefGoogle Scholar
  40. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072.  https://doi.org/10.1126/science.1128845 CrossRefGoogle Scholar
  41. Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena 113:56–69.  https://doi.org/10.1016/j.catena.2013.09.006 CrossRefGoogle Scholar
  42. Péczely GY (1961) Characterising the meteorological macrosynoptic situations in Hungary (in Hungarian). OMI Kisebb Kiadványai, no. 32, Budapest, HungaryGoogle Scholar
  43. Poli P, Hersbach H, Dee PD, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thépaut JN, Trémolet Y, Hólm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29:4083–4097CrossRefGoogle Scholar
  44. R_Core_Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  45. Raziei T, Saghafian B, Paulo AA, Pereira LS, Bordi I (2009) Spatial patterns and temporal variability of drought in western Iran. Water Resour Manag 23:439.  https://doi.org/10.1007/s11269-008-9282-4 CrossRefGoogle Scholar
  46. Rösch A, Schmidbauer H (2014) WaveletComp: computational wavelet analysis. R package version 1.0. https://CRAN.R-project.org/package=WaveletComp. Accessed 1 May 2016
  47. Rösch A, Schmidtbauer H (2014) WaveletComp: a guided tour through the R-package. http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf. Accessed 1 May 2016
  48. Schulz M, Stattegger K (1997) Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Comput Geosci 23(9):929–945.  https://doi.org/10.1016/S0098-3004(97)00087-3 CrossRefGoogle Scholar
  49. Shah T (2007) The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution: opportunities and threats to development. CABI, Oxfordshire, UK, pp 7–36Google Scholar
  50. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci 14:1863–1880.  https://doi.org/10.5194/hess-14-1863-2010 CrossRefGoogle Scholar
  51. Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43.  https://doi.org/10.1016/S0022-1694(00)00263-8 CrossRefGoogle Scholar
  52. Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Németh Á, Kovács T, Mihic D, Dacic M, Petrovic P, Kržiç A, Hiebl J, Auer I, Milkovic J, Ştepánek P, Zahradnícek P, Kilar P, Limanowka D, Pyrc R, Cheval S, Birsan MV, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Ştastný P, Kajaba P, Bochnícek O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J (2015) Climate of the Carpathian region in the period 1961–2010: climatologies and trends of 10 variables. Int J Climatol 35:1322–1341.  https://doi.org/10.1002/joc.4059 CrossRefGoogle Scholar
  53. Szalai J (2011) Changes in shallow groundwater level in the great Hungarian plain. In: Rakonczai J (ed) Environmental changes and the great Hungarian plain (in Hungarian). Nagyalföld Alapítvány, Békéscsaba, Hungary, 396 ppGoogle Scholar
  54. Székely F (2003) The development of the hydrogeological model of the northeastern Hungarian Great Plain, Phase I (in Hungarian). Research report. VITUKI Rt., Budapest, 61 ppGoogle Scholar
  55. Ta'any RA, Tahboub AB, Saffarini GA (2009) Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman–Zarqa basin, Jordan: a case study. Environ Geol 57(3):525–535.  https://doi.org/10.1007/s00254-008-1322-0
  56. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78.  https://doi.org/10.1175/1520-0477 CrossRefGoogle Scholar
  57. Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO–monsoon system. J Clim 12:2679–2690.  https://doi.org/10.1175/1520-0442 CrossRefGoogle Scholar
  58. Tóth G (2012) Impact of land-take on the land resource base for crop production in the European Union. Sci Total Environ 435–436:202–214.  https://doi.org/10.1016/j.scitotenv.2012.06.103 CrossRefGoogle Scholar
  59. UNESCO (2012) World Water Assessment Programme. The United Nations World Water Development report 4: Managing Water under Uncertainty and Risk, UNESCO, Paris, 407 ppGoogle Scholar
  60. van Bebber WJ (1891) Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der Deutschen Seewarte für den Zeitraum von 1870–1890 [Cyclone tracks according to the maps of the German Naval Reserve for the period 1870–1890]. Meteorol Z 8:361–366Google Scholar
  61. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288.  https://doi.org/10.1126/science.289.5477.284 CrossRefGoogle Scholar
  62. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351.  https://doi.org/10.1175/1520-0442(2004)017 CrossRefGoogle Scholar
  63. Wilhite DA (1997) Responding to drought: common threads from the past, visions for the future. J Am Water Resour Assoc 33(5):951–959.  https://doi.org/10.1111/j.1752-1688.1997.tb04116.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tamás Garamhegyi
    • 1
  • József Kovács
    • 1
  • Rita Pongrácz
    • 2
  • Péter Tanos
    • 3
  • István Gábor Hatvani
    • 4
  1. 1.Department of Physical and Applied GeologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of MeteorologyEötvös Loránd UniversityBudapestHungary
  3. 3.Department of Mathematics and InformaticsSzent István UniversityGödöllőHungary
  4. 4.Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTABudapestHungary

Personalised recommendations