Advertisement

Hydrogeology Journal

, Volume 26, Issue 2, pp 553–564 | Cite as

Unit-bar migration and bar-trough deposition: impacts on hydraulic conductivity and grain size heterogeneity in a sandy streambed

  • Jesse T. Korus
  • Troy E. Gilmore
  • Michele M. Waszgis
  • Aaron R. Mittelstet
Paper

Abstract

The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity (K v) is highly variable in space and time, and controls the rate of stream–aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10–20 cm of water and migrated ~ 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low-K v zones formed in the subsequent heterogeneous bar downstream of the original 15–40-cm-thick bar front and past abandoned bridge pilings. These low-K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.

Keywords

Heterogeneity Groundwater/surface-water relations Sedimentology USA 

Migration de barre unitaire et dépôt de creux de barres: impacts sur la conductivité hydraulique et l’hétérogénéité granulométrique dans un lit sableux de rivière

Résumé

La fonction hydrologique des lits de rivière dépend grandement de la distribution spatiotemporelle de la conductivité hydraulique et de la granulométrie. La conductivité hydraulique verticale (K v) est. hautement variable dans l’espace et le temps, et contrôle le taux d’interaction entre cours d’eau et aquifère. Les relations entre les processus sédimentaires, les dépôts, et l’hétérogénéité de K v n’ont pas été bien établies à partir des études de terrain. Les barres unitaires sont des blocs constitués de dépôts fluviaux et sont essentielles pour comprendre les contrôles sur l’hétérogénéité. Cette étude établit un lien entre la migration des barres unitaires à K v et à la variabilité de la granulométrie dans un cours d’eau dominé par le sable et à faible sinuosité dans le Nebraska (Etats-Unis d’Amérique) au cours d’un événement hydrologique unique de 10 jours. Une barre en cours de formation parallèle au thalweg est. hautement perméable et homogène. Au cours de la période de hautes eaux, cette barre a été submergée sous 10–20 cm d’eau et a migré ~ 100 m en aval et vers le bord du canal, où elle est. devenue nettement hétérogène. Des zones de faibles K v se sont formées au sein de la barre suivante hétérogène située en aval du front de la barre initiale de 15–40 cm d’épaisseur et de piles de ponts abandonnées. Ces zones de faible K v correspondent à un niveau discontinue d’1 cm de sable fin et de limon déposés au creux de la barre. Les résultats montrent que l’hétérogénéité de K v se rapportent principalement au dépôts de matières en suspension dans des zones à faible vitesses en aval de la barre et obstructions, et ensuite à leur enfouissement par migration de la barre au cours des périodes de hautes eaux. Le dépôt de la barre elle-même, bien qu’il concerne la grande majorité du volume de sable, est. secondaire par rapport au dépôt des creux de barre, contrôlant le modèle global d’hétérogénéité.

Migración de una unidad de banco y depositación en el canal del banco: impactos en la conductividad hidráulica y la heterogeneidad del tamaño del grano en un lecho de río arenoso

Resumen

La función hidrológica de los lechos de los ríos depende en gran medida de la distribución espaciotemporal de la conductividad hidráulica y del tamaño de los granos. La conductividad hidráulica vertical (K v) es muy variable en el espacio y el tiempo, y controla el ritmo de interacción corriente-acuífero. Los enlaces entre procesos sedimentarios, depósitos y heterogeneidad de K v no han sido bien establecidos a partir de estudios de campo. Los bancos unitarios son bloques de construcción de depósitos fluviales y son claves para entender los controles sobre la heterogeneidad. Este estudio relaciona la migración de los bancos unitarios con K v y con la variabilidad del tamaño de grano en una corriente dominada por la arena y baja sinuosidad en Nebraska (USA) durante un solo evento hidrológico de 10 días. Un banco incipiente se formó paralelo al thalweg y fue altamente permeable y homogéneo. Durante el flujo alto, este banco fue sumergido bajo 10–20 cm de agua y migró ~ 100 m aguas abajo y hacia el margen del canal, donde se hizo marcadamente heterogéneo. Las zonas de bajo K v se formaron en el siguiente banco heterogéneo aguas abajo del frente del banco original de 15–40 cm de espesor y pasadas las pilas de un puente abandonado. Estas zonas de bajo K v corresponden a una capa discontinua de 1 cm de arena fina y sedimento depositado en el canal. Los hallazgos muestran que la heterogeneidad de K v se relaciona principalmente con la deposición de materiales suspendidos en zonas de baja velocidad y obstrucciones aguas abajo del banco, y su subsecuente enterramiento por migración de la banco durante un flujo alto. La deposición del banco unitario en sí mismo, aunque colocó la gran mayoría del volumen de sedimento, fue secundaria a la deposición de bancos como control sobre el patrón general de heterogeneidad.

单元沙洲迁移及沙洲槽沉积: 对砂质河床水力传导率和粒径异质性的影响

摘要

河床的水文功能很大程度上取决于水力传导率和粒径的时空分布。垂直水力传导率(K v)空间和时间上变化很大,控制着河流含水层相互作用的速度。野外研究并没有建立好沉积过程、沉积物和K v之间的联系。单元沙洲是河流沉积物的建筑块体,是了解对异质性控制的关键。本研究在单一的10天水文事件期间把(美国)一个砂主导的、低弯曲度的河流中单元沙洲与K v和粒径联系在一起。一个初期的沙洲形成平行于谷底线,具有高度透水性和异质性。在水流大的时候,本沙洲沉没于水下10–20米,向下游移动大约100米,并朝向河渠边缘移动,河渠边缘也变得具有高度异质性。在原来15–40 厘米厚的沙洲前锋随后异质性沙洲下游及过去废弃的桥墩形成低K v带。这些低K v带与沙洲槽沉积的不连续的1厘米厚的细沙和粉砂层一致。这些发现显示K v异质性主要与沙洲和阻碍物下游低速度带的悬浮物质的沉积相关,也与大水流期间沙洲迁移导致的随后埋深相关。尽管单元沙洲承载了绝大部分沉积量,但单元沙洲沉积本身在控制整个异质性模式上与沙洲槽相比处于次要地位。

Migração de barra unitária e deposição através da barra: impactos na condutividade hidráulica e heterogeneidade no tamanho de partículas em um leito de rio arenoso

Resumo

A função hidrológica de leitos fluviais é altamente dependente da distribuição espaço-temporal da condutividade hidráulica e do tamanho de partículas. A condutividade hidráulica vertical (K v) é altamente variável no espaço e no tempo, e controla a taxa de interação rio-aquífero. Conexões entre processos de sedimentação, deposição, e heterogeneidade da K v não tem sido bem estabelecidas a partir de estudos de campo. Barras unitárias são blocos desenvolvidos de depósitos fluviais e são chave para o entendimento do controle da heterogeneidade. Esse estudo conecta a migração de barras unitárias a K v e variabilidade do tamanho de partículas em um curso d’água predominantemente arenoso, de baixa sinuosidade em Nebraska (EUA) durante um único evento hidrológico de 10 dias. Uma barra incipiente formou-se em paralelo ao talveg e permaneceu altamente permeável e homogênea. Durante alto fluxo, essa barra foi submergida sob 10–20 cm de água e migrou ~ 100 m rio abaixo e em na direção da margem do canal, onde tornou-se substancialmente heterogênea. Zonas de baixa K v formaram-se na barra heterogênea subsequente a jusante do front da barra espessa original de 15–40-cm e antigas estacas de ponte abandonada. Essas zonas de baixa K v correspondem a uma camada de 1 cm descontínua de areia fina e silte depositados no canal da barra. As conclusões mostram que a heterogeneidade da K v se relaciona principalmente com a deposição de materiais em suspensão em zonas de baixa velocidade a jusante da barra e obstruções, e ao subsequente enterro por migração da barra durante o alto fluxo. A deposição da própria barra unitária, embora colocasse a grande maioria do volume do sedimento, era secundária à deposição da barra como controle sobre o padrão geral de heterogeneidade.

Notes

Acknowledgements

The authors would like to thank Griffin Nuzzo and Alexandra Hruby for their assistance in the field. Early ideas for this study were inspired from collaboration with the late Xun-Hong Chen. Funding for field assistance was provided by the Agricultural Research Division and the UCARE undergraduate research programs at the University of Nebraska-Lincoln.

References

  1. Allen J (1983) Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. Devonian), Welsh Borders. Sediment Geol 33:237–293CrossRefGoogle Scholar
  2. Anderson M, Aiken J, Webb E, Mickelson D (1999) Sedimentology and hydrogeology of two braided stream deposits. Sediment Geol 129:187–199CrossRefGoogle Scholar
  3. Bardini L, Boano F, Cardenas MB, Sawyer AH, Revelli R, Ridolfi L (2013) Small-scale permeability heterogeneity has negligible effects on nutrient cycling in streambeds. Geophys Res Lett 40:1118–1122.  https://doi.org/10.1002/grl.50224 CrossRefGoogle Scholar
  4. Bentall R (1998) Streams. In: Bleed A, Flowerday C (eds) An atlas of the Sand Hills, 3rd edn. Conservation and Survey Division, Institute of Agriculture and Natural Resources, Univ. of Nebraska, Lincoln, pp 93–114Google Scholar
  5. Best JL, Ashworth PJ, Bristow CS, Roden J (2003) Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. J Sediment Res 73:516–530CrossRefGoogle Scholar
  6. Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248CrossRefGoogle Scholar
  7. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81.  https://doi.org/10.1146/annurev.ecolsys.29.1.59 CrossRefGoogle Scholar
  8. Bridge JS (1977) Flow, bed topography, grain size and sedimentary structure in open channel bends: a three-dimensional model. Earth Surf Proces 2:401–416CrossRefGoogle Scholar
  9. Bridge JS (2003) Rivers and floodplains: forms, processes, and sedimentary record. Blackwell, OxfordGoogle Scholar
  10. Bridge J, Collier R, Alexander J (1998) Large-scale structure of Calamus River deposits (Nebraska, USA) revealed using ground-penetrating radar. Sedimentology 5:977–986.  https://doi.org/10.1046/j.1365-3091.1998.00174.x CrossRefGoogle Scholar
  11. Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33.  https://doi.org/10.1046/j.1365-2427.1997.00143.x CrossRefGoogle Scholar
  12. Burnette MC, Genereux DP, Birgand F (2016) In-situ falling-head test for hydraulic conductivity: evaluation in layered sediments of an analysis derived for homogenous sediments. J Hydrol 539:319–329.  https://doi.org/10.1016/j.jhydrol.2016.05.030 CrossRefGoogle Scholar
  13. Cardenas MB, Zlotnik VA (2003) Three-dimensional model of modern channel bend deposits. Water Resour Res 39:1141.  https://doi.org/10.1029/2002WR001383 CrossRefGoogle Scholar
  14. Chen XH (2000) Measurement of streambed hydraulic conductivity and its anisotropy. Environ Geol 39:317–1324Google Scholar
  15. Chen XH (2004) Streambed hydraulic conductivity for rivers in south-central Nebraska. J Am Water Resour As 40:561–574CrossRefGoogle Scholar
  16. Chen XH (2010) Depth-dependent hydraulic conductivity distribution patterns of a streambed. Hydrol Process 25:278–287CrossRefGoogle Scholar
  17. Cheng C, Song JX, Chen XH, Wang DM (2010) Statistical distribution of streambed vertical hydraulic conductivity along the Platte River, Nebraska. Water Resour Manag 25:265–285CrossRefGoogle Scholar
  18. Cuthbert MO, Mackay R, Durand V, Aller MF, Greswell RB, Rivett MO (2010) Impacts of river bed gas on the hydraulic and thermal dynamics of the hyporheic zone. Adv Water Resour 33:1347–1358.  https://doi.org/10.1016/j.advwatres.2010.09.014 CrossRefGoogle Scholar
  19. Dong W, Chen X, Wang Z, Ou G, Liu C (2012) Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. J Hydrol 450:9–16CrossRefGoogle Scholar
  20. Doppler T, Franssen H-JH, Kaiser H-P, Kuhlman U, Stauffer F (2007) Field evidence of a dynamic leakage coefficient for modelling river–aquifer interactions. J Hydrol 347:177–187.  https://doi.org/10.1016/j.jhydrol.2007.09.017 CrossRefGoogle Scholar
  21. Fleckenstein JH, Niswonger RG, Fogg GE (2006) River–aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44:837–852CrossRefGoogle Scholar
  22. Folk R, Ward W (1957) Brazos River bar: a study in the significance of grain size parameters. J Sed Petrol 27:3–26CrossRefGoogle Scholar
  23. Genereux DP, Leahy S, Mitasova H, Kennedy CD, Corbett DR (2008) Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J Hydrol 358:332–353CrossRefGoogle Scholar
  24. Gianni G, Richon J, Perrochet P, Vogel A, Brunner P (2016) Rapid identification of transience in streambed conductance by inversion of a floodwave response. Water Resour Res 52:2647–2658.  https://doi.org/10.1002/2015WR017154 CrossRefGoogle Scholar
  25. Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111.  https://doi.org/10.1007/s10040-004-0421-6 CrossRefGoogle Scholar
  26. Harvey J, Gooseff M (2015) River corridor science: hydrologic exchange and ecological consequences from bedforms to basins. Water Resour Res 51:6893–6922.  https://doi.org/10.1002/2015WR017617 CrossRefGoogle Scholar
  27. Hatch CE, Fisher AT, Ruehl CR, Stemler G (2010) Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J Hydrol 389:276–288.  https://doi.org/10.1016/j.jhydrol.2010.05.046 CrossRefGoogle Scholar
  28. Hazen A (1893) Some physical properties of sands and gravels. 24th annual report, Massachusetts State Board of Health, Boston, pp 541–556Google Scholar
  29. Heinz J, Kleineidam S, Teutsch G, Aigner T (2003) Heterogeneity patterns of quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sediment Geol 158:1–23CrossRefGoogle Scholar
  30. Holzweber BI, Hartley AJ, Weissmann GS (2014) Scale invariance in fluvial barforms: implications for interpretation of fluvial systems in the rock record. Pet Geosci 20:211–224CrossRefGoogle Scholar
  31. Huggenberger P, Regli C (2009) A sedimentological model to characterize braided river deposits for hydrogeological applications. In: Sambrook GH, Best JL, Bristow CS, Petts GE (eds) Braided rivers: process, deposits, ecology, and management. Blackwell, Oxford, pp 51–74Google Scholar
  32. Hunt B (1999) Unsteady stream depletion from ground water pumping. Ground Water 37:98–102CrossRefGoogle Scholar
  33. Hvorslev MJ (1951) Time lag and soil permeability in groundwater observations. Waterways Experiment Station US Army Corps of Engineers, Vicksburg, MI, pp 1–50Google Scholar
  34. Irvine DJ, Brunner P, Franssen H-JH, Simmons CT (2012) Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. J Hydrol 424:16–23CrossRefGoogle Scholar
  35. Jiang W, Song J, Zhang J, Wang Y, Zhang N, Zhang X, Long Y, Li J, Yang X (2015) Spatial variability of streambed vertical hydraulic conductivity and its relation to distinctive stream morphologies in the Beiluo River, Shaanxi Province, China. Hydrogeol J 23:1617–1626.  https://doi.org/10.1007/s10040-015-1288-4 CrossRefGoogle Scholar
  36. Kalbus E, Schmidt C, Molson J, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13:69–77CrossRefGoogle Scholar
  37. Kim NW, Chung IM, Won YS, Arnold JG (2008) Development and application of the integrated SWAT–MODFLOW model. J Hydrol 356:1–16CrossRefGoogle Scholar
  38. Landon MK, Rus DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity of sandy streambeds. Ground Water 39:870–885CrossRefGoogle Scholar
  39. Larue DK, Hovadik J (2006) Connectivity of channelized reservoirs: a modelling approach. Pet Geosci 12:291–308CrossRefGoogle Scholar
  40. Lu CP, Chen XH, Cheng C, Ou GX, Shu LC (2012) Horizontal hydraulic conductivity of shallow streambed sediments and comparison with the grain-size analysis results. Hydrol Process 26:454–466CrossRefGoogle Scholar
  41. Lunt I, Bridge J, Tye R (2004a) A quantitative, three-dimensional depositional model of gravelly braided rivers. Sedimentology 51:377–414CrossRefGoogle Scholar
  42. Lunt IA, Bridge JS, Tye RS (2004b) Development of a 3-D depositional model of braided-river gravels and sands to improve aquifer characterization. In: Bridge JS, Hyndman DW (eds) Aquifer characterization. SEPM, Tulsa, OK, pp 139–169CrossRefGoogle Scholar
  43. Lynds R, Hajek E (2006) Conceptual model for predicting mudstone dimensions in sandy braided-river reservoirs. AAPG Bull 90:1273–1288CrossRefGoogle Scholar
  44. Miall AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Sci Rev 22:261–308CrossRefGoogle Scholar
  45. Minitab Inc (2017) Minitab 17 statistical software. www.minitab.com. Accessed 12 December 2016
  46. Newcomer ME, Hubbard SS, Fleckenstein JH, Maier U, Schmidt C, Thullner M, Ulrich C, Flipo N, Rubin Y (2016) Simulating bioclogging effects on dynamic riverbed permeability and infiltration. Water Resour Res 52:2883–2900.  https://doi.org/10.1002/2015WR018351 CrossRefGoogle Scholar
  47. Nowinski JD, Cardenas MB, Lightbody AF (2011) Evolution of hydraulic conductivity in the floodplain of a meandering river due to hyporheic transport of fine materials. Geophys Res Lett 38:L01401.  https://doi.org/10.1029/2010GL045819 CrossRefGoogle Scholar
  48. Peterson SM, Stanton JS, Saunders AT, Bradley JR (2008) Simulation of ground-water flow and effects of ground-water irrigation on base flow in the Elkhorn and Loup River basins, Nebraska. US Geol Surv Sci Invest Rep 2008-5143, 65 ppGoogle Scholar
  49. Pryshlak TT, Sawyer AH, Stonedahl SH, Soltanian MR (2015) Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resour Res 51:9127–9140.  https://doi.org/10.1002/2015WR017293 CrossRefGoogle Scholar
  50. Reesink AJH, Bridge JS (2011) Evidence of bedform superimposition and flow unsteadiness in unit-bar deposits, South Saskatchewan River, Canada. J Sediment Res 81:814–840.  https://doi.org/10.2110/jsr.2011.69 CrossRefGoogle Scholar
  51. Reesink AJH, Ashworth PJ, Sambrook Smith GH, Best JL, Parsons DR, Amsler ML, Hardy RJ, Lane SN, Nicholas AP, Orfeo O, Sandbach SD, Simpson CJ, Szupiany RN (2014) Scales and causes of heterogeneity in bars in a large multi-channel river: Río Paraná, Argentina. Sedimentology 61:1055–1085.  https://doi.org/10.1111/sed.12092 CrossRefGoogle Scholar
  52. Rosenberry DO, Healy RW (2012) Influence of a thin veneer of low-hydraulic-conductivity sediment on modelled exchange between river water and groundwater in response to induced infiltration. Hydrol Process 26:544–557.  https://doi.org/10.1002/hyp.8153 CrossRefGoogle Scholar
  53. Rosenberry DO, Toran L, Nyquist JE (2010) Effect of surficial disturbance on exchange between groundwater and surface water in nearshore margins. Water Resour Res 46: doi  https://doi.org/10.1029/2009WR008755
  54. Sawyer AH, Cardenas MB (2009) Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment. Water Resour Res 45:W08406.  https://doi.org/10.1029/2008WR007632 CrossRefGoogle Scholar
  55. Sebok E, Duque C, Engesgaard P, Boegh E (2015) Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel. Hydrol Process 29:458–472CrossRefGoogle Scholar
  56. Smith ND (1971) Transverse bars and braiding in the Lower Platte River, Nebraska. Geol Soc Am Bull 82:3407–3420CrossRefGoogle Scholar
  57. Sophocleous M, Perkins SP (2000) Methodology and application of combined watershed and ground-water models in Kansas. J Hydrol 236:185–201CrossRefGoogle Scholar
  58. Sophocleous M, Koelliker J, Govindaraju R, Birdie T, Ramireddygari S, Perkins S (1999) Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in south-central Kansas. J Hydrol 214:179–196CrossRefGoogle Scholar
  59. Springer AE, Petroutson WD, Semmens BA (1999) Spatial and temporal variability of hydraulic conductivity in active reattachment bars of the Colorado River, Grand Canyon. Ground Water 37:338–344CrossRefGoogle Scholar
  60. Stonedahl SH, Harvey JW, Wörman A, Salehin M, Packman AI (2010) A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour Res 46:W12539.  https://doi.org/10.1029/2009WR008865 CrossRefGoogle Scholar
  61. Swinehart JB (1998) Wind-blown deposits. In: Bleed A, Flowerday C (eds) An atlas of the Sand Hills, 3rd edn. Conservation and Survey Div., Institute of Agriculture and Natural Resources, Univ. of Nebraska, Lincoln, NB, pp 43–56Google Scholar
  62. Swinehart JB, Dreeszen VH, Richmond GM, Tipton MJ, Bretz RF, Steece FV, Hallberg GR, Goebel JE (1994) Quaternary Geologic Map of the Platte River 4 Degrees × 6 Degrees Quadrangle, United States. In: Goebel JE, Richmond GM (eds) Map I-1420 (NK-14). US Geological Survey, Reston, VAGoogle Scholar
  63. Tonina D, Luce C, Gariglio F (2014) Quantifying streambed deposition and scour from stream and hyporheic water temperature time series. Water Resour Res 50:287–292.  https://doi.org/10.1002/2013WR014567 CrossRefGoogle Scholar
  64. USDA-Farm Service Agency-Aerial Photography Field Office (FSA-APFO) (2016) National Agriculture Imagery Program. USDA-FSA-APFO, Salt Lake City, UtahGoogle Scholar
  65. USGS (2016) National water information system. https://waterdata.usgs.gov. Accessed 9 January 2017
  66. Winter TC, Harvey JW, Franke OL, Alley WM (1999) Ground water and surface water: a single resource. US Geol Surv Circ 1139, 79 ppGoogle Scholar
  67. Wu G, Shu L, Lu C, Chen X, Zhang X, Appiah-Adjei EK, Zhu J (2015) Variations of streambed vertical hydraulic conductivity before and after a flood season. Hydrogeol J 23:1603–1615.  https://doi.org/10.1007/s10040-015-1275-9 CrossRefGoogle Scholar
  68. Zhou Y, Ritzi RW Jr, Soltanian MR, Dominic DF (2014) The influence of streambed heterogeneity on hyporheic flow in gravelly rivers. Ground Water 52:206–216.  https://doi.org/10.1111/gwat.12048 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jesse T. Korus
    • 1
  • Troy E. Gilmore
    • 1
    • 2
  • Michele M. Waszgis
    • 1
  • Aaron R. Mittelstet
    • 2
  1. 1.Conservation and Survey Division, School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations