Advertisement

Hydrogeology Journal

, Volume 26, Issue 1, pp 267–284 | Cite as

Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

  • Sonja BurghofEmail author
  • Geofrey Gabiri
  • Christine Stumpp
  • Romain Chesnaux
  • Barbara Reichert
Paper

Abstract

Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

Keywords

Agriculture Conceptual models Groundwater/surface-water relations Tanzania Wetlands 

Développement d’un modèle hydrogéologique conceptuel d’une zone humide dans la région Nord-Est de Kilombero Valley, Tanzanie

Résumé

La compréhension des interactions eaux souterraines-eaux de surface dans les zones humides est. cruciale, car ces zones créent non seulement un haut potentiel pour la production agricole, mais encore des écosystèmes sensibles de grande valeur. Ceci est. spécialement vrai pour la zone humide de la plaine d’inondation de Kilombero en Tanzanie, qui est. une région pauvre en données hydrologiques et hydrogéologiques. Une approche globale associant hydrogéologie et des évaluations basées sur des traçages a été mise en œuvre pour développer un modèle hydrogéologique conceptuel de la zone humide autour de la ville de Ifakara dans le Nord-Est du bassin versant du Kilombero. Dans le domaine d’étude, un aquifère poreux hétérogène, avec une gamme de conductivités hydrauliques repose sur un aquifère rocheux fracturé. La chimie des eaux souterraines est. principalement influencée par l’altération des silicates et dépend du temps de séjour qui est. fonction des conductivités hydrauliques de l’aquifère poreux. Les eaux souterraines s’écoulent du versant collinaire vers la rivière durant la plus grande partie de l’année. Tandis qu’à proximité de la rivière l’eau de crue provient principalement du débordement du lit majeur, à une plus grande distance elle résulte des précipitations et de la décharge de la nappe souterraine. Les effets de l’évaporation sur l’eau de crue s’accroissent avec la distance à la rivière. En général, les contributions de l’eau de crue et du cours d’eau à la recharge de nappe sont négligeables. En termes d’intensification des activités agricoles dans la zone humide, plusieurs conclusions peuvent être tirées du modèle conceptuel. Les résultats de cette étude sont précieux comme base pour de nouvelles recherches relatives aux interactions eaux souterraines et eaux de surface et le modèle conceptuel peut être utilisé à l’avenir pour établir des modèles numériques d’écoulement et de transport.

Desarrollo de un modelo hidrogeológico conceptual de humedales con escasos datos en la región noreste de Kilombero Valley, Tanzania

Resumen

La comprensión de las interacciones agua subterránea/agua superficial en los humedales es crucial porque ellos proporcionan no sólo un alto potencial para la producción agrícola, sino también por la sensibilidad y lo valioso de los ecosistemas. Esto es especialmente cierto para el humedal de la llanura inundable de Kilombero en Tanzania, que representa una región con escasos datos en términos de datos hidrológicos e hidrogeológicos. Se llevó a cabo un enfoque integral que combina evaluaciones hidrogeológicas con evaluaciones basadas en trazadores, con el fin de desarrollar un modelo hidrogeológico conceptual de humedales del área alrededor de la ciudad de Ifakara en la región nororiental de la cuenca de Kilombero. Dentro del sitio de estudio, un acuífero poroso heterogéneo, con una gama de conductividades hidráulicas, es subyacente a un acuífero de roca fracturada. La química del agua subterránea está influenciada principalmente por la meteorización de los silicatos y depende de los tiempos de residencia del agua subterránea relacionados con las conductividades hidráulicas del acuífero poroso. El agua subterránea fluye desde la ladera al río durante la mayor parte del año. Mientras que el agua de las inundaciones cerca del río se deriva principalmente del flujo de banco del río, el agua de la inundación a una mayor distancia del río proviene principalmente de la precipitación y de la descarga del agua subterránea. Los efectos de la evaporación en el agua de inundación se incrementan con el aumento de la distancia creciente al río. En general, la contribución de las inundaciones y de las corrientes de agua a la recarga de las aguas subterráneas es insignificante. En términos de una intensificación de las actividades agrícolas en el humedal, se pueden extraer varias conclusiones del modelo conceptual. Los resultados de este estudio son valiosos como base para investigaciones adicionales relacionadas con las interacciones agua subterránea/agua superficial y el modelo conceptual puede utilizarse en el futuro para establecer modelos numéricos de flujo y transporte.

在坦桑尼亚Kilombero 河谷资料匮乏的东北部地区建立水文地质地质概念湿地模型

摘要

了解湿地地下水/地表水相互作用至关重要,因为湿地不仅为农业生产提供了巨大的潜力,而且还提供了敏感和宝贵的生态系统。坦桑尼亚Kilombero河漫滩湿地尤其如此,这个湿地缺乏水文和水文地质数据。在此进行了基于示踪剂评价结果的水文地质和综合性研究,为了建立Kilombero流域东北部Ifakara市周围地区水文地质概念湿地模型。在研究区内,具有范围宽阔的水力传导率的异质孔隙含水层下伏着断裂岩含水层。地下水化学成分主要受到硅酸盐风化的影响,取决于与孔隙含水层水力传导率相关的地下水滞留时间。一年中大部分时间地下水从山坡流入河流。靠近河流的洪水主要来源于河流的漫滩流,而离河流较远的洪水主要源于降水和地下水排泄。洪水中的蒸发影响随着离河流的距离增加而增加。总的来说,洪水和河水对地下水补给的贡献微不足道。在强化湿地农业活动方面,可以从概念模型中得出几条结论。本研究结果作为进一步研究地下水/地表水相互作用的基础非常珍贵,概念模型将来可用于建立数值水流和运移模型。

Desenvolvimento de um modelo hidrogeológico conceitual de áreas úmidas com dados escassos, na região nordeste do Vale Kilombero, Tanzânia

Resumo

Compreender as interações entre águas subterrâneas/águas superficiais em áreas úmidas é crucial, pois áreas úmidas fornecem não só um alto potencial para a produção agrícola, mas também ecossistemas sensíveis e valiosos. Isto é especialmente verdadeiro para a área úmida da planície de inundação de Kilombero na Tanzânia, que representa uma região com escassez de dados em termos de dados hidrológicos e hidrogeológicos. Uma abordagem abrangente combinando avaliações hidrogeológicas com base em traçadores foi realizada, a fim de desenvolver um modelo hidrogeológico conceitual de áreas úmidas da área ao redor da cidade Ifakara na região nordeste da bacia hidrográfica de Kilombero. Dentro da área de estudo, um aquífero poroso, heterogêneo, com uma gama de condutividades hidráulicas, está subjacente a um aquífero de rocha fraturada. A química das águas subterrâneas é influenciada principalmente por intempéries de silicato e depende dos tempos de residência das águas subterrâneas, relacionadas as condutividades hidráulicas do aquífero poroso. As águas subterrâneas fluem da encosta para o rio durante a maior parte do ano. Enquanto a água da inundação perto do rio é derivada principalmente do fluxo excedente do rio, a uma maior distância do rio, a água de inundação é originada principalmente por precipitação e descarga subterrânea. Os efeitos da evapotranspiração na água de inundação aumentam com o aumento da distância do rio. No geral, a contribuição da água de inundação e água do curso d’agua é insignificante. Em termos de intensificação de atividades agrícolas na área úmida, várias conclusões podem ser extraídas do modelo conceitual. Os resultados desse estudo são valiosos como base para novas pesquisas relacionadas a interação entre águas subterrâneas/águas superficiais e o modelo conceitual pode ser usado no futuro para criar modelos numéricos de fluxo e transporte.

Notes

Acknowledgements

This study was conducted in the context of the BMBF-funded project “GlobE – Wetlands in East Africa” (FKZ: 031A250 A-H). The authors would like to thank the Rufji Basin Water Board (RBWB) for the provision of drilling log and pumping test data. Furthermore, we thank the organization MSABI (Maji Safi Akwa Bora Ifakara) for the opportunity to install groundwater level sensors in their wells and their kind help regarding technical and logistical issues. Additionally, we would like to thank the whole GlobE Team for the great support in the field. Here, we would like to name especially Salome Misana, Constanze Leemhuis, Andrea Rechenburg, Kristian Näschen, Francis Kimaro, John Sama, Novatus Mwangeta, Dittrick Mwingira, Julius Kwesiga, and Kristina Grotelüschen. Furthermore, we thank Esther Amler for the provision of the delineated floodplain layer and Laura Heiß for her help during laboratory and desktop work. We would also like to thank Tina Geißler and Katharina Liedtke, who contributed to this study with their master theses. Additionally, we thank Saskia Noorduijn and an anonymous reviewer for their valuable contributions to this article.

Supplementary material

10040_2017_1649_MOESM1_ESM.docx (113 kb)
ESM 1 (DOCX 113 kb)

References

  1. Acreman MC, Miller F (2007) Hydrological impact assessment of wetlands. In: Ragone S, de la Hera A, Hernandez-Mora N, Bergkamp G, McKay J (eds) The global importance of groundwater in the 21st century. NGWA, WestervilleGoogle Scholar
  2. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The Netherlands, 649 ppCrossRefGoogle Scholar
  3. Ashley RP, Lloyd JW (1978) An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. J Hydrol 39:355–364CrossRefGoogle Scholar
  4. Beck AD (1964) The Kilombero Valley of south-central Tanganyika, East Africa. Geogr Rev 2:37–43Google Scholar
  5. Belkhiri L, Boudoukha A, Mouni L (2011) A multivariate statistical analysis of groundwater chemistry data. Int J Environ Res 5(2):537–544Google Scholar
  6. Beuel S, Alvarez M, Amler E, Behn K, Kreye C, Kotze D, Leemhuis C, Wagner K, Willy DK, Ziegler S, Becker M (2016) A rapid assessment of anthropogenic disturbances in East African wetlands. Ecol Indic 67:684–692. doi: 10.1016/j.ecolind.2016.03.034 CrossRefGoogle Scholar
  7. Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve [Determining the permeability of gravel and sands from the grain distribution curve]. Wasserwirtsch Wassertech 14(6):165–168Google Scholar
  8. Bonarius H (1975) Physical properties of soils in the Kilombero Valley (Tanzania). German Agency for Technical Cooperation, Eschborn, Germany, 35 ppGoogle Scholar
  9. Brodie R, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An overview of tools for assessing groundwater–surface water connectivity. Bureau of Rural Sciences, Canberra, AustraliaGoogle Scholar
  10. Clay A, Bradley C, Gerrard AJ, Leng MJ (2004) Using stable isotopes of water to infer wetland hydrological dynamics. Hydrol Earth Syst Sci 8(6):1164–1173CrossRefGoogle Scholar
  11. Cook PG (2003) A guide to regional groundwater flow in fractured rock aquifers. CSIRO Australia, Seaview Press, Henley Beach, Australia, 108 ppGoogle Scholar
  12. Cooper HH, Jacob CE (1946) A generalized graphical method of evaluating formation constants and summarizing well-field history. Am Geophys Union Trans 27:526–534CrossRefGoogle Scholar
  13. Dixon AB, Wood AP (2003) Wetland cultivation and hydrological management in eastern Africa: matching community and hydrological needs through sustainable wetland use. Nat Resour Forum 27:117–129CrossRefGoogle Scholar
  14. Doble RC, Crosbie RS, Smerdon BD, Peeters L, Cook FJ (2012) Groundwater recharge from overbank floods. Water Resour Res 48:W09522. doi: 10.1029/2011WR011441 CrossRefGoogle Scholar
  15. Einsele G (1992) Sedimentary basins, evolution, facies and sediment budget. Springer, Berlin, 792 ppCrossRefGoogle Scholar
  16. Farnham IM, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatments of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics Intell Lab Sys 60:265–281CrossRefGoogle Scholar
  17. Farnham IM, Johannesson KH, Singh AK, Hodge VF, Stetzenbach KJ (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490:123–138. doi: 10.1016/S0003-2670(03)00350-7 CrossRefGoogle Scholar
  18. Fetter CW (2001) Applied hydrogeology, 4th edn., Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  19. Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33:1291–1295. doi: 10.1016/j.advwatres.2010.09.011 CrossRefGoogle Scholar
  20. Freeze RA, Cherry JA (1979) Groundwater, vol 16. Prentice Hall, Egnlewood Cliffs, NJGoogle Scholar
  21. Frenken K, Mharapara I (2002) Wetland development and management in SADC countries. Proceedings of a sub-regional workshop held by FAO sub-regional office for East and Southern Africa (SAFR), Harare, Zimbabwe, November 19–23, 2001, Préci-ex, Les Pailles, Mauritius. ftp://ftp.fao.org/agl/aglw/docs/wetlands.pdf. Accessed May 2015
  22. GADM (2015): Database of global administrative aAreas, version 2.7. www.gadm.org. Accessed February 2016
  23. Geological Survey of Tanganyika (1962) Geological Map 1:125,000. Quarter Degree Sheet 235, Geological Survey of Tanganyika, Ifakara, TanganyikaCrossRefGoogle Scholar
  24. Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474. doi: 10.1007/s10040-002-0196-6 CrossRefGoogle Scholar
  25. Hazen A (1892) Some physical properties of sands and gravels, with special reference to their use in filtration, vol 24. Annual report, Massachusetts State Board of Health, Boston, pp 539–555Google Scholar
  26. Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Techniques of Water Resources Investigations, book 4, chapter A3. US Geological Survey, Reston, VA, 522 ppGoogle Scholar
  27. Herczeg AL, Edmunds WM (2000) Inorganic tons as tracers. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Springer, New York, pp 31–77CrossRefGoogle Scholar
  28. Hollands GG (1987) Assessing the relationship of groundwater and wetlands. In: Kusler JA, Brooks G (eds) Proceedings of the National Wetland Symposium: Wetland Hydrology, Chicago, IL, September 1987Google Scholar
  29. Hunt RJ, Krabbenhoft DP, Anderson MP (1996) Groundwater inflow measurements in wetland systems. Water Resour Res 32:495–507CrossRefGoogle Scholar
  30. Hunt RJ, Strand M, Walker JF (2006) Measuring groundwater-surface water interaction and its effect on wetland stream benthic productivity, Trout Lake watershed, northern Wisconsin, USA. J Hydrol 320:370–384. doi: 10.1016/j.jhydrol.2005.07.029 CrossRefGoogle Scholar
  31. Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Waterways Experimental Station, Bulletin 36, US Army Corps of Engineers, Vicksburg, MIGoogle Scholar
  32. Jätzold R, Baum E (1968) The Kilombero Valley. Weltforum, Munich, GermanyGoogle Scholar
  33. Johnston R, Cools J, Liersch S, Morardet S, Murgue C, Mahieu M, Zsuffa I, Uyttendaele GP (2013) WETwin: a structured approach to evaluating wetland management options in data poor contexts. Env Sci Pol 34:3–17. doi: 10.1016/j.envsci.2012.12.006 CrossRefGoogle Scholar
  34. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887 www.hydrol-earth-syst-sci.net/10/873/2006/. Accessed January 2016CrossRefGoogle Scholar
  35. Kangalawe RYM, Liwenga ET (2005) Livelihoods in the wetlands of Kilombero Valley in Tanzania: opportunities and challenges to integrated water resource management. Phys Chem Earth 30(11):968–975. doi: 10.1016/j.pce.2005.08.044 CrossRefGoogle Scholar
  36. Kebede S, Abdalla O, Sefelnasr A, Tindimugaya C, Mustafa O (2017) Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence. Hydrogeol J 25:707–726CrossRefGoogle Scholar
  37. King AC, Raiber M, Cox ME (2014) Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia. Hydrogeol J 22:481–500. doi: 10.1007/s10040-013-1057-1 CrossRefGoogle Scholar
  38. Kirzhner F, Zimmels Y, Gafni A (2008) Effect of evapotranspiration on the salinity of wastewater treated by aquatic plants. Rev Environ Health 23:14–166CrossRefGoogle Scholar
  39. Koutsouris AJ, Chen D, Lyon SW (2015) Comparing global precipitation data sets in eastern Africa: a case study of Kilombero Valley, Tanzania. Int J Climatol 36:2000–2014. doi: 10.1002/joc.4476 CrossRefGoogle Scholar
  40. Krause S, Bronstert A, Zehe E (2007) Groundwater-surface water interactions in a north German lowland floodplain: implications for the river discharge dynamics and riparian water balance. J Hydrol 347:404–417CrossRefGoogle Scholar
  41. Kumar M, Rao MS, Kumar B, Ramanathan A (2011) Identification of aquifer-recharge zones and sources in an urban development area (Delhi, India), by correlating isotopic tracers with hydrological features. Hydrogeol J 19:463–474CrossRefGoogle Scholar
  42. Lamontagne S, Leaney FW, Herczeg AL (2005) Groundwater-surface water interactions in a large semi-arid floodplain: implications for salinity management. Hydrol Process 19:3063–3080CrossRefGoogle Scholar
  43. Lazareva O, Pichler T (2011) Evaluating complex Hydrogeological settings in a constructed wetland: an isotopic/chemical mass balance approach. Wetlands 31(3):521–534CrossRefGoogle Scholar
  44. Le Gall B, Gernigon L, Ebinger C, Gloaguen R, Nilsen O, Dypvik H, Deffontaines B, Mruma A (2004) Neogene-Holocene rift propagation in central Tanzania: morphostructural and aeromegnetic evidence from the Kilombero area. Geol Soc Am Bull 116(3–4):490–510CrossRefGoogle Scholar
  45. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22CrossRefGoogle Scholar
  46. Lyon SW, Koutsouris AJ, Scheibler F, Jarsjö J, Mbanguka R, Tumbo M, Robert KK, Sharma AN, van der Velde Y (2015) Interpreting characteristic drainage timescale variability across Kilombero Valley, Tanzania. Hydrol Process 29:1912–1924. doi: 10.1002/hyp. 10304 CrossRefGoogle Scholar
  47. McCarthy TS (2006) Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320:264–282CrossRefGoogle Scholar
  48. McCartney MP (2000) The water budget of a headwater catchment containing a dambo. Phys Chem Earth 25(7–8):611–616CrossRefGoogle Scholar
  49. McCartney MP, Rebelo LM, Senaratna Sellamuttu S, de Silva S (2010) Wetlands, agriculture and poverty reduction. IMWI research report 137, Int Water Manag Institute, Colombo, Sri Lanka. doi: 10.5337/2010.230
  50. Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state, Brazil. J Hydrol 250:78–97CrossRefGoogle Scholar
  51. Mertes LAK (1997) Documentation and significance of the perirheic zone on inundated floodplains. Water Resour Res 33:1749–1762CrossRefGoogle Scholar
  52. Mombo F, Speelman S, Van Huylenbroeck G, Hella J, Pantaleo M, Moe S (2011) Ratification of the Ramsar convention and sustainable wetlands management: situation analysis of the Kilombero Valley wetlands in Tanzania. J Agric Ext Rural Dev 3(9):153–164Google Scholar
  53. Montcoudiol N, Molson J, Lemieux JM (2015) Groundwater geochemistry of the Outaouais region (Québec, Canada): a regional-scale study. Hydrogeol J 23(2):377–396. doi: 10.1007/s10040-014-1190-5 CrossRefGoogle Scholar
  54. Moya CE, Raiber M, Taulis M, Cox ME (2015) Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach. Sci Total Environ 508:411–426CrossRefGoogle Scholar
  55. Mruma AH (2002) Structural evolution of the Kilombero Rift Basin in central Tanzania. Tanz J Sci 28(2):55–68Google Scholar
  56. Nyarko BK, Essumang DK, Eghan MJ, Reichert B, van de Giesen N, Vlek P (2010) Use of isotopes to study floodplain wetland and river flow interaction in the White Volta River basin, Ghana. Isot Environ Health S 46(1):91–106. doi: 10.1080/10256010903388543 CrossRefGoogle Scholar
  57. Paul H, Steinbrecher R (2013) African agricultural growth corridors and the new alliance for food security and nutrition. Who benefits, who loses? Technical report, EcoNexus, Oxford, UKGoogle Scholar
  58. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Sys Sci 11:1633–1644CrossRefGoogle Scholar
  59. Sakané N, Alvarez M, Becker M, Böhme B, Handa C, Kamiri H, Langensiepen M, Menz G, Misana S, Mogha N, Möseler B, Mwita E, Oyieke H, Van Wijk MT (2011) Classification, characterisation, and use of small wetlands in East Africa. Wetlands 31:1103–1116. doi: 10.1007/s13157-011-0221-4 CrossRefGoogle Scholar
  60. Shedlock RJ, Wilcox DA, Thompson TA, Cohen DA (1993) Interactions between ground water and wetlands, southern shore of Lake Michigan, USA. J Hydrol 141:127–155CrossRefGoogle Scholar
  61. Sikdar PK, Sahu P (2009) Understanding wetland sub-surface hydrology using geologic and isotopic signatures. Hydrol Earth Syst Sci 13:1313–1323. www.hydrol-earth-syst-sci.net/13/1313/2009/ CrossRefGoogle Scholar
  62. Turyahabwe N, Kakuru W, Tweheyo M, Tumusiime DM (2013) Contribution of wetland resources to household food security in Uganda. Agr Food Secur 2:5. doi: 10.1186/2048-7010-2-5 CrossRefGoogle Scholar
  63. UNEP (United Nations Environment Programme) (2009) UNEP 2008 Annual Report. UNON Publishing Section Services. http://www.unep.org/PDF/AnnualReport/2008/AnnualReport2008_en_web.pdf. Accessed
  64. USGS (US Geological Survey) (2017) EarthExplorer. http//.earthexplorer.usgs.gov. Accessed 2017
  65. Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103CrossRefGoogle Scholar
  66. WHO (World Health Organization) (2011) Guidelines for drinking-water quality, 4th edn. WHO Library Cataloguing-in-Publication Data, Gutenberg, Malta, 541 ppGoogle Scholar
  67. Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeological thought. Ground Water 38(3):423–429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sonja Burghof
    • 1
    Email author
  • Geofrey Gabiri
    • 2
  • Christine Stumpp
    • 3
  • Romain Chesnaux
    • 4
  • Barbara Reichert
    • 1
  1. 1.Steinmann Institute – GeologyRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Department of GeographyRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  3. 3.Institute of Groundwater Ecology, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
  4. 4.Department of Applied SciencesUniversité du Québec à ChicoutimiQuebecCanada

Personalised recommendations