Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 705–719 | Cite as

Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile

  • Konstantin ScheihingEmail author
  • Uwe Tröger
Paper
Part of the following topical collections:
  1. Climate-change research by early-career hydrogeologists

Abstract

The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to −25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to ~15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3–8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of ~2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of ~10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2–3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.

Keywords

Chile Climate change Land surface temperature Groundwater management 

Changement local de climat induit par la surexploitation des eaux souterraines d’un bassin versant andin élevé et aride, le bassin de Laguna Lagunillas, dans le nord du Chilli

Résumé

Le bassin de Laguna Lagunillas dans les Andes arides du nord du Chilli possède un aquifère peu profond et est. exposé aux variations extrêmes de température de l’air de ~20 à −25 °C. Entre 1991 et 2012, les niveaux d’eaux souterraines dans l’aquifère de Pampa Lagunillas, proches de la surface ont chuté au niveau de ~15 m sous le sol à cause d’une surexploitation importante. Dans la même période, les températures minimales mensuelles moyennes locales ont commencé une tendance à la baisse, chutant de 3 à 8 °C relativement à une station voisine de référence. En même temps, les températures maximales mensuelles moyennes d’été se sont décalées abruptement vers le haut de 2.7 °C en moyenne autour de 1996. Les variations ascendantes et descendantes observées de la température de l’air sont conformes aux anomalies détectées dans les images de la température de l’air à la surface du sol. Deux facteurs principaux peuvent causer le changement local de climat. L’un est. lié au déclin de la nappe au-dessous de l’énergie potentielle relative à l’évaporation à la profondeur de ~2 m/sol, qui entraine un réchauffement de la surface nue du sol et, alternativement, influence l’atmosphère inférieure. En même temps, le déplacement des eaux souterraines proches de la surface réduit la conductivité thermique de la couche sédimentaire supérieure, qui diminue par conséquent l’échange thermique entre la couche aquifère (source de chaleur constante de ~10 °C) et l’atmosphère inférieure pendant les nuits, menant à une chute importante des températures minimales de l’air. Le rabattement critique du niveau observé était de 2 à 3 m/sol. Les projets actuels et futurs de production d’eau en hauts bassins andins arides avec des eaux souterraines peu profondes devraient éviter un déclin de niveau de la nappe souterraines en-dessous de 2 m sous le sol et tenir compte des interactions eau-climat en identifiant et en surveillant des incidences potentielles sur l’environnement.

Cambio climático local inducido por la sobreexplotación de agua subterránea en una cuenca hidrográfica alto Andina, Laguna Lagunillas, norte de Chile

Resumen

La cuenca de la Laguna Lagunillas en los Andes áridos del norte de Chile exhibe un acuífero poco profundo y está expuesto a variaciones extremas de la temperatura del aire desde ~20 a − 25 °C. Entre 1991 y 2012, los niveles de agua subterránea en el acuífero de Pampa Lagunillas se profundizaron desde cerca de la superficie a ~ 15 m bajo el nivel del suelo (bgl) debido a una severa sobreexplotación. En el mismo período, las temperaturas mínimas mensuales locales iniciaron una tendencia a la baja, disminuyendo 3–8 °C con respecto a una estación de referencia cercana. Mientras tanto, las temperaturas máximas medias mensuales del verano cambiaron abruptamente aumentando 2.7 °C en promedio alrededor de 1996. Los descensos y los aumentos observados en la temperatura del aire están de acuerdo con las anomalías detectadas en las imágenes de temperatura de la superficie terrestre. Dos factores importantes pueden estar causando el cambio climático local. Uno se relaciona con la disminución del nivel freático por debajo de la profundidad de la desaparición del potencial de energía evaporativa de ~ 2 m bgl, lo que provoca un calentamiento de la superficie del suelo desnudo y, a su vez, influye en la baja atmósfera. Al mismo tiempo, la eliminación del agua subterránea cerca de la superficie reduce la conductividad térmica de la capa sedimentaria superior, lo que disminuye el intercambio de calor entre el acuífero (fuente de calor constante de ~ 10 °C) y la baja atmósfera durante las noches, que lleva a una caída severa de las temperaturas mínimas del aire. El nivel de agua crítico observado fue de 2–3 m bgl. Los proyectos futuros y existentes de producción de agua en las cuencas áridas de los altos Andinos con aguas subterráneas poco profundas deberían evitar una disminución del nivel del agua subterránea cercana a la superficie por debajo de 2 m bgl y tener en cuenta las interacciones entre el agua subterránea y el clima al identificar y monitorear posibles impactos ambientales.

智利北部拉古纳拉古尼亚斯盆地高安第斯河流域地下水过度开采导致的局部气候变化

摘要

位于智利北部干旱安第斯山脉的拉古纳拉古尼亚斯盆地呈现了浅层含水层,暴露于〜20〜-25°C的极端气温变化。在1991年至2012年间,由于严重的过度开发,Pampa Lagunillas含水层的地下水位从地表下降到地面以下约15m(bgl)。同期,当地平均月最低气温开始下降,下降3–8 °C。同时,平均每月最大夏季气温平均在1996年左右突然上升2.7 °C。观测到的气温下降和上升与地表温度图像的异常情况相符。两个主要因素可能导致当地气候变化。一个与水表下降到低于蒸发能量消失深度〜2 m bgl,这导致裸露土壤表面的加热,进而影响较低的大气。同时,去除近地表地下水降低了上层沉积层的导热性,从而降低了含水层(〜10°C的恒定热源)与夜晚的低层大气之间的热交换,导致最低气温严重下降。观察到的临界水位下降为2–3 m bgl。在具有浅层地下水的干旱高安第斯盆地的未来和现有的水资源生产项目应避免近地表水下水位低于2 m bgl的下降,并在确定和监测潜在的环境影响时考虑地下水 - 气候相互作用。

Mudança climática local induzida pela superexplotação de águas subterrâneas em uma bacia hidrográfica árida no alto Andino, bacia Laguna Lagunillas, norte do Chile

Resumo

A bacia Laguna Lagunillas nos Andes árido do Norte do Chile apresenta um aquífero raso e é exposta a variações de temperaturas do ar extremas de ~20 a −25 °C. Entre 1991 e 2012, os níveis das águas subterrâneas no aquífero Pampa Lagunillas decairam de próximo da superfície para ~15 m abaixo do nível do terreno (ant) devido a uma superexploração severa. No mesmo período a média mensal da temperatura mínima local iniciou uma tendência decrescente, caindo por volta de 3–8 °C relativo a uma estação de referência próxima. Enquanto isso, a média mensal das temperaturas máximas do verão mudou abruptamente para cima em 2.7 °C na média por volta de 1996. Os recuos e avanços da temperatura do ar observada estão de acordo com anomalias detectadas por imageamentos da temperatura de superfície. Dois fatores principais podem estar causando a mudança climática local. Um é relacionado ao declínio do nível freático abaixo da extinção da energia evaporativa potencial à profundidade de ~2 m ant que causa um aquecimento ascendente do solo nu na superfície e, por sua vez, influência a atmosfera inferior. Ao mesmo tempo, a remoção de águas subterrâneas próximas da superfície reduz a condutividade termal da camada sedimentar superior, que consequentemente diminui ao intercambio de calor entre o aquífero (fonte de calor constante de ~10 °C) e a atmosfera inferior durantes as noites, levando a uma queda severa das temperaturas mínimas do ar. Os níveis críticos de rebaixamento observados foram de 2–3 m ant. Projetos de produção de água existentes e futuros em bacias áridas do alto Andino com águas subterrâneas rasas devem evitar um declínio do nível das águas subterrâneas próximas à superfície abaixo de 2 m ant e considerar interações águas subterrâneas-climáticas ao identificar e monitorar potenciais impactos ambientais.

Notes

Acknowledgements

This study was financed by CONICYT (National Commission for Science and Technology, Chile). The first author appreciates the support of the Early Career Hydrogeologists’ Network (ECHN) of the International Association of Hydrogeologists (IAH). The authors would like to thank all involved reviewers who helped develop the final article by their constructive comments.

References

  1. Alkhaier F, Flerchinger GN, Su Z (2012a) Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description. Hydrol Earth Syst Sci 16(7):1817–1831. doi: 10.5194/hess-16-1817-2012 CrossRefGoogle Scholar
  2. Alkhaier F, Su Z, Flerchinger GN (2012b) Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS. Hydrol Earth Syst Sci 16(7):1833–1844. doi: 10.5194/hess-16-1833-2012 CrossRefGoogle Scholar
  3. Aravena D, Muñoz M, Morata D, Lahsen A, Parada MÁ, Dobson P (2016) Assessment of high enthalpy geothermal resources and promising areas of Chile. Geothermics 59:1–13. doi: 10.1016/j.geothermics.2015.09.001 CrossRefGoogle Scholar
  4. Barsi JA, Schott JR, Palluconi FD, Hook SJ, Butler JJ (2005) Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Observing Syst X:58820. doi: 10.1117/12.619990 Google Scholar
  5. Berg A, Lintner BR, Findell KL, Malyshev S, Loikith PC, Gentine P (2014) Impact of soil moisture–atmosphere interactions on surface temperature distribution. J Clim 27(21):7976–7993. doi: 10.1175/JCLI-D-13-00591.1 CrossRefGoogle Scholar
  6. Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22(6–7). doi: 10.1007/s00382-004-0402-4
  7. Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58(1–2):11–27. doi: 10.1016/0022-1694(82)90066-X CrossRefGoogle Scholar
  8. Cerveny RS, Skeeter BR, Dewey KF (1987) A preliminary investigation of a relationship between South American snow cover and the Southern Oscillation. Mon Weather Rev 115(2):620–623. doi: 10.1175/1520-0493(1987)115<0620:APIOAR>2.0.CO;2 CrossRefGoogle Scholar
  9. DGA (2015) Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea [Official online information: hydrometeorology and water quality]. http://snia.dga.cl/BNAConsultas/reportes. Accessed 20 December 2015
  10. Errol L. Montgomery and Associates. (2005) Resumen de los Resultados del Desarrollo y Aplicación de un Modelo de Flujo de Agua Subterránea en la Cuenca Salar de Lagunillas [Summary of results for the development and application of a groundwater flow model in the Salar de Lagunillas basin]. Calle Asturias no. 138, Montgomery, Santiago, ChileGoogle Scholar
  11. GFZ (2015) Access to GEOFON and EIDA data archives. http://eida.gfz-potsdam.de/webdc3/. Accessed 19 December 2015
  12. Hernández-López MF, Gironás J, Braud I, Suárez F, Muñoz JF (2014) Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels. Hydrol Process 28(10):3655–3669. doi: 10.1002/hyp.9912
  13. Herrera C, Custodio E, Chong G, Lamban LJ, Riquelme R, Wilke H, Jodar J, Urrutia J, Urqueta H, Sarmiento A, Gamboa C, Lictevout E (2016) Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci Total Environ 541:303–318. doi: 10.1016/j.scitotenv.2015.09.060 CrossRefGoogle Scholar
  14. Houston J (2006a) Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes. J Hydrol 330(3–4):402–412. doi: 10.1016/j.jhydrol.2006.03.036 CrossRefGoogle Scholar
  15. Houston J (2006b) Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int J Climatol 26(15):2181–2198. doi: 10.1002/joc.1359 CrossRefGoogle Scholar
  16. Jiménez-Muñoz JC, Sobrino JA (2003) A generalized single-channel method for retrieving land surface temperature from remote sensing data. J Geophys Res 108(D22). doi: 10.1029/2003JD003480
  17. Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Oxford Univ. Press, New YorkGoogle Scholar
  18. Kikuchi CP, Ferré TPA (2016) Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile. Hydrogeol J. doi: 10.1007/s10040-016-1472-1
  19. Lakshmi V, Jackson TJ, Zehrfuhs D (2003) Soil moisture-temperature relationships: results from two field experiments. Hydrol Process 17(15):3041–3057. doi: 10.1002/hyp.1275 CrossRefGoogle Scholar
  20. Larraín S, Poo P (2010) Conflictos por el agua en Chile-Entre los derechos humanos y las reglas de mercado [Water conflicts in Chile: between human rights and the rules of the free market], 1st edn. Chile Sustenable, Santiago, ChileGoogle Scholar
  21. Lavado Casimiro WS, Labat D, Ronchail J, Espinoza JC, Guyot JL (2012) Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965–2007). Hydrol Process. doi: 10.1002/hyp.9418
  22. Lehmann E (2006) Nonparametrics: statistical methods based on ranks 1st revised edn. Springer, New YorkGoogle Scholar
  23. Lo M-H, Famiglietti JS (2013) Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys Res Lett 40(2):301–306. doi: 10.1002/grl.50108 CrossRefGoogle Scholar
  24. Maxwell RM, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1(10):665–669. doi: 10.1038/ngeo315 CrossRefGoogle Scholar
  25. Montgomery E, Rosko M (1996) Groundwater exploration and wellfield development in the Pampa Lagunillas y Pampa Lirima areas, Iquique, Chile. Rev Geol Chile 23(2). doi: 10.5027/andgeoV23n2-a03
  26. NASA (2002) ASTER Surface kinetic temperature product indications. https://asterweb.jpl.nasa.gov/content/03_data/01_Data_Products/release_surface_kinetic_temperatur.htm. Accessed 26 February 2017
  27. NASA (2014) Atmospheric correction parameter calculator. http://atmcorr.gsfc.nasa.gov/. Accessed 3 March 2015
  28. NASA (2017) Advanced spaceborne thermal emission and reflection radiometer (ASTER). https://asterweb.jpl.nasa.gov/. Accessed 7 March 2017
  29. NASA LP DAAC (2017) ASTER Level 2 surface temperature product retrieval. https://search.earthdata.nasa.gov/. Accessed 26 February 2017
  30. ODEA (2016) Observatorio del Agua [Water resources observatory]. www.odea.cl. Accessed 7 December 2016
  31. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126. doi: 10.2307/2346729 CrossRefGoogle Scholar
  32. PUC (2009) Levantamiento Hidrogeológico para el Desarrollo de nuevas fuentes de Agua en áreas prioritarias de la zona norte de Chile, Regiones XV, I, II y III [Hydrogeological study for the development of new water resources in northern zones of Chile, regions XV, I, II and III]. documentos.dga.cl/REH5161v4.pdf. Accessed 13 May 2016
  33. Reyes N, Vidal A (2011) Geothermal exploration at Irruputuncu and Olca volcanoes: pursuing a sustainable mining development in Chile. GRC Trans 35:983–986 Google Scholar
  34. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63(3–4):249–293. doi: 10.1016/S0012-8252(03)00037-0 CrossRefGoogle Scholar
  35. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2 CrossRefGoogle Scholar
  36. Sanchez-Alfaro P, Sielfeld G, van Campen B, Dobson P, Fuentes V, Reed A, Palma-Behnke R, Morata D (2015) Geothermal barriers, policies and economics in Chile: lessons for the Andes. Renew Sust Energ Rev 51:1390–1401. doi: 10.1016/j.rser.2015.07.001 CrossRefGoogle Scholar
  37. Scheihing KW, Moya CE, Tröger U (2017) Insights into Andean slope hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile. Hydrogeol J 119(2):33. doi: 10.1007/s10040-017-1533-0 Google Scholar
  38. SEA (2014) Informe Consolidado N° 2 de Solicitud de Aclaraciones, Rectificaciones y/o Ampliaciones al Estudio de Impacto Ambiental del Proyecto “Proyecto Continuidad Operacional Cerro Colorado” Second consolidated report: request for clarification, rectification and/or amplification of the environmental impact study of the project “Operational continuation project of Cerro Colorado)”. http://infofirma.sea.gob.cl/DocumentosSEA/MostrarDocumento?docId=70/4c/3458d2195a9a0439fd12881b7b693532e730. Accessed 26 February 2017
  39. Sernageomin (2003) Geological map of Chile: digital version, 1:1,000,000. www.ipgp.fr/~dechabal/Geol-millon.pdf. Accessed 17 May 2016
  40. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K-S, Yoccoz NG, Adlandsvik B (2003) Review article: studying climate effects on ecology through the use of climate indices—the North Atlantic oscillation, El Nino Southern Oscillation and beyond. Proc Biol Sci 270(1529):2087–2096. doi: 10.1098/rspb.2003.2415 CrossRefGoogle Scholar
  41. Tassi F, Aguilera F, Darrah T, Vaselli O, Capaccioni B, Poreda RJ, Delgado Huertas A (2010) Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapacá and Antofagasta regions (northern Chile). J Volcanol Geotherm Res 192(1–2):1–15. doi: 10.1016/j.jvolgeores.2010.02.006 CrossRefGoogle Scholar
  42. Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Mon Weather Rev 112(2):326–332. doi: 10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2 CrossRefGoogle Scholar
  43. Uribe J, Muñoz JF, Gironás J, Oyarzún R, Aguirre E, Aravena R (2015) Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin. Chile Hydrogeol J. doi: 10.1007/s10040-015-1300-z
  44. USGS (2017) Landsat data retrieval. http://glovis.usgs.gov/. Accessed 7 March 2017
  45. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, BerlinCrossRefGoogle Scholar
  46. Whan K, Zscheischler J, Orth R, Shongwe M, Rahimi M, Asare EO, Seneviratne SI (2015) Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim Extremes 9:57–67. doi: 10.1016/j.wace.2015.05.001 CrossRefGoogle Scholar
  47. Yáñez Fuenzalida N, Molina Otárola R (2008) La gran minería y los derechos indígenas en el norte de Chile [Big mining and the rights of indigenous people in northern Chile], 1st edn. Ciencias humanas. Estado y pueblos indígenas, LOM, SantiagoGoogle Scholar
  48. Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218. doi: 10.1023/B:WARM.0000043140.61082.60 CrossRefGoogle Scholar
  49. Zeng Y, Xie Z, Yu Y, Liu S, Wang L, Zou J, Qin P, Jia B (2016) Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J Adv Model Earth Syst 8(3):1106–1131. doi: 10.1002/2016MS000646 CrossRefGoogle Scholar
  50. Zeng Y, Xie Z, Zou J (2017) Hydrologic and climatic responses to global anthropogenic groundwater extraction. J Clim 30(1):71–90. doi: 10.1175/JCLI-D-16-0209.1 CrossRefGoogle Scholar
  51. Zou J, Xie Z, Yu Y, Zhan C, Sun Q (2014) Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River basin, northern China. Clim Dyn 42(7–8):2125–2145. doi: 10.1007/s00382-013-1995-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Applied Geosciences, Hydrogeology Research GroupTechnische Universität BerlinBerlinGermany

Personalised recommendations