Advertisement

Hydrogeology Journal

, Volume 25, Issue 5, pp 1237–1240 | Cite as

Contrasting definitions for the term ‘karst aquifer’

  • Stephen R. H. Worthington
  • Pierre-Yves Jeannin
  • E. Calvin AlexanderJr
  • Gareth J. Davies
  • Geary M. Schindel
Essay

Abstract

It is generally considered that karst aquifers have distinctly different properties from other bedrock aquifers. A search of the literature found five definitions that have been proposed to differentiate karst aquifers from non-karstic aquifers. The five definitions are based upon the presence of solution channel networks, hydraulic conductivities >10−6 m/s, karst landscapes, channels with turbulent flow, and caves. The percentage of unconfined carbonate aquifers that would classify as ‘karst’ ranges from <1 to >50%.

Keywords

Karst Conceptual models Dual porosity Carbonate rocks Silicate rocks 

Définitions contrastées pour le terme ‘aquifère karstique’

Résumé

On considère généralement que les aquifères karstiques ont des propriétés nettement différentes des autres aquifères rocheux. Une recherche bibliographique a trouvé cinq définitions qui ont été proposées pour différencier les aquifères karstiques des aquifères non karstiques. Les cinq définitions sont basées sur la présence de réseaux de conduits de dissolution, des conductivités hydrauliques supérieures à 10−6 m/s, des paysages karstiques, des conduits avec un écoulement turbulent, et des cavités. Le pourcentage d’aquifères carbonatés libres qui serait classé en tant que ‘karst’ varie de <1 à >50%.

Definiciones contrastantes para el término ‘acuífero kárstico’

Resumen

Generalmente se considera que los acuíferos kársticos tienen propiedades claramente distintas de otros acuíferos de la roca de base. Una búsqueda de la literatura encontró cinco definiciones que se han propuesto para diferenciar los acuíferos kársticos de los acuíferos no kársticos. Las cinco definiciones se basan en la presencia de redes de canales de disolución, conductividades hidráulicas >10−6 m/s, paisajes kársticos, canales con flujo turbulento y cuevas. El porcentaje de acuíferos carbonáticos no confinados que se clasificarían como “kársticos” oscilan entre <1 y > 50%.

术语“岩溶含水层”定义对比

摘要

通常认为岩溶含水层与其它基岩含水层相比具有明显不同的特性。文献搜索发现,从非岩溶含水层中区别岩溶含水层有五种定义。五种定义立足于存在着溶解通道网络、水力传导率 > 10−6 米/秒、岩溶景观、具有湍流的通道和洞穴。归为“岩溶”的非承压碳酸盐含水层的百分比范围为 < 1 到 >50%。

Definições contrastantes para o termo “aquífero cárstico”

Resumo

Considera-se, geralmente, que os aquíferos cársticos têm propriedades diferentes de outros aquíferos rochosos. Uma pesquisa na literatura encontrou cinco definições que foram propostas para diferenciar os aquíferos cársticos dos aquíferos não-cársticos. As cinco definições baseiam-se na presença de redes de canais de solução, condutividades hidráulicas >10−6 m/s, paisagens cársticas, canais com fluxo turbulento e cavernas. A porcentagem de aquíferos livres carbonáticos que se classificariam como “carste” varia de <1 a > 50%.

Notes

Acknowledgements

The authors are grateful to Derek Ford and to three anonymous reviewers for comments on the manuscript.

Supplementary material

10040_2017_1628_MOESM1_ESM.pdf (557 kb)
ESM 1 (PDF 557 kb)

References

  1. Atkinson TC, Smart PL (1981) Artificial tracers in hydrogeology. In: A survey of British hydrogeology 1980. Royal Soc, London, pp 173–190Google Scholar
  2. Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci J 38:51–62CrossRefGoogle Scholar
  3. Chabert C, Courbon P (1997) Atlas des cavités non calcaire du monde [Atlas of the non-calcareous cavities of the world]. Union Internationale de Spéléologie. http://www.uis-speleo.org. Accessed June 2017
  4. Chen Z, Auler AS, Bakalowicz M, Drew D, Griger F, Hartmann J, Jiang G, Moosdorf N, Richts A, Stevanovic Z, Veni G, Goldscheider N (2017) The world karst aquifer mapping project: concept, mapping procedure and map of Europe. Hydrogeol J 25:771–785CrossRefGoogle Scholar
  5. Curl RL (1986) Fractal dimensions and geometries of caves. Math Geol 18:765–783CrossRefGoogle Scholar
  6. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, EnglandCrossRefGoogle Scholar
  7. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  8. Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH, van Beek LPH, Jellinek AM (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 46:L02401. doi: 10.1029/2010GL045565 Google Scholar
  9. Granger DE, Fabel D, Palmer AN (2001) Pliocene-Pleistocene incision the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in mammoth cave sediments. Geol Soc Am Bull 113:825–836CrossRefGoogle Scholar
  10. Gunn J (2004) Encyclopedia of caves and karst science. Fitzroy Dearborn, N YGoogle Scholar
  11. Huntoon PW (1995) Is it appropriate to apply porous media groundwater circulation models to karstic aquifers? In: El-Kadi AI (ed) Groundwater models for resources analysis and management. Lewis, Boca Raton, FL, pp 339–358Google Scholar
  12. Hyman JD, Painter SL, Viswanathan H, Makedonska N, Karra S (2015) Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resour Res 51:7289–7308CrossRefGoogle Scholar
  13. Jeannin PY (1992) Géométrie des réseaux de drainage karstique: approche structurale, statistique et fractale [Geometry of karstic drainage networks: structural, statistical and fractal approach]. Ann Sci Univer Besançon 11:1–8Google Scholar
  14. Kiraly L (1975) Rapport sur l'état actuel des connaissances dans le domaine des charactères physiques des roches karstiques [Report on the current state of knowledge in the field of physical characteristics of karstic rocks]. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. Int. Union Geol. Sci., Series B, no. 3, pp 53–67Google Scholar
  15. Klimchouk A (2015) The karst paradigm: changes, trends and perspectives. Acta Carsolog 44:289–313Google Scholar
  16. Kresic N (2013) Water in karst: management, vulnerability, and restoration. McGraw-Hill, New YorkGoogle Scholar
  17. Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, not to unloading, but to weathering processes. Terra Nova 23:145–161CrossRefGoogle Scholar
  18. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18:645–658CrossRefGoogle Scholar
  19. Maurice LD, Atkinson TC, Barker JA, Williams AT, Gallagher AJ (2012) The nature and distribution of flowing features in a weakly karstified porous limestone aquifer. J Hydrol 438-439:3–15CrossRefGoogle Scholar
  20. Piccini L, Mecchia M (2009) Solution weathering rate and origin of karst landforms and caves in the quartzite of Auyan-tepui (Gran Sabana, Venezuela). Geomorphology 106:15–25CrossRefGoogle Scholar
  21. Price M, Morris B, Robertson A (1982) A study of intergranular and fissure permeability in chalk and Permian aquifers, using double packer injection testing. J Hydrol 54:401–423CrossRefGoogle Scholar
  22. Quinlan JF, Davies GJ, Jones SJ, Huntoon PW (1996) The applicability of numerical models to adequately characterize ground-water flow in karstic and other triple-porosity aquifers. In: Ritchey JD, Rumbaugh JO (eds) Subsurface fluid-flow (ground-water) modeling. ASTM STP 1288, American Society for Testing and Materials, West Conshohocken, PA, pp 114–133Google Scholar
  23. Schürch M, Buckley D (2002) Integrating geophysical and hydrochemical borehole-log measurements to characterize the chalk aquifer, Berkshire, United Kingdom. Hydrogeol J 10:610–627CrossRefGoogle Scholar
  24. Waltham T, Bell FG, Culshaw MG (2005) Sinkholes and subsidence. Springer, Heidelberg, GermanyGoogle Scholar
  25. Weary DJ, Doctor DH (2015) Karst mapping in the United States: past, present, and future. Geol Soc Am Spec Pap 516:35–48Google Scholar
  26. Willems L, Compère P, Hatert F, Pouclet A, Vicat JP, Ek C, Boulvain F (2002) Karst in granitic rocks, South Cameroon: cave genesis and silica and taranakite speleothems. Terra Nova 14:355–362CrossRefGoogle Scholar
  27. Worthington SRH (2015a) Characteristics of channel networks in unconfined carbonate aquifers. Geol Soc Am Bull 125:759–769CrossRefGoogle Scholar
  28. Worthington SRH (2015b) Diagnostic tests for conceptualizing transport in bedrock aquifers. J Hydrol 529:365–372CrossRefGoogle Scholar
  29. Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47:326–336CrossRefGoogle Scholar
  30. Worthington SRH, Davies GJ, Alexander EC Jr (2016) Enhancement of bedrock permeability by weathering. Earth-Sci Rev 160:188–202CrossRefGoogle Scholar
  31. Wray RAL (1997) A global review of solutional weathering forms on quartz sandstones. Earth-Sci Rev 42:137–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Stephen R. H. Worthington
    • 1
  • Pierre-Yves Jeannin
    • 2
  • E. Calvin AlexanderJr
    • 3
  • Gareth J. Davies
    • 4
  • Geary M. Schindel
    • 5
  1. 1.Worthington GroundwaterDundasCanada
  2. 2.Swiss Institute for Speleology and Karst StudiesLa Chaux-de-FondsSwitzerland
  3. 3.Department of Earth SciencesUniversity of MinnesotaMinneapolisUSA
  4. 4.Tennessee Department of Environment and ConservationOak RidgeUSA
  5. 5.Edwards Aquifer AuthoritySan AntonioUSA

Personalised recommendations