Advertisement

Hydrogeology Journal

, Volume 25, Issue 4, pp 1017–1031 | Cite as

Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy

  • Antonio BucciEmail author
  • Emma Petrella
  • Fulvio Celico
  • Gino Naclerio
Paper

Abstract

Waterborne pathogens represent a significant health risk in both developed and developing countries with sensitive sub-populations including children, the elderly, neonates, and immune-compromised people, who are particularly susceptible to enteric infections. Annually, approximately 1.8 billion people utilize a faecally contaminated water source, and waterborne diseases are resulting in up to 2.1 million human mortalities globally. Although groundwater has traditionally been considered less susceptible to contamination by enteric pathogens than surface water due to natural attenuation by overlying strata, the degree of microbial removal attributable to soils and aquifers can vary significantly depending on several factors. Thus, accurate assessment of the variable presence and concentration of microbial contaminants, and the relative importance of potentially causative factors affecting contaminant ingress, is critical in order to develop effective source (well) and resource (aquifer) protection strategies. “Traditional” and molecular microbiological study designs, when coupled with hydrogeological, hydrochemical, isotopic, and geophysical methods, have proven useful for analysis of numerous aspects of subsurface microbial dynamics. Accordingly, this overview paper presents the principal microbial techniques currently being employed (1) to predict and identify sources of faecal contamination in groundwater, (2) to elucidate the dynamics of contaminant migration, and (3) to refine knowledge about the hydrogeological characteristics and behaviours of aquifer systems affected by microbial contamination with an emphasis on carbonate aquifers, which represent an important global water supply. Previous investigations carried out in carbonate aquifers in southern Italy are discussed.

Keywords

Groundwater protection Contamination Microbial techniques Carbonate rocks Health 

Utilisation des approches moléculaires dans les études hydrogéologiques: le cas des aquifères calcaires dans le sud de l’Italie

Résumé

Les agents pathogènes d’origine hydrique représentent un risqué important pour la santé aussi bien dans les pays développés que dans les pays en développement avec des sous-populations sensibles notamment les enfants, les personnes âgées, les nouveaux nés, et les personnes immunodéprimées, qui sont particulièrement sensibles aux infections entériques. Chaque année, environ 1.8 milliard de personnes utilisent une source d’eau contaminée par des déchets fécaux, et les maladies transmises par l’eau entrainent jusqu’à 2.1 millions de décès de personnes dans le monde. Bien que les eaux souterraines aient traditionnellement été considérées comme moins sensibles à la contamination par les pathogènes entériques que les eaux de surface en raison de l’atténuation naturelle lors de l’infiltration au sein des couches géologiques supérieures, le degré d’élimination microbienne attribuable au sol et aux aquifères peut varier de manière significative selon plusieurs facteurs. Ainsi, une évaluation précise de la présence et de la concentration variable des contaminants microbiens, et de l’importance relative des potentiels facteurs de causalité qui influent sur la pénétration des contaminants, est essentielle pour développer des stratégies efficaces de protection des sources (puits) et des ressources (aquifères). Les méthodologies « traditionnelles » et de microbiologie moléculaire, associées aux méthodes hydrogéologiques, hydrochimiques, isotopiques, et géophysiques, se sont révélées utiles pour l’analyse de nombreux aspects de la dynamique microbienne souterraine. Par conséquent, cet article présente les principales techniques microbiennes actuellement utilisées (1) pour prédire et identifier les sources de contamination fécale dans les eaux souterraines, (2) pour élucider la dynamique de migration des contaminants, et (3) pour affiner les connaissances relatives aux caractéristiques hydrogéologiques et aux comportements des systèmes aquifères affecté par une contamination microbienne, en mettant l’accent sur les aquifères carbonatés, qui représentent une importante source d’approvisionnement en eau potable à l’échelle mondiale. Des recherches antérieures réalisées dans les aquifères carbonatés du Sud de l’Italie sont discutées.

Uso de enfoques moleculares en estudios hidrogeológicos: el caso de los acuíferos carbonáticos en el sur de Italia

Resumen

Los patógenos transmitidos por el agua representan un riesgo significativo para la salud en países desarrollados y en desarrollo con subpoblaciones sensibles que incluyen niños, ancianos, neonatos y personas inmunocomprometidas, que son particularmente susceptibles a las infecciones entéricas. Anualmente, aproximadamente 1.8 billones de personas utilizan una fuente de agua contaminada por contaminantes fecales, y las enfermedades transmitidas por el agua están causando hasta 2.1 millones de muertes humanas en todo el mundo. Aunque el agua subterránea ha sido tradicionalmente considerada menos susceptible que el agua superficial a la contaminación por patógenos entéricos debido a la atenuación natural por los estratos suprayacentes, el grado de eliminación microbiana atribuible a los suelos y acuíferos puede variar significativamente dependiendo de varios factores. Por lo tanto, una evaluación precisa de la presencia y la concentración variable de contaminantes microbianos, y la importancia relativa de factores potencialmente causales que influyen en la entrada de contaminantes, es crítica para desarrollar estrategias efectivas de protección de fuentes (pozos) y recursos (acuíferos). Los diseños de estudios microbiológicos “tradicionales” y moleculares, junto con métodos hidrogeológicos, hidroquímicos, isotópicos y geofísicos, han demostrado ser útiles para el análisis de numerosos aspectos de la dinámica microbiana subterránea. En este trabajo se presentan las principales técnicas microbianas utilizadas actualmente (1) para predecir e identificar fuentes de contaminación fecal en agua subterránea, (2) para dilucidar la dinámica de la migración de contaminantes, y (3) para refinar el conocimiento sobre las características y comportamientos hidrogeológicos de los sistema acuíferos afectados por la contaminación microbiana con un énfasis en los acuíferos carbonáticos, que representan un importante suministro de agua a nivel mundial. Se discuten investigaciones previas realizadas en acuíferos carbonáticos en el sur de Italia.

水文地质研究中分子方法的使用:意大利南部碳酸盐岩含水层的研究实例

摘要

水生病原体在发达国家和发展中国家对特别容易受到肠道感染的敏感亚群体包括儿童、老人、新生儿以及缺乏免疫的人群具有很大的健康风险。每年大约18亿人在使用粪便污染的水源,每年水传播疾病导致全球210万人死亡。尽管传统上认为,由于上伏地层的自然稀释,地下水与地表水相比不容易受到污染,但土壤和含水层中的微生物消除程度变化非常大,取决于好几个因素。因此,精确评价微生物污染物存在的变化情况及其含量、以及影响污染物进入的潜在因素的相对重要性至关重要,为的就是提出有效的水源(井)和资源(含水层)保护策略。“传统的”和分子微生物研究设计与水文地质、水化学、同位素以及地球物理方法结合一起时,就能证明对于分析地表之下微生物动力学的众多方面非常有用。因此,本篇综述性文章展示了目前采用的主要微生物技术:(1)预测和确认地下水中的粪便污染源;(2)阐明污染物运移的动力学;(3)提炼受到微生物污染的含水层系统水文地质特征和习性方面的知识,重点放在代表全球重要供水水源的碳酸盐岩含水层上。还论述了先前在意大利南部对碳酸盐岩含水层进行的调查。

Uso de abordagens moleculares em estudos hidrogeológicos: o caso dos aquíferos carbonáticos do sul da Itália

Resumo

Patógenos transmitidos pela água representam um risco à saúde significante tanto em países desenvolvidos quanto em desenvolvimento com subpopulações sensíveis incluindo crianças, idosos, neonatos, e pessoas com imunidade comprometida, que são particularmente susceptíveis a infecções entéricas. Anualmente, aproximadamente 1.8 bilhão de pessoas utilizam fontes de água contaminadas por organismos fecais, e doenças de vinculação hídrica tem resultado em mais de 2.1 milhões de mortes globalmente. Apesar das águas subterrâneas terem sido consideradas tradicionalmente menos susceptíveis à contaminação por patógenos entéricos que as águas superficiais devido à atenuação natural dos estratos de cobertura, o grau de remoção microbiana atribuível ao solo e aos aquíferos pode variar significativamente dependendo de diversos fatores. Consequentemente, a avaliação precisa da presença variável e da concentração de contaminantes microbianos, e a importância relativa de fatores potencialmente causais que afetam a entrada de contaminantes, é crítica para desenvolver estratégias eficazes de proteção de fontes (poço) e recursos (aquíferos). Os projetos de estudos microbiológicos “tradicionais” e moleculares, quando combinados com métodos hidrogeológicos, hidroquímicos, isotópicos e geofísicos, têm se mostrado úteis para a análise de vários aspectos da dinâmica microbiana subterrânea. Assim, este artigo de síntese apresenta as principais técnicas microbianas atualmente utilizadas (1) para prever e identificar fontes de contaminação fecal em águas subterrâneas, (2) para elucidar a dinâmica de migração de contaminantes, e (3) para aperfeiçoar o conhecimento sobre as características e comportamentos hidrogeológicos de sistemas aquíferos afetados pela contaminação microbiana, com ênfase nos aquíferos carbonáticos, que representam um importante suprimento de água global. Investigações anteriores realizadas em aquíferos de carbonatos no sul da Itália são discutidas.

Notes

Acknowledgements

We are grateful to Paul Dylan Hynds and anonymous reviewers for their valuable comments and suggestions, which contributed to the improvement of this manuscript.

References

  1. Ahmed W, Goonetilleke A, Powell D, Gardner T (2009) Evaluation of multiple sewage-associated Bacteroides PCR markers for sewage pollution tracking. Water Res 43(19):4872–4877. doi: 10.1016/j.watres.2009.08.042 CrossRefGoogle Scholar
  2. Ahmed W, Sidhu JPS, Toze S (2012) Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in southeast Queensland, Australia. Environ Sci Technol 46(1):543–550. doi: 10.1021/es203372u CrossRefGoogle Scholar
  3. Ahmed W, Sritharan T, Palmer A, Sidhu JP, Toze S (2013) Evaluation of bovine feces-associated microbial source tracking markers and their correlations with fecal indicators and zoonotic pathogens in a Brisbane, Australia, reservoir. Appl Environ Microbiol 79(8):2682–2691. doi: 10.1128/AEM.03234-12 CrossRefGoogle Scholar
  4. Ahmed W, Staley C, Sadowsky MJ, Gyawali P, Sidhu JP, Palmer A, Beale DJ, Toze S (2015) Toolbox approaches using molecular markers and 16S rRNA gene amplicon data sets for identification of fecal pollution in surface water. Appl Environ Microbiol 81(20):7067–7077. doi: 10.1128/AEM.02032-15 CrossRefGoogle Scholar
  5. Ahmed W, Hughes B, Harwood VJ (2016) Current status of marker genes of Bacteroides and related taxa for identifying sewage pollution in environmental waters. Water 8(6):231. doi: 10.3390/w8060231 CrossRefGoogle Scholar
  6. Albinana-Gimenez N, Miagostovich MP, Calgua B, Huguet JM, Matia L, Girones R (2009) Analysis of adenoviruses and polyomaviruses quantified by qPCR as indicators of water quality in source and drinking-water treatment plants. Water Res 43(7):2011–2019. doi: 10.1016/j.watres.2009.01.025 CrossRefGoogle Scholar
  7. Allocca V, Celico F, Petrella E, Marzullo G, Naclerio G (2008) The role of land use and environmental factors on microbial pollution of mountainous limestone aquifers. Environ Geol 55(2):277–283. doi: 10.1007/s00254-007-1002-5 CrossRefGoogle Scholar
  8. Andreo B, Liñán C, Carrasco F, Jiménez de Cisneros C, Caballero F, Mudry J (2004) Influence of rainfall quantity on the isotopic composition (18O and 2H) of water in mountainous areas: application for groundwater research in the Yunquera-Nieves karst aquifers (S Spain). Appl Geochem 19(4):561–574. doi: 10.1016/j.apgeochem.2003.08.002 CrossRefGoogle Scholar
  9. Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux J (2015) Hydrogeological and environmental investigations in karst systems. Springer, BerlinCrossRefGoogle Scholar
  10. Aquilina L, Ladouche B, Dörfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327(3–4):472–485. doi: 10.1016/j.jhydrol.2005.11.054 CrossRefGoogle Scholar
  11. Armon R, Kott Y (1996) Bacteriophages as indicators of pollutions. Crit Rev Environ Sci Technol 26(4):299–335. doi: 10.1080/10643389609388494 CrossRefGoogle Scholar
  12. Bain R, Cronk R, Hossain R, Bonjour S, Onda K, Wright J, Yang H, Slaymaker T et al (2014) Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop Med Int Health 19(8):917–927. doi: 10.1111/tmi.12334 CrossRefGoogle Scholar
  13. Beller M, Ellis A, Lee SH, Drebot MA, Jenkerson SA, Funk E, Sobsey MD, Simmons OD et al (1997) Outbreak of viral gastroenteritis due to a contaminated well: international consequences. J Am Med Assoc 278(7):563–568. doi: 10.1001/jama.1997.03550070055038 CrossRefGoogle Scholar
  14. Bernhard AE, Field KG (2000) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66(4):1587–1594. doi: 10.1128/AEM.66.4.1587-1594.2000 CrossRefGoogle Scholar
  15. Bernhard AE, Goyard T, Simonich MT, Field KG (2003) Application of a rapid method for identifying fecal pollution sources in a multi-use estuary. Water Res 37(4):909–913. doi: 10.1016/S0043-1354(02)00384-6 CrossRefGoogle Scholar
  16. Borchardt MA, Bertz PD, Spencer SK, Battigelli DA (2003) Incidence of enteric viruses in groundwater from household wells in Wisconsin. Appl Environ Microbiol 69(2):1172–1180. doi: 10.1128/AEM.69.2.1172-1180.2003 CrossRefGoogle Scholar
  17. Borrego JJ, Moriñigo MA, de Vicente A, Córnax R, Romero P (1987) Coliphages as an indicator of fecal pollution in water: its relationship with indicator and pathogenic microorganisms. Water Res 21(12):1473–1480. doi: 10.1016/0043-1354(87)90130-8 CrossRefGoogle Scholar
  18. Bucci A, Naclerio G, Allocca V, Celico P, Celico F (2011) Potential use of microbial community investigations to analyze hydrothermal systems behaviour: the case of Ischia Island, southern Italy. Hydrol Process 25(12):1866–1873. doi: 10.1002/hyp.7942 CrossRefGoogle Scholar
  19. Bucci A, Petrella E, Naclerio G, Gambatese S, Celico F (2014) Bacterial migration through low-permeability fault zones in compartmentalised aquifer systems: a case study in southern Italy. Int J Speleol 43(3):273–281. doi: 10.5038/1827-806X.43.3.4 CrossRefGoogle Scholar
  20. Bucci A, Allocca V, Naclerio G, Capobianco G, Divino F, Fiorillo F, Celico F (2015a) Winter survival of microbial contaminants in soil: an in situ verification. J Environ Sci 27:131–138. doi: 10.1016/j.jes.2014.07.021 CrossRefGoogle Scholar
  21. Bucci A, Petrella E, Naclerio G, Allocca V, Celico F (2015b) Microorganisms as contaminants and natural tracers: a 10-year research in some carbonate aquifers (southern Italy). Environ Earth Sci 74(1):173–184. doi: 10.1007/s12665-015-4043-1 CrossRefGoogle Scholar
  22. Cantera JL, Chen W, Yates MV (2010) Detection of infective poliovirus by a simple, rapid, and sensitive flow cytometry method based on fluorescence resonance energy transfer technology. Appl Environ Microbiol 76(2):584–588. doi: 10.1128/AEM.01851-09 CrossRefGoogle Scholar
  23. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624. doi: 10.1038/ismej.2012.8 CrossRefGoogle Scholar
  24. Celico P (1983) Le risorse idriche sotterranee dell’Appennino carbonatico centro-meridionale [Groundwater resources in the carbonate south-central Apennines]. Idrotecnica 1:3–18Google Scholar
  25. Celico F, Celico P, De Vita P, Piscopo V (2000) Groundwater flow and protection in the Southern Apennines (Italy). Hydrogeology 4:39–47Google Scholar
  26. Celico F, Varcamonti M, Guida M, Naclerio G (2004) Influence of precipitation and soil on transport of fecal enterococci in limestone aquifers. Appl Environ Microbiol 70(5):2843–2847. doi: 10.1128/AEM.70.5.2843-2847.2004 CrossRefGoogle Scholar
  27. Celico F, Petrella E, Celico P (2006) Hydrogeological behaviour of some fault zones in a carbonate aquifer of southern Italy: an experimentally based model. Terra Nov. 18(5):308–313. doi: 10.1111/j.1365-3121.2006.00694.x
  28. Celico F, Capuano P, De Felice V, Naclerio G (2008) Hypersaline groundwater genesis assessment through a multidisciplinary approach: the case of Pozzo del Sale spring (southern Italy). Hydrogeol J 16(7):1441–1451. doi: 10.1007/s10040-008-0305-2 CrossRefGoogle Scholar
  29. Celico F, Naclerio G, Bucci A, Nerone V, Capuano P, Carcione M, Allocca V, Celico P (2010) Influence of pyroclastic soil on epikarst formation: a test study in southern Italy. Terra Nov. 22(2):110–115. doi: 10.1111/j.1365-3121.2009.00923.x
  30. Celle-Jeanton H, Emblanch C, Mudry J, Charmoille A (2003) Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO3 ) to understand the role of the unsaturated zone: a case study—karst aquifer in the Doubs valley, eastern France. Geophys Res Lett 30(6):1322. doi: 10.1029/2002GL016781 CrossRefGoogle Scholar
  31. Cocolin L, Alessandria V, Dolci P, Gorra R, Rantsiou K (2013) Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol 167(1):29–43. doi: 10.1016/j.ijfoodmicro.2013.05.008 CrossRefGoogle Scholar
  32. Cole D, Long SC, Sobsey MD (2003) Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol 69(11):6507–6514. doi: 10.1128/AEM.69.11.6507-6514.2003 CrossRefGoogle Scholar
  33. COST 65 (1995) Hydrogeological aspects of groundwater protection in karstic areas, EUR 16547. European Commission, Directorate-General XII Science, Research and Development, Brussels, 446 ppGoogle Scholar
  34. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26(2):162–164. doi: 10.1038/nbt0208-162 CrossRefGoogle Scholar
  35. Dalu T, Barson M, Nhiwatiwa T (2011) Impact of intestinal microorganisms and protozoan parasites on drinking water quality in Harare, Zimbabwe. J Water Sanit Hyg Dev 1(3):153–163. doi: 10.2166/washdev.2011.049 CrossRefGoogle Scholar
  36. Di Gennaro A, Aronne G, De Mascellis R, Vingiani S (2002) I sistemi di terre della Campania (1:250.000) [The land systems of Campania (1:250,000)]. Selca, Florence, ItalyGoogle Scholar
  37. Diston D, Sinreich M, Zimmermann S, Baumgartner A, Felleisen R (2015) Evaluation of molecular- and culture-dependent MST markers to detect fecal contamination and indicate viral presence in good quality groundwater. Environ Sci Technol 49(12):7142–7151. doi: 10.1021/acs.est.5b00515 CrossRefGoogle Scholar
  38. Drogue C (1992) Hydrodynamics of karstic aquifers: experimental sites in the Mediterranean karst, southern France. In: Back W (ed) Hydrogeology of selected karst regions. Heise, Hannover, Germany, pp 133–149Google Scholar
  39. FAO (1988) Soil map of the world, revised legend. World Soil Resources report 60. FAO, RomeGoogle Scholar
  40. FAO (2006) Guidelines for soil description. FAO, RomeGoogle Scholar
  41. Farnleitner AH, Wilhartitz I, Ryzinska G, Kirschner AKT, Stadler H, Burtscher MM, Hornek R, Szewzyk U et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7(8):1248–1259. doi: 10.1111/j.1462-2920.2005.00810.x CrossRefGoogle Scholar
  42. Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41(16):3517–3538. doi: 10.1016/j.watres.2007.06.056 CrossRefGoogle Scholar
  43. Fong TT, Griffin DW, Lipp EK (2005) Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking. Appl Environ Microbiol 71(4):2070–2078. doi: 10.1128/AEM.71.4.2070-2078.2005 CrossRefGoogle Scholar
  44. Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKGoogle Scholar
  45. Franz E, Semenov AV, Termorshuizen AJ, de Vos OJ, Bokhorst JG, van Bruggen AHC (2008) Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ Microbiol 10(2):313–327. doi: 10.1111/j.1462-2920.2007.01453.x CrossRefGoogle Scholar
  46. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372. doi: 10.1038/nrmicro3451 CrossRefGoogle Scholar
  47. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105(10):3805–3810. doi: 10.1073/pnas.0708897105 CrossRefGoogle Scholar
  48. Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43(8):1621–1625. doi: 10.1016/j.soilbio.2010.11.021 CrossRefGoogle Scholar
  49. Gensberger ET, Polt M, Konrad-Köszler M, Kinner P, Sessitsch A, Kostić T (2014) Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Res 67:367–376. doi: 10.1016/j.watres.2014.09.022 CrossRefGoogle Scholar
  50. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63. doi: 10.1038/345060a0 CrossRefGoogle Scholar
  51. Gourmelon M, Caprais MP, Mieszkin S, Marti R, Wéry N, Jardé E, Derrien M, Jadas-Hécart A et al (2010) Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res 44(16):4812–4824. doi: 10.1016/j.watres.2010.07.061 CrossRefGoogle Scholar
  52. Graham JP, Polizzotto ML (2013) Pit latrines and their impacts on groundwater quality: a systematic review. Environ Health Perspect 121(5):521–530. doi: 10.1289/ehp.1206028 CrossRefGoogle Scholar
  53. Grimmeisen F, Zemann M, Goeppert N, Goldscheider N (2016) Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment. J Hydrol 537:157–170. doi: 10.1016/j.jhydrol.2016.03.045 CrossRefGoogle Scholar
  54. Hadwin AM, Del Rio LF, Pinto LJ, Painter M, Routledge R, Moore MM (2006) Microbial communities in wetlands of the Athabasca oil sands: genetic and metabolic characterization. FEMS Microbiol Ecol 55(1):68–78. doi: 10.1111/j.1574-6941.2005.00009.x CrossRefGoogle Scholar
  55. Haugland RA, Siefring SD, Varma M, Dufour AP, Brenner KP, Wade TJ, Sams E, Cochran S et al (2014) Standardization of enterococci density estimates by EPA qPCR methods and comparison of beach action value exceedances in river waters with culture methods. J Microbiol Methods 105:59–66. doi: 10.1016/j.mimet.2014.07.007 CrossRefGoogle Scholar
  56. Havelaar AH, van Olphen M, Drost YC (1993) F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl Environ Microbiol 59(9):2956–2962Google Scholar
  57. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208. doi: 10.1126/science.1195979 CrossRefGoogle Scholar
  58. He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL, Li X, Wu L et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4(9):1167–1179. doi: 10.1038/ismej.2010.46 CrossRefGoogle Scholar
  59. Headd B, Bradford SA (2016) Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies. Water Res 90:185–202. doi: 10.1016/j.watres.2015.12.024 CrossRefGoogle Scholar
  60. Howard G, Teuton J, Luyima P, Odongo R (2002) Water usage patterns in low-income urban communities in Uganda: implications for water supply surveillance. Int J Environ Health Res 12(1):63–73. doi: 10.1080/09603120120110068 CrossRefGoogle Scholar
  61. Hunt RJ, Borchardt MA, Richards KD, Spencer SK (2010) Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses. Environ Sci Technol 44(20):7956–7963. doi: 10.1021/es100698m CrossRefGoogle Scholar
  62. Hynds PD, Misstear BD, Gill LW (2012) Development of a microbial contamination susceptibility model for private domestic groundwater sources. Water Resour Res 48(12). doi: 10.1029/2012WR012492
  63. Hynds PD, Gill LW, Misstear BD (2014a) A quantitative risk assessment of verotoxigenic E. coli (VTEC) in private groundwater sources in the Republic of Ireland. Hum Ecol Risk Assess 20(6):1446–1468. doi: 10.1080/10807039.2013.862065 CrossRefGoogle Scholar
  64. Hynds PD, Thomas MK, Pintar KDM (2014b) Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: a review and pooled-analysis. PLoS ONE 9(5), e93301. doi: 10.1371/journal.pone.0093301 CrossRefGoogle Scholar
  65. Hynds PD, Misstear BD, Gill LW, Murphy HM (2014c) Groundwater source contamination mechanisms: physicochemical profile clustering, risk factor analysis and multivariate modelling. J Contam Hydrol 159:47–56. doi: 10.1016/j.jconhyd.2014.02.001 CrossRefGoogle Scholar
  66. Jagai JS, Smith GS, Schmid JE, Wade TJ (2014) Trends in gastroenteritis-associated mortality in the United States, 1985–2005: variations by ICD-9 and ICD-10 codes. BMC Gastroenterol 14:211. doi: 10.1186/s12876-014-0211-0 CrossRefGoogle Scholar
  67. Kibbey HJ, Hagedorn C, McCoy EL (1978) Use of fecal streptococci as indicators of pollution in soil. Appl Environ Microbiol 35(4):711–717Google Scholar
  68. Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41(16):3701–3715. doi: 10.1016/j.watres.2007.06.037 CrossRefGoogle Scholar
  69. Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224. doi: 10.1128/AEM.01036-05 CrossRefGoogle Scholar
  70. Lee H, Kim M, Lee JE, Lim M, Kim M, Kim J-M, Jheong W-H, Kim J et al (2011) Investigation of norovirus occurrence in groundwater in metropolitan Seoul, Korea. Sci Total Environ 409(11):2078–2084. doi: 10.1016/j.scitotenv.2011.01.059 CrossRefGoogle Scholar
  71. Li D, He M, Jiang SC (2010) Detection of infectious adenoviruses in environmental waters by fluorescence-activated cell sorting assay. Appl Environ Microbiol 76(5):1442–1448. doi: 10.1128/AEM.01937-09 CrossRefGoogle Scholar
  72. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522Google Scholar
  73. Liu X, Bagwell CE, Wu L, Devol AH, Zhou J (2003) Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats. Appl Environ Microbiol 69(10):6073–6081CrossRefGoogle Scholar
  74. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439. doi: 10.1038/nbt.2198 CrossRefGoogle Scholar
  75. Mackey BM (1984) Lethal and sublethal effects of refrigeration, freezing and freeze-drying on microorganisms. In: Andrew MHE, Russell AD (eds) The revival of injured microbes. Academic, OrlandoGoogle Scholar
  76. Maheux AF, Boudreau DK, Bisson MA, Dion-Dupont V, Bouchard S, Nkuranga M, Bergeron MG, Rodriguez MJ (2014) Molecular method for detection of total coliforms in drinking water samples. Appl Environ Microbiol 80(14):4074–4084. doi: 10.1128/AEM.00546-14 CrossRefGoogle Scholar
  77. Massol-Deyá A, Weller R, Ríos-Hernández L, Zhou JZ, Hickey RF, Tiedje JM (1997) Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63(1):270–276Google Scholar
  78. Mazur P (1966) Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing. In: Merman HT (ed) Cryobiology. Academic, New YorkGoogle Scholar
  79. McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22(13):1901–1921. doi: 10.1029/WR022i013p01901 CrossRefGoogle Scholar
  80. McKay LD (2011) Foreword: pathogens and fecal indicators in groundwater. Ground Water 49(1):1–3. doi: 10.1111/j.1745-6584.2010.00763.x CrossRefGoogle Scholar
  81. McLellan SL, Eren AM (2014) Discovering new indicators of fecal pollution. Trends Microbiol 22(12):697–706. doi: 10.1016/j.tim.2014.08.002 CrossRefGoogle Scholar
  82. McQuaig SM, Scott TM, Lukasik JO, Paul JH, Harwood VJ (2009) Quantification of human polyomaviruses JC Virus and BK Virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75(11):3379–3388. doi: 10.1128/AEM.02302-08 CrossRefGoogle Scholar
  83. Mesquita S, Noble RT (2013) Recent developments in monitoring of microbiological indicators of water quality across a range of water types. In: Wurbs R (ed) Water resources planning, development and management. InTech. doi: 10.5772/52312
  84. Moriñigo MA, Wheeler D, Berry C, Jones C, Muñoz MA, Cornax R, Borrego JJ (1992) Evaluation of different bacteriophage groups as faecal indicators in contaminated natural waters in southern England. Water Res 26(3):267–271. doi: 10.1016/0043-1354(92)90022-V CrossRefGoogle Scholar
  85. Murphy HM, Prioleau MD, Borchardt MA, Hynds PD (2017) Review: epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeol J. doi: 10.1007/s10040-017-1543-y Google Scholar
  86. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700Google Scholar
  87. Naclerio G, Petrella E, Nerone V, Allocca V, De Vita P, Celico F (2008) Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers. Hydrogeol J 16(6):1057–1064. doi: 10.1007/s10040-008-0297-y CrossRefGoogle Scholar
  88. Naclerio G, Fardella G, Marzullo G, Celico F (2009a) Filtration of Bacillus subtilis and Bacillus cereus spores in a pyroclastic topsoil, carbonate Apennines, southern Italy. Colloid Surf B 70(1):25–28. doi: 10.1016/j.colsurfb.2008.12.009 CrossRefGoogle Scholar
  89. Naclerio G, Nerone V, Bucci A, Allocca V, Celico F (2009b) Role of organic matter and clay fraction on migration of Escherichia coli cells through pyroclastic soils, southern Italy. Colloid Surf B 72(1):57–61. doi: 10.1016/j.colsurfb.2009 CrossRefGoogle Scholar
  90. Nasinyama GW, McEwen SA, Wilson JB, Waltner-Toews D, Gyles CL, Opuda-Asibo J (2000) Risk factors for acute diarrhoea among inhabitants of Kampala District, Uganda. S Afr Med J 90(9):891–898Google Scholar
  91. Ohad S, Vaizel-Ohayon D, Rom M, Guttman J, Berger D, Kravitz V, Pilo S, Huberman Z et al (2015) Microbial source tracking in adjacent karst springs. Appl Environ Microbiol 81(15):5037–5047. doi: 10.1128/AEM.00855-15 CrossRefGoogle Scholar
  92. Okabe S, Okayama N, Savichtcheva O, Ito T (2007) Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74(4):890–901. doi: 10.1007/s00253-006-0714-x
  93. Packer EL, Ingraham JL, Scher S (1965) Factors affecting the rate of killing of Escherichia coli by repeated freezing and thawing. J Bacteriol 89(3):718–724Google Scholar
  94. Parshionikar S, Laseke I, Fout GS (2010) Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl Environ Microbiol 76(13):4318–4326. doi: 10.1128/AEM.02800-09 CrossRefGoogle Scholar
  95. Payment P, Locas A (2011) Pathogens in water: value and limits of correlation with microbial indicators. Ground Water 49(1):4–11. doi: 10.1111/j.1745-6584.2010.00710.x CrossRefGoogle Scholar
  96. Pedley S, Howard G (1997) The public health implications of microbiological contamination of groundwater. Q J Eng Geol Hydrogeol 30(2):179–188. doi: 10.1144/GSL.QJEGH.1997.030.P2.10 CrossRefGoogle Scholar
  97. Petrella E, Capuano P, Celico F (2007) Unusual behaviour of epikarst in the Acqua dei Faggi carbonate aquifer (southern Italy). Terra Nov. 19(1):82–88. doi: 10.1111/j.1365-3121.2006.00720.x
  98. Petrella E, Falasca A, Celico F (2008) Natural-gradient tracer experiments in epikarst: a test study in the Acqua dei Faggi experimental site, southern Italy. Geofluids 8(3):159–166. doi: 10.1111/j.1468-8123.2008.00214.x CrossRefGoogle Scholar
  99. Petrella E, Naclerio G, Falasca A, Bucci A, Capuano P, De Felice V, Celico F (2009) Non-permanent shallow halocline in a fractured carbonate aquifer, southern Italy. J Hydrol 373(1–2):267–272. doi: 10.1016/j.jhydrol.2009.04.033 CrossRefGoogle Scholar
  100. Pronk M, Goldscheider N, Zopfi J (2006) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14(4):473–484. doi: 10.1007/s10040-005-0454-5 CrossRefGoogle Scholar
  101. Pronk M, Goldscheider N, Zopfi J (2007) Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environ Sci Technol 41(24):8400–8405. doi: 10.1021/es071976f CrossRefGoogle Scholar
  102. Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2009a) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47(3):361–369. doi: 10.1111/j.1745-6584.2008.00509.x CrossRefGoogle Scholar
  103. Pronk M, Goldscheider N, Zopfi J (2009b) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17(1):37–48. doi: 10.1007/s10040-008-0350-x CrossRefGoogle Scholar
  104. Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW et al (2005) Community proteomics of a natural microbial biofilm. Science 308(5730):1915–1920. doi: 10.1126/science.1109070 CrossRefGoogle Scholar
  105. Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 29–57CrossRefGoogle Scholar
  106. Reischer GH, Ebdon JE, Bauer JM, Schuster N, Ahmed W, Åström J, Blanch AR, Blöschl G et al (2013) Performance characteristics of qPCR assays targeting human- and ruminant-associated Bacteroidetes for microbial source tracking across sixteen countries on six continents. Environ Sci Technol 47(15):8548–8556. doi: 10.1021/es304367t CrossRefGoogle Scholar
  107. Reynolds KA, Mena KD, Gerba CP (2008) Risk of waterborne illness via drinking water in the United States. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 117–158CrossRefGoogle Scholar
  108. Sadowsky MJ, Whitman RL (2011) The fecal bacteria. ASM, New YorkGoogle Scholar
  109. Savage DC (2001) Microbial biota of the human intestine: a tribute to some pioneering scientists. Curr Issues Intest Microbiol 2(1):1–15Google Scholar
  110. Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40(13):2463–2476. doi: 10.1016/j.watres.2006.04.040 CrossRefGoogle Scholar
  111. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173(14):4371–4378CrossRefGoogle Scholar
  112. Shanks OC, Kelty CA, Sivaganesan M, Varma M, Haugland RA (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl Environ Microbiol 75(17):5507–5513. doi: 10.1128/AEM.00305-09 CrossRefGoogle Scholar
  113. Singh A (2014) Groundwater resources management through the applications of simulation modeling: a review. Sci Total Environ 499:414–423. doi: 10.1016/j.scitotenv.2014.05.048 CrossRefGoogle Scholar
  114. Singhal BBS, Gupta RP (2010) Hydrogeology of carbonate rocks. In: Applied hydrogeology of fractured rocks, 2nd edn. Springer, The Netherlands, pp 269–289Google Scholar
  115. Sleight SC, Wigginton NS, Lenski RE (2006) Increased susceptibility to repeated freeze–thaw cycles in Escherichia coli following long-term evolution in a benign environment. BMC Evol Biol 6:104. doi: 10.1186/1471-2148-6-104 CrossRefGoogle Scholar
  116. Smith RJ, Jeffries TC, Roudnew B, Fitch AJ, Seymour JR, Delpin MW, Newton K, Brown MH et al (2012) Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ Microbiol 14(1):240–253. doi: 10.1111/j.1462-2920.2011.02614.x CrossRefGoogle Scholar
  117. Stewart-Pullaro J, Daugomah JW, Chestnut DE, Graves DA, Sobsey MD, Scott GI (2006) F + RNA coliphage typing for microbial source tracking in surface water. J Appl Microbiol 101(5):1015–1026. doi: 10.1111/j.1365-2672.2006.03011.x CrossRefGoogle Scholar
  118. Tallon P, Magajna B, Lofranco C, Leung KT (2005) Microbial indicators of faecal contamination in water: a current perspective. Water Air Soil Pollut 166(1–4):139–166. doi: 10.1007/s11270-005-7905-4 CrossRefGoogle Scholar
  119. Tebbutt THY (1998) Principles of water quality control. Butterworth-Heinemann, OxfordGoogle Scholar
  120. Tran NH, Gin KY, Ngo HH (2015) Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater. Sci Total Environ 538:38–57. doi: 10.1016/j.scitotenv.2015.07.155 CrossRefGoogle Scholar
  121. Tufenkji N, Emelko MB (2011) Fate and transport of microbial contaminants in groundwater. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam, pp 715–726. doi: 10.1016/B978-0-444-52272-6.00040-4
  122. USEPA (2012) Recreational water quality criteria. US Environmental Protection Agency, Washington, DCGoogle Scholar
  123. USEPA (2015) Review of coliphages as possible indicators of fecal contamination for ambient water quality, EPA Office of Water (820-R-15-098), US Environmental Protection Agency, Washington, DCGoogle Scholar
  124. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74. doi: 10.1126/science.1093857 CrossRefGoogle Scholar
  125. Walker VK, Palmer GR, Voordouw G (2006) Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol 72(3):1784–1792. doi: 10.1128/AEM.72.3.1784-1792.2006 CrossRefGoogle Scholar
  126. Wang Z, Xiao G, Zhou N, Qi W, Han L, Ruan Y, Guo D, Zhou H (2015) Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir. J Environ Sci 38:42–51. doi: 10.1016/j.jes.2015.04.029 CrossRefGoogle Scholar
  127. Wang T, Li Y, Xu T, Wu N, Liang M, Hynds P (2016) Biofilm microbial community structure in an urban lake utilizing reclaimed water. Environ Earth Sci 75(4):314. doi: 10.1007/s12665-015-5197-6 CrossRefGoogle Scholar
  128. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250–256. doi: 10.1038/nature11553 CrossRefGoogle Scholar
  129. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University, OxfordGoogle Scholar
  130. WHO (2003) Guidelines for safe recreational water environments, vol 1: coastal and fresh waters. World Health Organization, GenevaGoogle Scholar
  131. WHO (2011) Guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar
  132. Wong K, Fong T-T, Bibby K, Molina M (2012) Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ Int 45:151–164. doi: 10.1016/j.envint.2012.02.009 CrossRefGoogle Scholar
  133. Xiao G, Wang Z, Chen J, Qiu Z, Li Y, Qi J, Liu W, Shu W (2013) Occurrence and infection risk of waterborne pathogens in Wanzhou watershed of the Three Gorges Reservoir, China. J Environ Sci 25(9):1913–1924. doi: 10.1016/S1001-0742(12)60241-1 CrossRefGoogle Scholar
  134. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H, Geornaras I et al (2016) Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl Environ Microbiol 82(8):2433–2443. doi: 10.1128/AEM.00078-16 CrossRefGoogle Scholar
  135. Young IM, Ritz K (1998) Can there be a contemporary ecological dimension to soil biology without a habitat? Soil Biol Biochem 30(10–11):1229–1232. doi: 10.1016/S0038-0717(97)00263-0 CrossRefGoogle Scholar
  136. Zhang Y, Kelly WR, Panno SV, Liu WT (2014) Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables. Sci Total Environ 490:1082–1090. doi: 10.1016/j.scitotenv.2014.05.086 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Antonio Bucci
    • 1
    Email author
  • Emma Petrella
    • 2
  • Fulvio Celico
    • 2
  • Gino Naclerio
    • 1
  1. 1.Department of Biosciences and TerritoryUniversity of MolisePesche (IS)Italy
  2. 2.Department of Physics and Earth Sciences “Macedonio Melloni”University of ParmaParmaItaly

Personalised recommendations