Advertisement

Hydrogeology Journal

, Volume 25, Issue 6, pp 1811–1832 | Cite as

A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

  • Michele SaroliEmail author
  • Michele Lancia
  • Matteo Albano
  • Anna Casale
  • Gaspare Giovinco
  • Marco Petitta
  • Francesco Zarlenga
  • Marco dell’Isola
Paper

Abstract

A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to −1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

Keywords

Karst Conceptual model Italy Thermal conditions Hydrogeological Idrostructure Hydrotermal 

Un modèle conceptuel hydrogéologique de la zone hydrothermale de Suio (Centre de l’Italie)

Résumé

Un modèle hydrogéologique conceptuel a été développé décrivant le système hydrothermal des Thermes de Suio (Centre de l’Italie). La zone étudiée est située le long de la zone péri-tyrrhénienne du centre des Apennins, entre les séquences de plateforme carbonatée mésozoïque et cénozoïque des Monts Aurunci et les séquences volcaniques de Roccamonfina. Une approche multi disciplinaire a été menée, en utilisant de nouvelles données hydrogéologiques, l’interprétation des logs stratigraphiques des forages et puits d’eau, et des données géophysiques—section sismiques, modèle de la croûte avec vitesse des ondes de cisaillement (Vs) et modèle gravimétrique. L’information collectée a permis d’établir un modèle conceptuel hydrogéologique et de caractériser le système hydrothermal. Le système hydrothermal de Suio est fortement influencé par l’hydrostructure d’Aurunci à l’Est. Le long du versant sud est, la partie sommitale de l’hydrostructure plonge à −1,000 m sous le niveau de la mer par l’intermédiaire de séries de failles normales qui sont à l’origine du graben de Garigliano. Les données géologiques et hydrogéologiques suggèrent fortement une propagation et un mélange de fluides thermaux avec des eaux froides circulant dans les conduits karstiques de faible profondeur. L’extension d’un aquitard, les déplacements tectoniques normaux et la fracturation de l’hydrostructure karstique influence de manière importante le bassin hydrothermal. Le gaz carbonique et les autres gaz jouent un rôle clef dans l’ensemble du circuit, facilitant le développement du système hydrothermal. Le niveau actuel de connaissance suggère que l’origine de l’hydrothermalisme de Suio est le résultat d’interactions entre le réservoir carbonaté des Monts Aurunci à l’Est et la croûte chaude et profonde de ce secteur péri-Tyrrhénien, où le volcan de Roccamonfina représente l’expression la plus superficielle.

Un modelo hidrogeológico conceptual de la zona hidrotermal de Suio (Italia central)

Resumen

Se ha desarrollado un modelo hidrogeológico conceptual que describe el sistema hidrotermal de Suio Terme (Italia central). El área estudiada se localiza a lo largo de la zona peri-tirrénica de los Apeninos centrales, entre las secuencias de la plataforma carbonática del Mesozoico y Cenozoico de las montañas de Aurunci y las secuencias volcánicas de Roccamonfina. Se aplicó un enfoque multidisciplinario, utilizando nuevos relevamientos hidrogeológicos, interpretación de registros estratigráficos de perforaciones y de pozos de agua, y datos geofísicos—secciones sísmicas, modelo de corte transversal de la velocidad de onda de corte (Vs) y modelo gravimétrico. La información recogida permitió la construcción de un modelo hidrogeológico conceptual y la caracterización del sistema hidrotermal. El sistema hidrotermal de Suio está fuertemente influenciado por la hidroestructura de Aurunci Oriental. A lo largo del lado sureste, la parte superior de la hidrostructura se hunde a −1,000 m en relación con el nivel del mar a través de una serie de fallas normales que dan origen al graben Garigliano. Los datos geológicos e hidrogeológicos sugieren fuertemente la propagación y mezcla de fluidos calientes con aguas frías procedentes del circuito kárstico poco profundo. La distribución del acuitardo, los desplazamientos tectónicos normales y la fractura de la hidrostructura kárstica influyen fuertemente en la cuenca hidrotermal. El dióxido de carbono y otros gases desempeñan un papel clave en todo el circuito, facilitando el desarrollo del sistema hidrotermal. El nivel actual de conocimiento sugiere que el origen del hidrotermalismo de Suio es el resultado de la interacción entre el depósito carbonático de las montañas de Aurunci Oriental y la corteza caliente y profunda de este sector peri-Tirreno, donde el volcán Roccamonfina representa la expresión más superficial

(意大利中部)Suio热水区水文地质概念模型

摘要

建立了描述(意大利中部)Suio Terme水热系统的水文地质概念模型。研究区位于沿Aurunci山脉中生代和新生代碳酸盐平台序列与罗卡蒙菲纳火山序列之间的亚平宁山脉中部伊特鲁里亚周边地区。利用新的水文地质调查结果、钻孔和水井地层录井的解译以及地球物理资料 (地震剖面、剪切波速度(Vs)地壳模型和重力模型)采用了多学科的方法。收集到的信息可以建立一个概念水文地质模型以及能够描述水热系统的特征。Suio水热系统受到Aurunci东部水结构的强烈影响。沿东南面,水结沟顶部通过一系列正断层相对于海平面下沉了1,000米,这些正断层造就了加里利亚诺地堑。地质资料和水文地质资料清楚地表明了热液的传播及其和来自浅层岩溶通道的冷水的混合。弱透水层的分布、正向构造位移及岩溶水构造的断裂强烈影响水热盆地。二氧化碳和其它气体在这个通道中发挥着关键作用,促进了水热系统的发育。目前所掌握的情况表明,Suio水热作用是Aurunci山脉东部碳酸盐储和这个伊特鲁里亚区周边热的和深部地壳之间的相互作用造成的,在伊特鲁里亚周边地区,罗卡蒙菲纳火山代表着最浅的地壳。

Um modelo hidrogeológico conceitual da área hidrotermal de Suio (Itália central)

Resumo

Foi desenvolvido um modelo hidrogeológico conceitual que descreve o sistema hidrotermal da Estância Termal de Suio (Itália Central). A área estudada está localizada ao longo da zona peri-Tirrena dos Apeninos centrais, entre as sequências da plataforma carbonática Mesozoica e Cenozoica das Montanhas Aurunci e sequências vulcânicas da Roccamonfina. Uma abordagem multidisciplinar foi seguida usando novas pesquisas hidrogeológicas, a interpretação de registros estratigráficos de perfurações, poços de água e dados geofísicos—seções sísmicas, modelo de crosta da velocidade de onda de cisalhamento (Vs) e modelo gravimétrico. A informação coletada permitiu a construção de um modelo hidrogeológico conceitual e a caracterização do sistema hidrotermal. O sistema hidrotermal de Suio é fortemente influenciado pela hidroestrutura Oriental do Aurunci. Ao longo da área sudeste, o topo da hidroestrutura rebaixa a − 1,000 m em relação ao nível do mar através de uma série de falhas normais que dão origem ao graben Garigliano. Dados geológicos e hidrogeológicos sugerem fortemente a propagação e mistura de fluidos quentes com água fria proveniente do circuito cárstico raso. A distribuição do aquitardo, os deslocamentos tectônicos normais e a fratura da estrutura cárstica influenciam fortemente a bacia hidrotermal. Dióxido de carbono e outros gases desempenham papel fundamental em todo circuito, facilitando o desenvolvimento do sistema hidrotermal. O nível atual de conhecimento sugere que a origem do hidrotermalismo de Suio é o resultado da interação ente o reservatório carbonático e as Montanhas Oridentais Aurunci e a crosta quente e profunda deste setor peri-Tirreno, onde o vulcão Roccamonfina representa a manifestação mais superficial.

Notes

Acknowledgements

We are grateful to Prof. G. Nardi, Dr. A. Cammorosano - DISTAR- University of Naples Federico II, and Prof. D. Cosentino – Dipartimento di Scienze - University of Roma Tre, for meaningful discussions about the geological setting. We are also grateful to Prof. B. Capaccioni - DISTeGA - University of Bologna, and Dr. N. Voltattorni and Dr. F. Grassa - INGV - National Institute of Geophysics and Volcanology, for geochemistry comparisons. We thank M. T. May, M. Barbieri and an anonymous reviewer, whose comments considerably improved the paper.

References

  1. Accordi G Carbone F (1988) Sequenze carbonatiche meso-menozoiche [Mesozoic-Cenozoic carbonate sequences]. In: Accordi G, Carbone F (eds) Carta delle litofacies del Lazio-Abruzzo ed aree limitrofe. Quaderni ricerca scientifica 114 (5):11–92Google Scholar
  2. Accordi B, Angelucci A, Sirna M (1967) Note illustrative della carta geologica d’Italia alla scala 1:100.000 Foglio 159 e 160 Frosinone e Cassino [Notes of the geological map of Italy, scale 1:100,000 sheets 159 and 160, Frosinone and Cassino]. Geological Survey of Italy, RomeGoogle Scholar
  3. AGIP-DIMI (1968) Seismic profile of the MND-6 line. AGIP-DIMI, Servizio Geologico del Sottosuolo. Milanese, Milan. http://unmig.sviluppoeconomico.gov.it/deposito/videpi/yearllegati/2081.pdf.Accessed. Accessed 15 January 2017
  4. AGIP-DIMI (1969) Stratigraphic Log of Mondragone 1 Well. AGIP-DIMI, Servizio Geologico del Sottosuolo. Milanese, Milan. http://unmig.sviluppoeconomico.gov.it/deposito/pozzi/profili/pdf/mondragone_001.pdf. Accessed 15 January 2017
  5. AGIP-SNIA-PETREX (1984) Stratigraphic LOF of MARA 1 well. http://unmig.sviluppoeconomico.gov.it/deposito/pozzi/profili/pdf/mara_001.pdf. Accessed 15 January 2017
  6. Bernabini M, Di Bucci D, Orlando L, Parotto M, Tiberti MM, Tozzi M (2002) Nuovi vincoli gravimetrici 3D in Italia centro-meridionale per un modello della crosta profonda [New 3D gravimetric constraints for a deep crust model of the central-southern Italy]. Mem Soc Geol Ital 57:335–342Google Scholar
  7. Boni CF, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia centrale [Hydrogeological scheme of central Italy]. Mem Soc Geol Ital 35:991–1012Google Scholar
  8. Brondi M, Campanile R, Dall’Aglio M, Orlandi C, Tersigni S, Venanzi G (1995) Acque naturali [Natural waters]. In: ENEA (ed) Lazio Meridionale sintesi delle ricerche geologiche multidisciplinari. ENEA, Rome, pp 163–176Google Scholar
  9. Capelli G, Mastrorillo L, Mazza R, Petitta M, Baldoni T, Banzato F, Cascone D, Di Salvo C, La Vigna F, Taviani S, Teoli P (2012). Carta idrogeologica del territorio della regione Lazio scala 1:100.000 [Hydrogeological map of the Lazio region scale 1: 100,000]. SELCA, Florence, ItalyGoogle Scholar
  10. Cataldi R, Mongelli F, Squarci P, Taffi L, Zito G, Calore C (1995) Geothermal ranking of the Italian territory. Geothermics 24:115–129CrossRefGoogle Scholar
  11. Catenacci E, Molinari V (1965) Sull’età dei conglomerati di Minturno, Lazio Meridionale [The age of the Minturno conglomerates, southern Lazio]. Boll Serv Soc Geol Ital 86:27–43Google Scholar
  12. Cavinato GP, De Celles PG (1999) Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology 27:955–958CrossRefGoogle Scholar
  13. Celico P (1983) Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centro-meridionale (Marche e Lazio meridionali, Abruzzo, Molise e Campania). [Hydrogeology of the carbonate massifs, Quaternary plains and volcanic areas of the central-southern Italy: southern Marche, southern Lazio, Abruzzo, Molise and Campania]. Quaderni della Cassa del Mezzogiorno 4(2):1–150Google Scholar
  14. Centamore E, Di Manna P, Rossi D (2007) Kinematic evolution of the Volsci Range: a new overview. Boll Soc Geol Ital 126:159–172Google Scholar
  15. Chiesa S, Floris B, Gillot PY, Vezzoli L (1995) Il vulcano di Roccamonfina [The Roccamonfina volcano]. In: ENEA (ed) Lazio Meridionale sintesi delle ricerche geologiche multidisciplinari. ENEA, Rome, pp 128–150Google Scholar
  16. Cippitelli G (2005) Oil potential of southern Latium, Latina Valley. Epitome FIST GEOITALIA 2005, 123, Spoleto, Italy, September 2005, pp 20–56Google Scholar
  17. Civitelli G, Brandano M (2005) Atlante delle litofacies e modello deposizionale dei Calcari a Briozoi e Litotamni nella Piattaforma carbonatica laziale-abruzzese [Atlas of the lithofacies and depositional model of the Calcari a Briozoii e Litotamni formations in the Lazio-Abruzzi carbonate platform]. Boll Soc Geol Ital 124:611–643Google Scholar
  18. Cosentino D, Federici I, Cipollari P, Gliozzi E (2006) Environments and tectonic instability in central Italy (Garigliano basin) during the late Messinian Lago-Mare episode: new data from the onshore Mondragone 1 well. Sediment Geol 188–189:297–317. doi: 10.1016/j.sedgeo.2006.03.010 CrossRefGoogle Scholar
  19. Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of the central Apennines: a regional review. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, and Doglioni C (eds) The geology of Italy: tectonics and life along plate margins. J Virtual Explor 36(12):1–36. doi: 10.3809/jvirtex.2010.00223
  20. D’Amore F, Didomenicoantonio A, Lombardi S (1995) Considerazioni geochimiche e geotermometriche sul sistema idrotermale di Suio (Campania) [Geochemical and geothermometrical considerations of the Suio hydrothermal system, Campania]. Geol Romana 31:319–328Google Scholar
  21. Dell’Isola M, Croce P, De Marinis G, Vigo P, Apollonio C, Esposito G, Ficco G, Giovinco G, Granata F, Saroli M (2009) Relazione finale Suio - studio del bacino termale di Suio Castelforte [Final report of the Suio-Castelforte thermal basin]. Università degli Studi di Cassino e del Lazio Meridionale, Cassino; University of Study Cassino and Southern Lazio, Cassino, ItalyGoogle Scholar
  22. Della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat flow distribution. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Kluwer, Dordrecht, The Netherlands, pp 65–76Google Scholar
  23. Devoto D (1965) Lacustrine Pleistocene in the Lower Liri Valley. Geol Romana 4:291–368Google Scholar
  24. Doglioni C, Innocenti F, Morellato C, Procaccianti D, Scrocca D (2004) On the Tyrrhenian Sea opening. Mem Descr Cart Geol d’It 64:147–164Google Scholar
  25. Duchi V, Minissale A, Vasselli O, Ancillotti M (1995) Hydrogeochemistry of the Campania region in southern Italy. J Volcanol Geotherm Res 67:313–328CrossRefGoogle Scholar
  26. Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70CrossRefGoogle Scholar
  27. Fournier RO (1979) A revised equation for the Na/K geothermometer. Geotherm Res Counc Trans 3:221–224Google Scholar
  28. Giordano G, Naso G, Trigari A (1995) Evoluzione tettonica di un settore particolare del margine tirrenico: l’area al confine tra Lazio e Campania, prime considerazioni [Tectonic evolution of the Thyrrenian margin between Lazio and Campania: preliminary considerations]. Stud Geol Cam Vol Spec 2:269–278Google Scholar
  29. Ippolito F, Ortolani F, Russo M (1973) Struttura marginale tirrenica dell’Appennino Campano; reinterpretazioni di dati di antiche ricerche per idrocarburi [Thyrrenian marginal structure of the Campania Apennines; reinterpretations of ancient oil researches]. Mem Soc Geol Ital 15:227–250Google Scholar
  30. Malinverno A, Ryan W (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245CrossRefGoogle Scholar
  31. Mostardini F, Merlini S (1986) Appennino Centro Meridionale: Sezioni Geologiche e Proposta di Modello Strutturale [Geological sections and proposal of a structural model of the central-southern Apennines]. Boll Soc Geol Ital 35:177–202Google Scholar
  32. Naso G, Tallini M (1993) Tettonica compressiva e distensiva nei monti Aurunci Occidentali; prime considerazioni [Contractional and normal tectonics of the Western Aurunci Mts.: preliminary considerations]. Geol Romana 29:455–462Google Scholar
  33. Nicotera P, Civita M (1969) Idrogeologia della piana del basso Garigliano (Italia Meridionale) [Hydrogeology of the lower Garigliano plain, southern Italy]. Mem Not Ist Geol Appl Nap 11:5–59Google Scholar
  34. Nikogosian IK, Van Bergen MJ (2010) Heterogeneous mantle sources of potassium-rich magmas in central-southern Italy: melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley). J Volcanol Geotherm Res 197:279–302. doi: 10.1016/j.jvolgeores.2010.06.014 CrossRefGoogle Scholar
  35. Nunziata C, Gerecitano F (2012) Vs crustal models of the Roccamonfina Volcano and relationship with Neapolitean Volcanoes (southern Italy). Int J Earth Sci 101:1371–1383. doi: 10.1007/s00531-011-0722-7 CrossRefGoogle Scholar
  36. Pasquali V, Castorina F, Cipollari P, Cosentino D, Lo Mastro S (2007) I depositi tardo-orogenici della Valle Latina meridionale: stratigrafia e implicazioni cinematiche per l’evoluzione dell’Appennino centrale [Late-orogenic deposits of the southern Latina Valley: stratigraphy and kinematic implications for the evolution of the central Apennines]. Boll Soc Geol Ital (Ital J Geosci) 126(1):101–118Google Scholar
  37. Patacca E, Scandone P (2007) Geology of the Southern Apennines. Boll Soc Geol Ital 7:75–119Google Scholar
  38. Patacca E, Sartori R, Scandone P (1993) Tyrrhenian basin and Apennines: kinematic evolution and related dynamic constraints. In: Boschi E, Mantovani E, Morelli A (eds) Recent evolution and seismicity of the Mediterranean Region. Kluwer, Dordrecht, The Netherlands, pp 161–171Google Scholar
  39. Peccerillo A (2005) Plio-quaternary volcanism in Italy. Springer, Heidelberg, GermanyGoogle Scholar
  40. PETREX (1996) Stratigraphic log of San Giorgio a Liri 1. AGIP-DIMI, Servizio Geologico del Sottosuolo. Milanese, Milano. http://unmig.sviluppoeconomico.gov.it/deposito/pozzi/profili/pdf/s.giorgio_liri_001_dir.pdf.Accessed. Accessed 15 January 2017
  41. Rouchon V, Gillot PY, Quidelleur X, Chiesa S, Floris B (2008) Temporal evolution of the Roccamonfina complex (Pleistocene), central Italy. J Volcanol Geotherm Res 177:500–514. doi: 10.1016/j.jvolgeores.2008.07.016 CrossRefGoogle Scholar
  42. SAMET (1954) Stratigraphic log of Cellole Aurunci 1 well. Ufficio Geologico Regione Campania, Naples, ItalyGoogle Scholar
  43. Sappa G, Barbieri M, Ergul S, Ferranti F (2012) Hydrogeological conceptual model of groundwater from carbonate aquifers using environmental isotopes (18O, 2H) and chemical tracers: a case study in southern Latium region, central Italy. J Water Resour Prot (IWARP) 4(9). doi: 10.4236/jwarp.2012.49080
  44. Sappa G, Ergul S, Ferranti F (2014) Water quality assessment of carbonate aquifers in Southern Latium Region, central Italy: a case study for irrigation and drinking purposes. Appl Water Sci 14:115–128. doi: 10.1007/s13201-013-0135-9 CrossRefGoogle Scholar
  45. Sappa G, Ergul S, Ferranti F (2015) Vulnerability Assessment of Mazzoccolo Spring Aquifer (central Italy), combined with Geochemical and Isotope Modeling. In: Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowky P, Luino F (eds) Engineering geology for society and territory, vol 5: urban geology, sustainable planning and landscape. Springer, Heidelberg, Germany, pp 1387–1392Google Scholar
  46. Saroli M, Lancia M, Albano M, Modoni G, Moro M, Scarascia Mugnozza G (2014) New geological data on the Cassino intermontane basin, Central Apennines, Italy. Rend Linc 25(2):189–196. doi: 10.1007/s12210-014-0338-5 CrossRefGoogle Scholar
  47. Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. Strub AS, Ungemach P (eds) Advances in European Geothermal Research, 2nd Symposium, Strasbourg, France, March 1980, pp 428–443Google Scholar
  48. Watts MD (1987) Geothermal exploration of Roccamonfina Volcano, Italy. Geothermics 16:517–528CrossRefGoogle Scholar
  49. Zalaffi M (1995) Progetto per le attività di ricerca e di studio della falda termale di Suio: relazione idrogeologica per il comune di Castelforte (LT). [Project for the research and study of the Suio thermal basin: hydrogeological report for the Castelforte town]. La Sapienza, RomeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Civile e MeccanicaUniversità degli Studid di Cassino e del Lazio MerdionaleCassinoItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  3. 3.DST-Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly
  4. 4.Unità Tecnica per le Fonti di Enertgia Rinnovabili – ENEARomeItaly

Personalised recommendations