Hydrogeology Journal

, Volume 25, Issue 5, pp 1319–1340 | Cite as

Modelling groundwater over-extraction in the southern Jordan Valley with scarce data

Report

Abstract

To deal with the challenge of groundwater over-extraction in arid and semi-arid environments, it is necessary to establish management strategies based on the knowledge of hydrogeological conditions, which can be difficult in places where hydrogeological data are dispersed, scarce or present potential misinformation. Groundwater levels in the southern Jordan Valley (Jordan) have decreased drastically in the last three decades, caused by over-extraction of groundwater for irrigation purposes. This study presents a local, two-dimensional and transient numerical groundwater model, using MODFLOW, to characterise the groundwater system and the water balance in the southern Jordan Valley. Furthermore, scenarios are simulated regarding hydrological conditions and management options, like extension of arable land and closure of illegal wells, influencing the projection of groundwater extraction. A limited dataset, literature values, field surveys, and the ‘crop water-requirement method’ are combined to determine boundary conditions, aquifer parameters, and sources and sinks. The model results show good agreement between predicted and observed values; groundwater-level contours agree with the conceptual model and expected flow direction, and, in terms of water balance, flow volumes are in accordance with literature values. Average annual water consumption for irrigation is estimated to be 29 million m3 and simulation results show that a reduction of groundwater pumping by 40% could recover groundwater heads, reducing the water taken from storage. This study presents an example of how to develop a local numerical groundwater model to support management strategies under the condition of data scarcity.

Keywords

Numerical modeling MODFLOW Irrigation Over-extraction Jordan 

Modélisation de la surexploitation des eaux souterraines dans le Sud de la Vallée du Jourdain avec peu de données

Résumé

Pour relever le défi de la surexploitation des eaux souterraines dans les milieu arides et semi-arides, il est nécessaire d’établir des stratégies de gestion basées sur la connaissance des conditions hydrogéologiques. Cela peut être difficiles dans les endroits où les données hydrogéologiques sont dispersées, rares ou présentent une désinformation potentielle. Les niveaux des eaux souterraines dans le Sud de la Vallée du Jourdain (Jordanie) ont diminué de façon drastique au cours des trois dernières décennies, en raison de la surexploitation des eaux souterraines à des fins d’irrigation. Cette étude présente un modèle numérique bidimensionnel et transitoire des eaux souterraines à l’échelle locale, utilisant MODFLOW, afin de caractériser le système aquifère et le bilan hydrique dans la vallée méridionale du Jourdain. En outre, des scénarios sont simulés en ce qui concerne les conditions hydrologiques et les options de gestion, comme l’extension des terres arables et l’arrêt d’exploitation de puits illégaux, influençant la projection de l’exploitation des eaux souterraines. Un ensemble de données limité, des valeurs de la littérature, des enquêtes de terrain, et la ‘méthode d’évaluation de la demande d’eau des cultures’ sont combinés pour déterminer les conditions aux limites, les paramètres de l’aquifère, et les termes sources et puits. Les résultats du modèle montrent une bonne cohérence entre les valeurs prédites et observées; les contours piézométriques sont concordants avec le modèle conceptuel et les directions d’écoulement attendues, et, du point de vue du bilan hydraulique, les volumes écoulés sont conformes aux valeurs de la littérature. La consommation annuelle moyenne en eau pour l’irrigation est estimée à 29 millions m3 et les résultats des simulations montrent qu’une réduction des pompages d’eau souterraine de 40% pourrait permettre de récupérer les niveaux piézométriques, limitant ainsi les prélèvements d’eau stockée. Cette étude présente un exemple de la façon de développer un modèle numérique des eaux souterraines à l’échelle locale pour soutenir les stratégies de gestion en condition de rareté de données.

Modelando la sobreexplotación de aguas subterráneas en el Valle del Jordán meridional con escasez de datos

Resumen

Para enfrentar el desafío de la sobreextracción de agua subterránea en ambientes áridos y semiáridos, es necesario establecer estrategias de gestión basadas en el conocimiento de condiciones hidrogeológicas. Esto puede ser difícil en lugares donde los datos hidrogeológicos son dispersos, escasos o presentan posibles informaciones erróneas. Los niveles de agua subterránea en el valle del Jordán meridional (Jordania) han disminuido drásticamente en las últimas tres décadas, causado por la sobreexplotación de aguas subterráneas con fines de riego. Este estudio presenta un modelo numérico de aguas subterráneas local, bidimensional y de régimen transiente, utilizando MODFLOW, para caracterizar el sistema de aguas subterráneas y el balance hídrico en el valle del Jordán meridional. Además, se simulan escenarios sobre condiciones hidrológicas y opciones de gestión, como la extensión de tierras de cultivo y el cierre de pozos ilegales, que influyen en la proyección de la extracción de aguas subterráneas. Un conjunto de datos limitado, valores obtenidos de la literatura, evaluaciones en terreno y el “método de necesidades de riego de los cultivos” se combinan para determinar las condiciones de borde, los parámetros del acuífero y las recargas y extracciones. Los resultados del modelo muestran una buena relación entre los valores pronosticados y observados; los mapas de contornos concuerdan con el modelo conceptual y la dirección esperada del flujo y, en términos de balance hídrico, los volúmenes de flujo están en conformidad con los valores de la literatura. El consumo promedio anual de agua para riego es estimado en 29 millones de m3 y los resultados de la simulación muestran que una reducción del 40% de la captación de agua subterránea podría recuperar los niveles de agua subterránea, reduciendo el agua proveniente del almacenamiento. Este estudio presenta un ejemplo de cómo desarrollar un modelo numérico local de aguas subterráneas para apoyar estrategias de gestión bajo la condición de escasez de datos.

利用匮乏的数据模拟约旦河谷南部的地下水超采

摘要

为了应对干旱、半干旱环境下地下水超采的挑战,有必要建立基于掌握水文地质条件的管理策略。这可能在水文地质数据零散、匮乏和有潜在错误信息的地方非常困难。(约旦)约旦河谷南部地下水位过去三十年来大幅下降,由地下水超采用于灌溉引起。本研究展示了一个局部的、二维和瞬时数值地下水模型,利用MODFLOW来描述约旦河谷南部的地下水系统和水平衡。此外,针对水文条件和管理选择,如影响地下水开采规划的可耕地扩展、非法井的关闭,对各种方案进行了模拟。有限的数据集、文献价值、野外调查及 “作物需水方法”联合在一起确定边界条件、含水层参数以及汇和源。模型结果显示,预测的值和观测的值非常吻合;地下水位等高图与概念模型和预计的水流方向一致,在水平衡方面,流量与文献值一致。平均每年灌溉水消耗量估计为2900万立方,模拟结果显示,地下水抽取减少40%就能恢复地下水水头,减少储存的使用量。本研究展示了怎样建立一个局部的地下水模型以支持数据匮乏条件下管理策略的例子。

Modelagem do excesso de extração de águas subterrâneas no sul do Vale do Jordão com dados escassos

Resumo

Para lidar com o desafio do excesso de extração de águas subterrâneas em ambientes áridos e semiáridos, é necessário estabelecer estratégias de gerenciamento baseadas no conhecimento das condições hidrogeológicas. Isso pode ser difícil em locais onde os dados hidrogeológicos são dispersos, escassos ou apresentam desinformação potencial. Os níveis freáticos no sul do Vale do Jordão decresceram drasticamente nas últimas três décadas, devido ao excesso de extração de águas subterrâneas para irrigação. Esse estudo apresenta um modelo numérico de águas subterrâneas local, bidimensional e transiente, utilizando o MODFLOW, para caracterizar o sistema de águas subterrâneas e o balanço hídrico no sul do Vale do Jordão. Ademais, os cenários são simulados em relação às condições hidrológicas e opções de gerenciamento, como extensão da terra arável e fechamento de poços ilegais, influenciando a projeção da extração de águas subterrâneas. Um conjunto de dados limitados, valores de literatura, pesquisas de campo, e o ‘método de requerimento de água das culturas’ são combinados para determinar as condições de contorno, parâmetros do aquífero, bem como as fontes e sumidouros. Os resultados do modelo apresentaram boa concordância entre os valores estimados e observados; as isolinhas do nível das águas subterrâneas coincidiram com o modelo conceitual e com a direção de fluxo esperada, e, em termos do balanço hídrico, os volumes de fluxo estão em conformidade com os valores da literatura. O consumo anual médio de água para irrigação foi estimado como 29 milhões de m3 e os resultados da simulação demonstraram que uma redução de 40% no bombeamento das águas subterrâneas poderiam recuperar os níveis freáticos, reduzindo a água retirada do armazenamento. Esse estudo apresenta um exemplo de como desenvolver um modelo numérico local de águas subterrâneas para apoiar estratégias de gerenciamento sob a condição de escassez de dados.

Supplementary material

10040_2017_1535_MOESM1_ESM.pdf (401 kb)
ESM 1(PDF 400 kb)

References

  1. Abdulla F, Al-Assa’D T (2006) Modeling of groundwater flow for Mujib aquifer, Jordan. J Earth Syst Sci 115:289–297. doi:10.1007/BF02702043 CrossRefGoogle Scholar
  2. Abu Ghazleh S (2011) Lake Lisan and the Dead Sea: their level changes and the geomorphology of their terraces. PhD Thesis, TU Darmstadt, GermanyGoogle Scholar
  3. Abu Ghazleh S, Hartmann J, Jansen N, Kempe S (2009) Water input requirements of the rapidly shrinking Dead Sea. Naturwissenschaften 96:637–643. doi:10.1007/s00114-009-0514-0 CrossRefGoogle Scholar
  4. Abu-Jaber NS, Aloosy ASE, Ali AJ (1997) Determination of aquifer susceptibility to pollution using statistical analysis. Environ Geol 31:94–106. doi:10.1007/s002540050168 CrossRefGoogle Scholar
  5. Ahmed AA (2009) Using lithologic modeling techniques for aquifer characterization and groundwater flow modeling of the Sohag area, Egypt. Hydrogeol J 17:1189–1201. doi:10.1007/s10040-009-0461-z CrossRefGoogle Scholar
  6. Al Kuisi M, El-Naqa A, Hammouri N (2006) Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. Environ Geol 50:651–667. doi:10.1007/s00254-006-0239-8 CrossRefGoogle Scholar
  7. Al Mahamid J (2005) Integration of water resources of the upper aquifer in Amman-Zarqa basin based on mathematical modeling and GIS, Jordan. PhD Thesis, University of Jordan, Amman, JordanGoogle Scholar
  8. Al-Abed N, Al-Sharif M (2008) Hydrological modeling of Zarqa River Basin - Jordan using the hydrological simulation program - FORTRAN (HSPF) model. Water Resour Manag 22:1203–1220. doi:10.1007/s11269-007-9221-9 CrossRefGoogle Scholar
  9. Alazard M, Leduc C, Travi Y, Boulet G, Ben Salem A (2015) Estimating evaporation in semi-arid areas facing data scarcity: example of the El Haouareb Dam (Merguellil catchment, central Tunisia). J Hydrol Reg Stud 3:265–284. doi:10.1016/j.ejrh.2014.11.007 CrossRefGoogle Scholar
  10. Al-Bakri JT, Shawash S, Ghanim A, Abdelkhaleq R (2016) Geospatial techniques for improved water management in Jordan. Water 8:132. doi:10.3390/w8040132 CrossRefGoogle Scholar
  11. Ali W, Glaser J, Hötzl H, Lenz S, Salameh E, Thiel M, Werz H (2009) Groundwater conditions of the Jordan Rift escarpment northeast of the Dead Sea. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan Valley. Springer, Heidelberg, Germany, pp 385–412CrossRefGoogle Scholar
  12. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, RomeGoogle Scholar
  13. Al-Omari AS, Al-Karablieh EK, Al-Houri ZM, Salman AZ, Al-Weshah RA (2015) Irrigation water management in the Jordan Valley under water scarcity. Fresenius Environ Bull 24:1176–1188Google Scholar
  14. Al-Weshah RA (2000a) Optimal use of irrigation water in the Jordan Valley: a case study. Water Resour Manag 14:327–338. doi:10.1023/A:1011152318711 CrossRefGoogle Scholar
  15. Al-Weshah RA (2000b) The water balance of the Dead Sea: an integrated approach. Hydrol Process 14:145–154. doi:10.1002/(SICI)1099-1085(200001)14:1<145::AID-HYP916>3.0.CO;2-N CrossRefGoogle Scholar
  16. Al-Zoubi AS, Heinrichs T, Sauter M, Qabbani I (2006) Geological structure of the eastern side of the lower Jordan Valley/Dead Sea rift: reflection seismic evidence. Mar Pet Geol 23:473–484. doi:10.1016/j.marpetgeo.2006.03.002 CrossRefGoogle Scholar
  17. Al-Zoubi AS, Heinrichs T, Qabbani I, ten-Brink US (2007) The northern end of the Dead Sea Basin: geometry from reflection seismic evidence. Tectonophysics 434:55–69. doi:10.1016/j.tecto.2007.02.007 CrossRefGoogle Scholar
  18. Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, CAGoogle Scholar
  19. Benouniche M, Kuper M, Hammani A, Boesveld H (2014) Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance. Irrig Sci 32:405–420. doi:10.1007/s00271-014-0438-0 CrossRefGoogle Scholar
  20. Berengena J, Gavilán P (2005) Reference evapotranspiration estimation in a highly advective semiarid environment. J Irrig Drain Eng 131:147–163. doi:10.1061/(ASCE)0733-9437(2005)131:2(147) CrossRefGoogle Scholar
  21. Bonzi C, Hoff H, Stork J, Subah A, Wolf L, Tielbörger K (2010) WEAP for IWRM in the Jordan River Region. In: Proceedings of the Integrated Water Resources Management Conference. Karlsruhe, Germany, November 2010Google Scholar
  22. Bowman D, Shachnovich-Firtel Y, Devora S (2007) Stream channel convexity induced by continuous base level lowering, the Dead Sea, Israel. Geomorphology 92:60–75. doi:10.1016/j.geomorph.2007.02.009 CrossRefGoogle Scholar
  23. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345. doi:10.1111/j.1745-6584.2002.tb02511.x CrossRefGoogle Scholar
  24. Bucknall J, World Bank (eds) (2007) Making the most of scarcity: accountability for better water management results in the Middle East and North Africa. World Bank, Washington, DCGoogle Scholar
  25. Calvache ML, Pulido-Bosch A (1997) Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain. Environ Geol 30:215–223. doi:10.1007/s002540050149 CrossRefGoogle Scholar
  26. Candela L, Elorza FJ, Tamoh K, Jiménez-Martínez J, Aureli A (2014) Groundwater modelling with limited data sets: the Chari-Logone area (Lake Chad Basin, Chad). Hydrol Process 28:3714–3727. doi:10.1002/hyp.9901 CrossRefGoogle Scholar
  27. Casa R, Rossi M, Sappa G, Trotta A (2008) Assessing crop water demand by remote sensing and GIS for the Pontina Plain, central Italy. Water Resour Manag 23:1685–1712. doi:10.1007/s11269-008-9347-4 CrossRefGoogle Scholar
  28. Chebaane M, El-Naser H, Fitch J, Hijazi A, Jabbarin A (2004) Participatory groundwater management in Jordan: development and analysis of options. Hydrogeol J 12:14–32. doi:10.1007/s10040-003-0313-1 CrossRefGoogle Scholar
  29. Comair GF, McKinney DC, Siegel D (2012) Hydrology of the Jordan River Basin: Watershed Delineation, Precipitation and Evapotranspiration. Water Resour Manage 26(14):4281–4293. doi:10.1007/s11269-012-0144-8 CrossRefGoogle Scholar
  30. Delleur JW (2006) The handbook of groundwater engineering. CRC, Boca Raton, FloridaGoogle Scholar
  31. Díaz-Méndez R, Rasheed A, Peillón M, Perdigones A, Sánchez R, Tarquis AM, García-Fernández JL (2014) Wind pumps for irrigating greenhouse crops: comparison in different socio-economical frameworks. Biosyst Eng 128:21–28. doi:10.1016/j.biosystemseng.2014.08.013 CrossRefGoogle Scholar
  32. Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. http://www.pesthomepage.org/. Accessed January 2017
  33. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, Chichester, UKGoogle Scholar
  34. Droogers P, Immerzeel WW, Terink W, Hoogeveen J, Bierkens MFP, van Beek LPH, Debele B (2012) Water resources trends in Middle East and North Africa towards 2050. Hydrol Earth Syst Sci 16:3101–3114. doi:10.5194/hess-16-3101-2012 CrossRefGoogle Scholar
  35. Ebraheem A, Riad S, Wycisk P, El-Nasr AS (2002) Simulation of impact of present and future groundwater extraction from the non-replenished Nubian Sandstone Aquifer in southwest Egypt. Environ Geol 43:188–196. doi:10.1007/s00254-002-0643-7 CrossRefGoogle Scholar
  36. El-Naqa A, Al-Shayeb A (2008) Groundwater protection and management strategy in Jordan. Water Resour Manag 23:2379–2394. doi:10.1007/s11269-008-9386-x CrossRefGoogle Scholar
  37. El-Naser H, Nuseibeh M, Assaf K, Kessler S, Ben-Zvi M, Landers M, Clarke J, Wipperfurth C (1998) Overview of Middle East water resources, water resources of Palestinian, Jordanian, and Israeli Interest. Jordanian Ministry of Water and Irrigation, Palestinian Water Authority, Israeli Hydrological Service. Compiled by USGS for the EXACT Middle East Water Data Banks Project, US Geological Survey, Reston, VAGoogle Scholar
  38. FAO (2016) AQUASTAT website. Food and Agriculture Organization. http://www.fao.org/nr/water/aquastat/main/index.stm. Accessed 31 March 2016
  39. Farber E, Vengosh A, Gavrieli I, Marie A, Bullen TD, Mayer B, Holtzman R, Segal M, Shavit U (2004) The origin and mechanisms of salinization of the lower Jordan River. Geochim Cosmochim Acta 68:1989–2006. doi:10.1016/j.gca.2003.09.021 CrossRefGoogle Scholar
  40. Faunt CC (2009) Groundwater availability of the Central Valley aquifer, California. US Geological Survey, Reston, VAGoogle Scholar
  41. Foster S, Ait-Kadi M (2012) Integrated water resources management (IWRM): how does groundwater fit in? Hydrogeol J. doi:10.1007/s10040-012-0831-9 Google Scholar
  42. Gafny S, Talozi S, Al Sheikh B, Ya’ari E (2010) Towards a living Jordan River: an environmental flows report on the rehabilitation of the Lower Jordan River. http://foeme.org/uploads/publications_publ117_1.pdf. Accessed January 2017
  43. Garatuza-Payan J, Shuttleworth WJ, Encinas D, McNeil DD, Stewart JB, deBruin H, Watts C (1998) Measurement and modelling evaporation for irrigated crops in north-west Mexico. Hydrol Process 12:1397–1418. doi:10.1002/(SICI)1099-1085(199807)12:9<1397::AID-HYP644>3.0.CO;2-E CrossRefGoogle Scholar
  44. Garduño H, Foster S, Nanni M, Kemper K, Tuinhof A, Koundouri P (2006) Groundwater dimensions of national water resource and river basin planning, sustainable groundwater management, concepts and tools. GW-MATE Briefing Note Series 10, World Bank, Washington, DCGoogle Scholar
  45. Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:81–108. doi:10.1016/0040-1951(81)90143-8 CrossRefGoogle Scholar
  46. Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176. doi:10.1016/S0040-1951(96)00188-6 CrossRefGoogle Scholar
  47. Gräbe A, Rödiger T, Rink K, Fischer T, Sun F, Wang W, Siebert C, Kolditz O (2012) Numerical analysis of the groundwater regime in the western Dead Sea escarpment, Israel + West Bank. Environ Earth Sci 69:571–585. doi:10.1007/s12665-012-1795-8 CrossRefGoogle Scholar
  48. GTZ (2002) Irrigation Water Sources and Water Use in the southern Jordan Valley: data evaluation and maps. Jordan Valley Authority and Brackish Water Project, Kingdom of Jordan, Amman, JordanGoogle Scholar
  49. GTZ (2003) Guidelines for brackish water irrigation in the Jordan Valley. Jordan Valley Authority Brackish Water Project, Kingdom of Jordan, Amman, JordanGoogle Scholar
  50. Guttman J, Salameh E, Rosenthal E, Tamimi A, Flexer A (2009) Sustainable management of groundwater resources. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan Valley. Springer, Heidelberg, Germany, pp 473–480CrossRefGoogle Scholar
  51. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geological Survey, Reston, VAGoogle Scholar
  52. Hassan MA, Klein M (2002) Fluvial adjustment of the Lower Jordan River to a drop in the Dead Sea level. Geomorphology 45:21–33. doi:10.1016/S0169-555X(01)00187-8 CrossRefGoogle Scholar
  53. Heath RC, North Carolina, Dept of Natural Resources and Community Development, US Geological Survey (2004) Basic ground-water hydrology. US Geological Survey, Reston, VAGoogle Scholar
  54. Hill MC (1998) Methods and guidelines for effective model calibration. US Geological Survey, Denver, COGoogle Scholar
  55. Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Hoboken, NJCrossRefGoogle Scholar
  56. Horowitz A (2014) The Quaternary of Israel. Academic, San Diego, CAGoogle Scholar
  57. Hötzl H, Guttman J, Salameh E, Tamimi A (2009) State of water strategy and policy. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan Valley. Springer, Heidelberg, Germany, pp 481–504CrossRefGoogle Scholar
  58. Hu J (1995) Methods of generating surfaces in environmental GIS applications. In: 1995 ESRI User Conference Proceedings. Environmental Systems Research Institute Redlands, CAGoogle Scholar
  59. Hunt RJ, Doherty J, Tonkin MJ (2007) Are models too simple? Arguments for increased parameterization. Ground Water 45:254–262. doi:10.1111/j.1745-6584.2007.00316.x CrossRefGoogle Scholar
  60. Israeli Y, Zohar C, Arzi A, Nameri N, Shapira O, Levi Y (2002) Growing bananas under shade screens as a mean of saving irrigation water: preliminary results (in Spanish). AUGURA, Cartagena de Indias, ColombiaGoogle Scholar
  61. Jensen ME (2007) Beyond irrigation efficiency. Irrig Sci 25:233–245. doi:10.1007/s00271-007-0060-5 CrossRefGoogle Scholar
  62. Jiménez-Martínez J, Skaggs TH, van Genuchten MT, Candela L (2009) A root zone modelling approach to estimating groundwater recharge from irrigated areas. J Hydrol 367:138–149. doi:10.1016/j.jhydrol.2009.01.002 CrossRefGoogle Scholar
  63. Klein C, Flohn H (1987) Contributions to the knowledge of the fluctuations of the Dead Sea level. Theor Appl Climatol 38:151–156. doi:10.1007/BF00868099 CrossRefGoogle Scholar
  64. Kourgialas NN, Dokou Z, Karatzas GP, Panagopoulos G, Soupios P, Vafidis A, Manoutsoglou E, Schafmeister M (2015) Saltwater intrusion in an irrigated agricultural area: combining density-dependent modeling and geophysical methods. Environ Earth Sci 75:1–13. doi:10.1007/s12665-015-4856-y Google Scholar
  65. Laronne Ben-Itzhak L, Gvirtzman H (2005) Groundwater flow along and across structural folding: an example from the Judean Desert, Israel. J Hydrol 312:51–69. doi:10.1016/j.jhydrol.2005.02.009 CrossRefGoogle Scholar
  66. Larson KJ, Başaǧaoǧlu H, Mariño MA (2001) Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model. J Hydrol 242:79–102. doi:10.1016/S0022-1694(00)00379-6 CrossRefGoogle Scholar
  67. Mao X, Jia J, Liu C, Hou Z (2005) A simulation and prediction of agricultural irrigation on groundwater in well irrigation area of the piedmont of Mt. Taihang, North China. Hydrol Process 19:2071–2084. doi:10.1002/hyp.5667 CrossRefGoogle Scholar
  68. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293. doi:10.1016/j.jhydrol.2006.02.022 CrossRefGoogle Scholar
  69. Margane A, Hobler M, Almomani M, Subah A (eds) (2002) Contributions to the hydrogeology of northern and central Jordan. Schweizerbart, Stuttgart, GermanyGoogle Scholar
  70. Margane A, Subah A, Hamdan I, Hajali Z, Almomani T (2010) Delineation of groundwater protection zones for the springs in Wadi Shuayb. Groundwater Resources Management technical report no. 14, Federal Ministry for Economic Cooperation and Development, Berlin, 98 ppGoogle Scholar
  71. Maßmann J, Wolfer J, Huber M, Schelkes K, Hennings V, Droubi A, Al-Sibai M (2010) WEAP-MODFLOW as a decision support system (DSS) for integrated water resources management: design of the coupled model and results from a pilot study in Syria. In: Maloszewski P, Witczak S, Malina G (eds) Groundwater quality sustainability. International Association of Hydrogeologists selected papers, IAH, Goring, UKGoogle Scholar
  72. Morris DA, Johnson AI (1967) Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U.S. Geological Survey, 1948–60. US Geological Survey, Reston, VAGoogle Scholar
  73. MWI (2004) National water master plan for Jordan. Ministry for Water and Irrigation, Amman, JordanGoogle Scholar
  74. MWI (2009) Water for life: Jordan’s water strategy: 2008–2022. Revision 10.270309, Ministry for Water and Irrigation, Amman, JordanGoogle Scholar
  75. MWI (2015a) National water strategy 2016–2025. Ministry for Water and Irrigation, Amman, JordanGoogle Scholar
  76. MWI (2015b) Jordan water sector, facts and figures 2013. Ministry for Water and Irrigation, Amman, JordanGoogle Scholar
  77. Nof RN, Ziv A, Doin M-P, Baer G, Fialko Y, Wdowinski S, Eyal Y, Bock Y (2012) Rising of the lowest place on Earth due to Dead Sea water-level drop: evidence from SAR interferometry and GPS. J Geophys Res 117:B05412. doi:10.1029/2011JB008961
  78. Oosterband R, Nijland H (1994) Determining the saturated hydraulic conductivity. In: Ritzema HP (ed) Drainage principles and applications, 2nd edn. ILRI, Wageningen, The NetherlandsGoogle Scholar
  79. Orloff S, Putnam D (2007) Harvest strategies for alfalfa. In: Summers NCG, Putnam DH (eds) Irrigated alfalfa management for Mediterranean and desert zones, chap 13. Publication 8299, University of California Agriculture and Natural Resources, Oakland, CAGoogle Scholar
  80. Powell J (1989) Stratigraphy and sedimentation of the Phanerozoic rocks in central and south Jordan. Bulletin 11, Geology Directorate, Natural Resources Authority, Amman, JordanGoogle Scholar
  81. Ramireddygari SR, Sophocleous MA, Koelliker JK, Perkins SP, Govindaraju RS (2000) Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA. J Hydrol 236:223–246. doi:10.1016/S0022-1694(00)00295-X CrossRefGoogle Scholar
  82. Rink K, Kalbacher T, Kolditz O (2011) Visual data exploration for hydrological analysis. Environ Earth Sci 65:1395–1403. doi:10.1007/s12665-011-1230-6 CrossRefGoogle Scholar
  83. Sahawneh J (2011) Structural Control of hydrology, hydrogeology and hydrochemistry along the Eastern Escarpment of the Jordan Rift Valley, Jordan. Karlsruher Institut für Technologie (KIT), Karlsruhe, GermanyGoogle Scholar
  84. Salameh E (2001) Sources of water salinities in the Jordan Valley Area/Jordan. Acta Hydrochim Hydrobiol 29:329–362. doi:10.1002/1521-401X(200112)29:6/7 < 329::AID-AHEH329 > 3.0.CO;2–6 CrossRefGoogle Scholar
  85. Salameh E (2002) The potential of groundwater artificial recharge in the Jordan Valley area, Jordan. Selected contributions to applied geology in the Jordan Rift Valley. Freiberger Forschungshefte C494 1(2):63–81Google Scholar
  86. Salman AZ, Al-Karablieh EK (2001) An early warning system for wheat production in low rainfall areas of Jordan. J Arid Environ 49:631–642. doi:10.1006/jare.2001.0799 CrossRefGoogle Scholar
  87. Seckler D, Barker R, Amarasinghe U (1999) Water scarcity in the twenty-first century. Int J Water Resour Dev 15:29–42. doi:10.1080/07900629948916 CrossRefGoogle Scholar
  88. Shatanawi M, Al-Zu’bi Y, Al-Jayoussi O (2003) Irrigation management dynamics in the Jordan Valley under drought conditions. In: Rossi G, Cancelliere A, Pereira LS, Oweis T, Shatanawi M, Zairi A (eds) Tools for drought mitigation in Mediterranean regions. Springer, Dordrecht, The Netherlands, pp 243–258CrossRefGoogle Scholar
  89. Shatnawi N (2014) Assessment of groundwater potential zones in the Lower Jordan Valley using remote sensing approaches. Karlsruher Institut für Technologie (KIT), Karlsruhe, GermanyGoogle Scholar
  90. Shearer TR (1998) A numerical model to calculate land subsidence, applied at Hangu in China. Eng Geol 49:85–93. doi:10.1016/S0013-7952(97)00074-4 CrossRefGoogle Scholar
  91. Sherif M, Kacimov A, Javadi A, Ebraheem AA (2011) Modeling groundwater flow and seawater intrusion in the coastal aquifer of Wadi Ham, UAE. Water Resour Manag 26:751–774. doi:10.1007/s11269-011-9943-6 CrossRefGoogle Scholar
  92. Steduto P, Faurès J-M, Hoogeveen J, Winpenny JT, Burke JJ (eds) (2012) Coping with water scarcity: an action framework for agriculture and food security. FAO, RomeGoogle Scholar
  93. Switzman H, Coulibaly P, Adeel Z (2015) Modeling the impacts of dryland agricultural reclamation on groundwater resources in northern Egypt using sparse data. J Hydrol 520:420–438. doi:10.1016/j.jhydrol.2014.10.064 CrossRefGoogle Scholar
  94. Toll M (2007) An integrated approach for the investigation of unconsolidated aquifers in a brackish environment: a case study on the Jordanian side of the lower Jordan Valley. University of Göttingen, Göttingen, GermanyGoogle Scholar
  95. Toll M, Salameh E, Sauter M (2008) Groundwater resources in Jordan Valley: an integrated approach to the hydrogeological investigation of unconsolidated aquifers. 13th IWRA World Water Congress. Montpellier, France, 1–4 September 2008Google Scholar
  96. Uddameri V, Kuchanur M (2006) Simulation-optimization approach to assess groundwater availability in Refugio County, TX. Environ Geol 51:921–929. doi:10.1007/s00254-006-0455-2 CrossRefGoogle Scholar
  97. Venot JP (2003) Farming systems in the Jordan River Basin in Jordan: agronomical and economic description. Synthesis document, INA P-G Paris-Grignon National Institute of Agronomy; French Regional Mission for Water and Agriculture and International Water Management Institute, Colombo, Sri LankaGoogle Scholar
  98. Venot J-P, Molle F, Hassan Y (2007) Irrigated agriculture, water pricing and water savings in the Lower Jordan River Basin (in Jordan). Comprehensive Assessment of Water Management in Agriculture Research Report 018, 66 pp. doi:10.3910/2009.375
  99. Wittwer SH, Honma S (1979) Greenhouse tomatoes, lettuce and cucumbers. Michigan State University Press, East Lansing, MIGoogle Scholar
  100. Wolf G, Gleason J, Hagan R (1995) Conversion to drip irrigation: water savings, facts or fallacy, lessons from the Jordan Valley. In: Proc. Water Management Seminar, October 1995, USCID, Sacramento, CA, pp 5–7Google Scholar
  101. Wolf L, Werz H, Hötzl H, Ghanem M (2007) Exploring the potential of managed aquifer recharge to mitigate water scarcity in the Lower Jordan river basin. In: International Symposium on Artificial Groundwater Recharge, Fox P (eds). Acacia Publishing Incorporated, Phoenix, Arizona USAGoogle Scholar
  102. World Bank (2006) Reengaging in agricultural water management: challenges, opportunities, and trade-offs. World Bank, Washington, DCGoogle Scholar
  103. Wu J, Zeng X (2013) Review of the uncertainty analysis of groundwater numerical simulation. Chin Sci Bull 58:3044–3052. doi:10.1007/s11434-013-5950-8 CrossRefGoogle Scholar
  104. Wu Y, Wang W, Toll M, Alkhoury W, Sauter M, Kolditz O (2011) Development of a 3D groundwater model based on scarce data: the Wadi Kafrein catchment/Jordan. Environ Earth Sci 64:771–785. doi:10.1007/s12665-010-0898-3 CrossRefGoogle Scholar
  105. Zaid A, Arias-Jiménez EJ, Food and Agriculture Organization of the United Nations (2002) Date palm cultivation. FAO, RomeGoogle Scholar
  106. Zemann M, Wolf L, Grimmeisen F, Tiehm A, Klinger J, Hötzl H, Goldscheider N (2015) Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan. Environ Pollut 198:133–143. doi:10.1016/j.envpol.2014.11.033 CrossRefGoogle Scholar
  107. Zhang Y, Ma J, Chang X, van Wonderen J, Yan L, Han J (2011) Water resources assessment in the Minqin Basin: an arid inland river basin under intensive irrigation in northwest China. Environ Earth Sci 65:1831–1839. doi:10.1007/s12665-011-1165-y CrossRefGoogle Scholar
  108. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370:207–213. doi:10.1016/j.jhydrol.2009.03.009 CrossRefGoogle Scholar
  109. Zhou Y, Zwahlen F, Wang Y, Li Y (2010) Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeol J 18:1571–1582. doi:10.1007/s10040-010-0627-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Paulina Alfaro
    • 1
  • Tanja Liesch
    • 1
  • Nico Goldscheider
    • 1
  1. 1.Institute of Applied Geosciences, Division of HydrogeologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations