Advertisement

Hydrogeology Journal

, Volume 25, Issue 6, pp 1833–1852 | Cite as

Insights into Andean slope hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile

  • Konstantin W. Scheihing
  • Claudio E. Moya
  • Uwe Tröger
Report

Abstract

The thermal Pica springs, at ∼1,400 m above sea level (asl) in the Pampa del Tamarugal (Chile), represent a low-saline spring system at the eastern margin of the hyper-arid Atacama Desert, where groundwater resources are scarce. This study investigates the hydrogeological and geothermal characteristics of their feed reservoir, fostered by the interpretation of a 20-km east–west-heading reflection-seismic line in the transition zone from the Andean Precordillera to the Pampa del Tamarugal. Additional hydrochemical, isotope and hydrologic time-series data support the integrated analysis. One of the main factors that enabled the development of the spring-related vertical fracture system at Pica, is a disruption zone in the Mesozoic Basement caused by intrusive formations. This destabilized the younger Oligocene units under the given tectonic stress conditions; thus, the respective groundwater reservoir is made up of fractured Oligocene units of low to moderate permeability. Groundwater recharge takes place in the Precordillera at ∼3,800 m asl. From there groundwater flow covers a height difference of ∼3,000 m with a maximum circulation depth of ∼800–950 m, where the waters obtain their geothermal imprint. The maximal expected reservoir temperature, as confirmed by geothermometers, is ∼55 °C. Corrected mean residence times of spring water and groundwater plot at 1,200–4,300 years BP and yield average interstitial velocities of 6.5–22 m/year. At the same time, the hydraulic head signal, as induced by recharge events in the Precordillera, is transmitted within 20–24 months over a distance of ∼32 km towards the Andean foothills at Pica and Puquio Nunez.

Keywords

Groundwater flow Geothermal springs Chile Seismic Arid regions 

Nouvelles connaissances de l’hydrologie des pentes Andéennes: caractéristiques des réservoirs du système de sources thermales de Pica, Pampa de Tamarugal, nord du Chili

Résumé

Les sources thermales de Pica, d’altitude ∼1,400 m au-dessus du niveau de la mer (asl) dans la Pampa de Tamarugal (Chili), représentent un système de sources de faible salinité localisé sur la marge orientale du désert hyper-aride de l’Atacama où les ressources en eau sont rares. Cette étude se focalise sur les caractéristiques hydrogéologiques et hydrothermales du réservoir alimentant ces sources, s’appuyant sur l’interprétation d’un profil de sismique réflexion de 20 km allant d’est en ouest dans la zone de transition de la précordillère des Andes à la Pampa de Tamarugal. Des données de suivi temporel hydrochimique, isotopique et hydrologique appuient cette analyse. Un des principaux facteurs qui permet le développement de sources liées au système de fractures verticales de Pica, est la zone de déplacement du socle Mésozoïque causé par des formations intrusives. Ceci a déstabilisé les unités les plus récentes de l’Oligocène sous l’effet des conditions de contrainte tectonique. Ainsi, le réservoir d’eau souterraine est localisé dans les unités fracturées de l’Oligocène de faible à moyenne perméabilité. La recharge des eaux souterraines prend place au niveau de la Précordillère vers ∼3,800 m asl. De là les flux d’eau souterraine parcourent une différence d’altitude de ∼3,000 m avec une profondeur de circulation maximum de ∼800–950 m d’où les eaux acquièrent leur caractère thermal. La température maximum du réservoir est de ∼55 °C, comme le confirme les géothermomètres. Les temps moyens de résidence corrigés pour les eaux thermales et les eaux souterraines vont de 1,200–4,300 ans BP et les vitesses moyennes interstitielles de 6.2–22 m/an. Dans le même temps, le signal de charge hydraulique, induit par les épisodes de recharge dans la Précordillère, est transmis avec un délai de 20–24 mois sur une distance d’environ 32 km allant jusqu’aux contreforts des Andes à Pica et Puquio Nunez.

Conocimiento en la hidrología de la pendiente andina: características de los reservorios del sistema de manantiales termales de Pica, Pampa del Tamarugal, norte de Chile

Resumen

Los manantiales termales de Pica, a 1,400 m sobre el nivel del mar en Pampa del Tamarugal (Chile), representan un sistema de manantiales de baja salinidad en el margen oriental del desierto de Atacama, donde los recursos de agua subterránea son escasos. Este estudio investiga las características hidrogeológicas y geotérmicas de su reservorio de alimentación, fomentado por la interpretación de una línea sísmica de reflexión de dirección este-oeste de 20 km en la zona de transición de la precordillera andina a la Pampa del Tamarugal. Los datos hidroquímicos, isotópicos e hidrológicos adicionales de series de tiempo apoyan el análisis integrado. Uno de los principales factores que permitió el desarrollo del sistema de fractura vertical relacionado con el manantial en Pica, es una zona de interrupción en el basamento mesozoico causada por formaciones intrusivas. Esto desestabilizó a las unidades del Oligoceno más jóvenes bajo las condiciones tectónicas de estrés. De este modo, el reservorio respectivo de agua subterránea está constituido por unidades del Oligoceno fracturadas de permeabilidad baja a moderada. La recarga de agua subterránea tiene lugar en la Precordillera a unos 3,800 m snm. A partir de ahí el flujo de agua subterránea cubre una diferencia de altura de ∼3,000 m con una profundidad de circulación máxima de ∼800–950 m, donde las aguas obtienen su impresión geotérmica. La temperatura máxima esperada en el reservorio, confirmada por los geotermómetros, es ∼55 °C. Corregido los tiempos medios de residencia del agua de manantial y del gráfico de agua subterránea a 1,200–4,300 años BP y el rendimiento promedio de velocidades intersticiales de 6.5–22 m/año. Al mismo tiempo, la señal de la carga hidráulica, inducida por los eventos de recarga en la Precordillera, se transmite dentro de 20 24 meses a una distancia de ∼32 km hacia las estribaciones andinas de Pica y Puquio Núñez.

安第斯山坡水文状况的认识:智利北部Pampa del Tamarugal地区Pica温泉系统的水储特征

摘要

Pica温泉位于(智利)Pampa del Tamarugal地区海拔1400米的地方,代表着极为干旱的Atacama沙漠东部边缘的低盐泉系统,这一地区地下水资源非常匮乏。本研究调查了泉补给水储的水文地质和地热特征,这些特征是由从Andean Precordillera 到Pampa del Tamarugal的过渡带内 20公里长、东西向延伸反射地震线造成的。额外的水化学、同位素及水文时序资料支持综合的分析。能够使Pica这里与泉相关的垂直断裂系统发育的主要因素之一就是由侵入地层造成的中生代基底的破裂带。这使特定构造应力条件下的较年轻渐新世单元失去平衡。因此,各地下水水储由渗透性低到中的断裂渐新世单元构成。地下水补给发生在Precordillera海拔大约3,800米的地方。从那里地下水流的高差有3,000米,最大循环深度800–950米,在此深度内,水获取地热。最大的预期温度,如由地热表确定的那样,为55°C。校正的泉水和地下水平均滞留时间为距今1,200–4,300年,平均填隙速度6.5–22米/年。同时,水头信号,如Precordillera补给事件引起的水头信号在20–24个月内可向Pica 和 Puquio Nunez地区安第斯山麓方向传播32公里。

Visão sobre a hidrologia da encosta Andina: características do reservatório do sistema de nascentes termais de Pica, Pampa del Tamarugal, norte do Chile

Resumo

As nascentes termais de Pica, a ∼1,400 m acima do nível do mar (anm) em Pampa del Tamarugal (Chile), representa um sistema de nascentes de baixa salinidade na margem oriental do hiperárido Deserto do Atacama, onde os recursos hídricos subterrâneos são escassos. Este estudo investiga as características hidrogeológicas e geotermais de três reservatórios de alimentação, fomentados pela interpretação de uma linha de reflexão sísmica em uma seção leste-oeste de 20-km na zona de transição da Precordillera Andina até o Pampa del Tamarugal. Dados de séries temporais de hidroquímica, isótopos e hidrologia adicionais sustentaram a análise integrada. Um dos principais fatores que permite o desenvolvimento do sistema vertical de fraturas relacionados às nascentes em Pica é a zona de ruptura no Embasamento Mesozoico causada por formações intrusivas. Isso desestabilizou as unidades mais jovens do Oligoceno sob as condições vigentes de estresse tectônico. Assim, o respectivo reservatório de águas subterrâneas é constituído de unidades fraturadas de baixa a moderada permeabilidade do Oligoceno. A recarga das águas subterrâneas acontece na Precordillera a ∼3,800 m anm. A partir de lá o escoamento das águas subterrâneas cobre uma diferença de carga de ∼3,000 m com uma profundidade de circulação máxima de ∼800–950 m, onde as águas obtêm sua marca geotérmica. A temperatura máxima esperada para o reservatório, como confirmado por geotermômetros, é ∼55 °C. Tempos de residência médios corrigidos das águas das nascentes e das águas subterrâneas foram grafados em 1,200–4,300 anos AP e as velocidades de produção intersticiais médias de 6.5–22 m/ano. Ao mesmo tempo, o sinal da carga hidráulica, como induzidos por eventos de recarga na Precordillera, é transmitido dentro de 20–24 meses a uma distância de ∼32 km em direção ao sopé Andino em Pica e Puquio Nunez.

Notes

Acknowledgements

This study is the result of cooperation between the Department of Hydrogeology of the Technical University of Berlin (Germany) and CIDERH, Iquique (Chile). The authors thank CIDERH for funding the field work and Compañía Minera Doña Inés de Collahuasi for the hydrochemical data. The authors express their gratitude also to ENAP, Empresa Nacional de Petróleo, Chile, for supplying seismic data. Apart from that, the study would not have been possible without funds from a PhD-scholarship to the corresponding author by CONICYT (Comisión Nacional de Investigación Científica y Tecnológica, Chile).

References

  1. Acosta O, Custodio E (2008) Impactos ambientales de las extracciones de agua subterránea en el Salar del Huasco (norte de Chile) [Environmental impacts of groundwater production in the Salar del Huasco basin (northern Chile)]. Bol Geol Min 119:33–50Google Scholar
  2. Ahmed S, Jayakumar R, Salih A (2011) Groundwater dynamics in hard rock aquifers: sustainable management and optimal monitoring network design, book on demand. Springer, Dordrecht, The NetherlandsGoogle Scholar
  3. Akima H (1978) A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans Math Softw 4(2):148–159. doi: 10.1145/355780.355786 CrossRefGoogle Scholar
  4. Allmendinger R, Jordan T, Kay S, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Earth Planet Sci. doi: 10.1146/annurev.earth.25.1.139 Google Scholar
  5. Aravena R, Suzuki O, Peña H, Pollastri A, Fuenzalida H, Grilli A (1999) Isotopic composition and origin of the precipitation in northern Chile. Appl Geochem 14(4):411–422. doi: 10.1016/S0883-2927(98)00067-5 CrossRefGoogle Scholar
  6. Betancourt JL (2000) A 22,000-year record of monsoonal precipitation from northern Chile’s Atacama Desert. Science 289(5484):1542–1546. doi: 10.1126/science.289.5484.1542 CrossRefGoogle Scholar
  7. Blanco N, Landino M (2012) Mapa Mamina- Región de Tarapacá: serie geología básica [Map of Mamina-Tarapacá region: basic geology series]. Map scale 1:100,000. Sernageomin, SantiagoGoogle Scholar
  8. Blanco N, Tomlinson AJ (2013) Mapa Guatacondo-Región de Tarapacá: Serie Geología Básica [Map of Guatacondo-Tarapacá Region: Basic Geology Series]. Map scale 1:100,000. Sernageomin, Santiago, ChileGoogle Scholar
  9. Blanco N, Vásquez P, Sepúlveda F, Tomlinson AJ, Quezada A, Ladino M (2012) Levantamiento Geológico para el fomento de la exploración de recursos minerales e hídricos de la Cordillera de la Costa, Depresión Central y Precordillera de la Región de Tarapacá (20°–21°S) [Geological study to support the exploration of mineral and water resources in the Coastal Cordillera, Central Depression and Precodillera, Tarapacá Region (20°–21°S)]. Santiago, ChileGoogle Scholar
  10. Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255(1-4):107–122. doi: 10.1016/S0022-1694(01)00514-5 CrossRefGoogle Scholar
  11. Clark ID, Fritz P (1999) Environmental isotopes in hydrogeology, 2nd edn. Lewis, Boca Raton, FLGoogle Scholar
  12. CMDIC (2012) Estudio de los tiempos de residencia del agua subterránea en el entorno de la Compañía Minera Doña Inés de Collahuasi [Study of the residence times of groundwater arround the mining site of Compañía Minera Doña Inés de Collahuasi]. CMDIC, Santiago, ChileGoogle Scholar
  13. Damby DE, Llewellin EW, Horwell CJ, Williamson BJ, Najorka J, Cressey G, Carpenter M (2014) The α-β phase transition in volcanic cristobalite. J Appl Crystallogr 47(Pt 4):1205–1215. doi: 10.1107/S160057671401070X CrossRefGoogle Scholar
  14. Deer WA, Howie RA, Zussman J (2004) Framework silicates: silica minerals, feldspathoids and the zeolites, 2nd edn. In: Deer WA, Howie RA, Zussman J (eds) Rock-forming minerals, vol 4. British Geological Society, LondonGoogle Scholar
  15. DGA (1997) Well report ND-0103-937. http://ciudadano.dga.cl/Paginas/Home.aspx. Accessed 18 Dec 2015
  16. DGA (2013) Levantamiento de Información Geofísico en la Región de Tarapacá [Geophysical study of the Tarapacá Region]. Con potencial consultores LTDA. http://sad.dga.cl/ipac20/ipac.jsp?session=1N73Q70B44562.591617&profile=cirh&uri=link=3100006%7E!5724%7E!3100001%7E!3100002&aspect=subtab13&menu=search&ri=1&source=%7E!biblioteca&term=Levantamiento+de+Informaci%25. Accessed 13 May 2016
  17. Fontes J-C, Garnier J-M (1979) Determination of the initial 14 C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413. doi: 10.1029/WR015i002p00399 CrossRefGoogle Scholar
  18. Fouillac C, Michard G (1981) Sodium/lithium in water applied to geothermometry of geothermal reservoirs. Geothermics 10(1):55–70CrossRefGoogle Scholar
  19. Fournier R (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50CrossRefGoogle Scholar
  20. Fritz P, Suzuki O, Silva C, Salati E (1981) Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. J Hydrol 53(1–2):161–184. doi: 10.1016/0022-1694(81)90043-3 CrossRefGoogle Scholar
  21. Galli C, Dingman R (1965) Geology and ground-water resources of the Pica Area Tarapaca Province, Chile. https://pubs.er.usgs.gov/publication/b1189. Accessed 13 May 2016
  22. Gardeweg M, Sellés D (2013) Mapa Collacagua-Rinconada-Región de Tarapacá: Serie Geología Básica. [Map of Collacagua-Rinconanda-Tarapacá Region: basic geology series). Map scale 1:100,000, 148th edn. Sernageomin, SantiagoGoogle Scholar
  23. Gayo EM, Latorre C, Jordan TE, Nester PL, Estay SA, Ojeda KF, Santoro CM (2012a) Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (∼21°S). Earth Sci Rev 113(3–4):120–140. doi: 10.1016/j.earscirev.2012.04.003 CrossRefGoogle Scholar
  24. Gayo EM, Latorre C, Santoro CM, Maldonado A, de Pol-Holz R (2012b) Hydroclimate variability in the low-elevation Atacama Desert over the last 2500 yr. Clim Past 8(1):287–306. doi: 10.5194/cp-8-287-2012 CrossRefGoogle Scholar
  25. Han L-F, Plummer LN (2013) Revision of Fontes & Garnier’s model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. Chem Geol 351:105–114. doi: 10.1016/j.chemgeo.2013.05.011 CrossRefGoogle Scholar
  26. Han LF, Plummer LN (2016) A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth Sci Rev 152:119–142. doi: 10.1016/j.earscirev.2015.11.004 CrossRefGoogle Scholar
  27. Han L-F, Plummer LN, Aggarwal P (2012) A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem Geol 318–319:88–112. doi: 10.1016/j.chemgeo.2012.05.004 CrossRefGoogle Scholar
  28. Hoke GD, Isacks BL, Jordan TE, Yu JS (2004) Groundwater-sapping origin for the giant quebradas of northern Chile. Geologija 32(7):605. doi: 10.1130/G20601.1 CrossRefGoogle Scholar
  29. Irwin RP, Tooth S, Craddock RA, Howard AD, de Latour AB (2014) Origin and development of theater-headed valleys in the Atacama Desert, northern Chile: morphological analogs to martian valley networks. Icarus 243:296–310. doi: 10.1016/j.icarus.2014.08.012 CrossRefGoogle Scholar
  30. Jayne RS, Pollyea RM, Dodd JP, Olson EJ, Swanson SK (2016) Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile. Hydrogeol J. doi: 10.1007/s10040-016-1454-3 Google Scholar
  31. Jica (1995) The study on the development of water resources in northern Chile. http://sad.dga.cl/. Accessed 13 May 2016
  32. Jordan TE, Nester PL, Blanco N, Hoke GD, Dávila F, Tomlinson AJ (2010) Uplift of the Altiplano-Puna plateau: a view from the west. Tectonics 29(5). doi: 10.1029/2010TC002661
  33. Jordan TE, Kirk-Lawlor NE, Blanco NP, Rech JA, Cosentino NJ (2014) Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol Soc Am Bull 126(7-8):1016–1046. doi: 10.1130/B30978.1 CrossRefGoogle Scholar
  34. Karzulovic J (1980) Informe hidrogeológico del sondaje profundo de Chacarilla Cuenca artesiana de Pica. [Hydrogeological report on the deep probing in the artesian Chacarillas basin of Pica]. http://sad.dga.cl/. Accessed 13 May 2016
  35. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins. Springer New York, pp 99–117CrossRefGoogle Scholar
  36. Larraín, S., Poo, P., 2010. Conflictos por el agua en Chile: entre los derechos humanos y las reglas de mercado [Water conflicts in Chile: between human rights and the rules of the free market, 1st edn.]. Santiago, ChileGoogle Scholar
  37. Lee J-Y, Lee K-K (2000) Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. J Hydrol 229(3–4):190–201. doi: 10.1016/S0022-1694(00)00158-X CrossRefGoogle Scholar
  38. Lictevout E, Maas C, Córdoba D, Herrera V, Payano R (2013) Recursos Hídricos Región de Tarapacá: diagnóstico y sistematización de información [Water resources in the Tarapacá Region: diagnosis and systematisation of existing information). Universidad Arturo Prat, IquiqueGoogle Scholar
  39. Magaritz M, Aravena R, Peña H, Suzuki O, Grilli A (1989) Water chemistry and isotope study of streams and springs in northern Chile. J Hydrol 108:323–341. doi: 10.1016/0022-1694(89)90292-8 CrossRefGoogle Scholar
  40. Magaritz M, Aravena R, Peña H, Suzuki O, Grilli A (1990) Source of ground water in the deserts of northern Chile: evidence of deep circulation of ground water from the Andes. Groundwater 28(4):513–517. doi: 10.1111/j.1745-6584.1990.tb01706.x CrossRefGoogle Scholar
  41. McCuen RH (2003) Modeling hydrologic change: statistical methods. Lewis, Boca Raton, FLGoogle Scholar
  42. Nester PL (2008) Basin and paleoclimate evolution of the Pampa del Tamarugal Forearc Valley, Atacama Desert, northern Chile. Cornell University, Ithaca, New YorkGoogle Scholar
  43. Nicholson K (2012) Geothermal fluids: chemistry and exploration techniques. Springer, BerlinGoogle Scholar
  44. ODEA (2016) El Observatorio del Agua [The water observatory]. www.odea.cl. Accessed 07 Dec 2016
  45. PUC (2009) Levantamiento Hidrogeológico para el Desarrollo de nuevas fuentes de Agua en áreas prioritarias de la zona norte de Chile, Regiones XV, I, II y III [Hydrogeological study for the development of new water resources in northern zones of Chile, regions XV, I, II and III]. http://bibliotecadigital.ciren.cl/handle/123456789/6309. Accessed 13 May 2016
  46. Rech JA, Quade J, Betancourt JL (2002) Late quaternary paleohydrology of the central Atacama Desert (lat 22°–24°S), Chile. Geol Soc Am Bull 114(3):334–348. doi: 10.1130/0016-7606(2002)114<0334:LQPOTC>2.0.CO;2 CrossRefGoogle Scholar
  47. Rojas R, Dassargues A (2007) Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeol J 15(3):537–551. doi: 10.1007/s10040-006-0084-6 CrossRefGoogle Scholar
  48. Rojas R, Batelaan O, Feyen L, Dassargues A (2010) Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal - North Chile. Hydrol Earth Syst Sci 14:171–192Google Scholar
  49. Salve R, Ghezzehei TA, Jones R (2008) Infiltration into fractured bedrock. Water Resour Res 44(1). doi:  10.1029/2006WR005701
  50. Sanchez-Alfaro P, Sielfeld G, van Campen B, Dobson P, Fuentes V, Reed A, Palma-Behnke R, Morata D (2015) Geothermal barriers, policies and economics in Chile: lessons for the Andes. Renew Sust Energ Rev 51:1390–1401. doi: 10.1016/j.rser.2015.07.001 CrossRefGoogle Scholar
  51. Schlunegger F, Kober F, Zeilinger G, von Rotz R (2010) Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19 and 21°S latitude, northern Chile. Int J Earth Sci 99(S1):123–137. doi: 10.1007/s00531-010-0572-8 CrossRefGoogle Scholar
  52. Singhal B, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  53. Uribe J, Muñoz JF, Gironás J, Oyarzún R, Aguirre E, Aravena R (2015) Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall–runoff model: Salar del Huasco basin, Chile. Hydrogeol J. doi: 10.1007/s10040-015-1300-z Google Scholar
  54. USGS (2014) HydroClimATe: hydrologic and climatic analysis toolkit. http://pubs.usgs.gov/tm/tm4a9/pdf/tm4-a9.pdf. Accessed 15 August 2016
  55. Verma SP, Pandarinath K, Santoyo E (2008) SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics 37(6):597–621. doi: 10.1016/j.geothermics.2008.07.004 CrossRefGoogle Scholar
  56. Weber K, Stewart M (2004) A critical analysis of the cumulative rainfall departure concept. Groundwater 42(6):935–938CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Konstantin W. Scheihing
    • 1
  • Claudio E. Moya
    • 2
    • 3
  • Uwe Tröger
    • 1
  1. 1.Department of Applied Geosciences, Hydrogeology Research Group, Technische Universität BerlinBerlinGermany
  2. 2.CONICYT Regional/CIDERH, Centro de Investigación y Desarrollo en Recursos Hídricos (R09I1001)IquiqueChile
  3. 3.Arturo Prat UniversityIquiqueChile

Personalised recommendations