Advertisement

Hydrogeology Journal

, Volume 25, Issue 3, pp 657–673 | Cite as

Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

  • Masoumeh Shojae Ghias
  • René TherrienEmail author
  • John Molson
  • Jean-Michel Lemieux
Paper

Abstract

Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011–2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

Keywords

Permafrost Freeze/thaw cycles Numerical modelling Canada Climate change 

Facteurs de contrôle du dégel du pergélisol dans un système couplé d’écoulement d’eaux souterraines et de transport de chaleur: Aéroport d’Iqaluit, Nunavut, Canada

Résumé

Des simulations numériques de l’écoulement d’eaux souterraines et du transfert de chaleur sont utilisées pour éclairer la connaissance de l’interaction entre l’écoulement de la nappe phréatique et la dynamique thermique relative au dégel du pergélisol et au tassement dû au dégel sur les pistes de l’Aéroport d’Iqaluit, Nunavut, Canada. Un modèle conceptuel du site est d’abord développé et le modèle numérique bidimensionnel correspondant est calé à partir des températures observées du sol. Les impacts futurs du réchauffement climatique sur le régime thermique et le système d’écoulement sont ensuite simulés sur la base des scénarios climatiques proposés par le Groupe Intergouvernemental sur l’Evolution du Cimat (GIEC). Dans le cadre d’un réchauffement climatique, la couverture neigeuse de surface est identifiée comme le facteur principal affectant la dégradation du pergélisol, y compris par son rôle dans l’accroissement de la sensibilité de la dégradation du pergélisol aux changements de divers facteurs hydrogéologiques. Dans ce cas, le transfert de chaleur par advection joue un rôle relativement mineur, quoique non négligeable, vis-à-vis du transfert de chaleur par conduction, du fait de l’extension importante d’un sol de faible perméabilité à proximité de la surface. Le transfert de chaleur par convection, qui est fortement influencé par la couche de neige superficielle, contrôle la libération de l’eau non gelée et la profondeur de la couche active aussi bien que l’amplitude du tassement et du soulèvement par le dégel. Dans le scénario d’un réchauffement climatique maximal, avec un accroissement de la température annuelle moyenne de 3.23 °C sur la période 2011–2100, les simulations suggèrent que la profondeur maximale de la couche active augmentera de 2 m en 2012 à 8.80 m en 2100 et que, dans le même laps de temps, le tassement dû au dégel sur les pistes de l’aéroport va croître de 0.11 m à au moins 0.17 m.

Controles sobre el deshielo del permafrost en un sistema acoplado de flujo de agua subterránea y transporte de calor: Aeropuerto de Iqaluit, Nunavut, Canadá

Resumen

Las simulaciones numéricas del flujo de agua subterránea y del transporte de calor se utilizan para proporcionar una visión de la interacción entre el flujo de agua subterránea somera y la dinámica térmica relacionada con el deshielo del permafrost y el asentamiento por deshielo en la pista del aeropuerto de Iqaluit, Nunavut, Canadá. Primero se desarrolla un modelo conceptual para el sitio y se calibra un modelo numérico bidimensional correspondiente a las temperaturas observadas del terreno. Los impactos futuros del calentamiento climático sobre el régimen térmico y el sistema de flujo se simulan a partir de los escenarios climáticos propuestos por el Panel Intergubernamental sobre el Cambio Climático (IPCC). Bajo el calentamiento climático, la cubierta de nieve superficial se identifica como el factor principal que afecta la degradación del permafrost, incluyendo su papel en el aumento de la sensibilidad de la degradación del permafrost a los cambios en diversos factores hidrogeológicos. En este caso, el transporte de calor advectivo juega un papel relativamente menor, pero no despreciable comparado con el transporte conductivo del calor, debido a la extensión significativa de un suelo de baja permeabilidad cerca de la superficie. El transporte conductivo de calor, fuertemente afectado por la capa de nieve superficial, controla la liberación de agua sin congelar y la profundidad de la capa activa, así como la magnitud del asentamiento por deshielo y del levantamiento de la helada. Bajo el escenario de calentamiento climático más cálido con un aumento medio anual de la temperatura de 3.23 °C para el período 2011–2100, las simulaciones sugieren que la profundidad máxima de la capa activa aumentará de 2 m en 2012 a 8.8 m en 2100 y, en el mismo período de tiempo, el asentamiento por deshielo a lo largo de la pista del aeropuerto aumentará de 0.11 m a por lo menos 0.17 m.

对耦合的地下水流和热传输系统中永久冻土消融的控制:加拿大努勒维特地区伊魁特机场

摘要

针对加拿大努勒维特地区伊魁特机场永久冻土消融和消融沉陷,利用地下水流和热传输数值模拟深入了解了浅层地下水流和热动力学之间的相互关系。在本研究区第一次建立了概念模型,并根据观测的地面温度对相应的二维数值模型进行了校准。然后,根据政府间气候变化专门委员会提出的不同气候方案,模拟了未来气候变暖对热动态和水流系统的影响。在气候变暖情况下,确认了地表雪层是影响永久冻土退化的主要因素,包括确认了永久冻土退化对各种水文地质因素变化的灵敏度增加中的作用。在这种情况下,与传导热传输相比,平流热传输发挥着相对小的、但不可忽略的作用,这是因为接近地表的低渗透性土壤的范围很大。传导热传输很大程度上受到地表雪层的影响,传导热传输控制着未冻水的释出和活跃层的深度以及消融沉陷和冻胀的量级。在2011年至2100年间年平均温度增加3.23°C的最温暖的气候变暖条件下,模拟结果显示,活跃层的最大深度将从2012年的2米增加到2100年的8.8米,在相同的时间段内,沿机场滑行道消融沉陷将从0.11米增加到至少0.17米。

Controle no degelo de pergelissolos em um sistema integrado de fluxo de águas subterrâneas e transporte de calor: Aeroporto de Iqaluit, Nunavut, Canadá

Resumo

Simulações numéricas de fluxo de águas subterrâneas e transporte são utilizadas para fornecer informação sobre a interação entre o fluxo raso de água subterrânea e a dinâmica termal relacionadas a degelo de pergelissolos e subsidência por degelo na pista de pouso do Aeroporto de Iqaluit, em Nunavut, Canadá. Um modelo conceitual é primeiramente desenvolvido para o local e um modelo bidimensional correspondente é calibrado para as temperaturas observadas em solo. Futuros impactos do aquecimento climático no regime termal e no sistema de fluxo são simulados baseados em cenários climáticos propostos pelo Painel Intergovernamental sobre Mudanças Climáticas (IPCC). Sob influência de aquecimento climático, a cobertura de neve superficial é identificada como o principal fator que afeta a degradação dos pergelissolos, incluindo o seu papel no aumento da sensibilidade da degradação dos pergelissolos em relação à mudança em diferentes fatores hidrogeológicos. Nesse caso, transporte advectivo de calor possui um papel relativamente menor, mas não negligenciável, comparado ao transporte de calor por condutividade, devido a extensão significante de solos de baixa permeabilidade próximos à superfície. Transporte de calor por condutividade, que é fortemente afetado pela camada superficial de neve, controla a liberação de água não congelada e a profundidade da camada ativa assim como a magnitude da subsidência por degelo e da expansão por congelamento. Nos cenários mais quentes de aquecimento climático com temperaturas anuais de 3.23 °C para o período de 2011–2100, as simulações sugerem que a máxima profundidade da camada ativa aumentará de 2 metros em 2012 para 8.8 metros em 2100, e durante o mesmo período de tempo, a subsidência por degelo ao longo da pista de pouso do aeroporto aumentará de 0.11 metros para pelo menos 0.17 metros.

Notes

Acknowledgements

The authors wish to thank the Geological Survey of Canada (Natural Resources Canada) for their help in providing the opportunity for fieldwork at the Iqaluit Airport and for sharing the collected field measurement data. This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to the second author and through a Canada Research Chair in Quantitative Hydrogeology of Fractured Porous Media, held by the third author. We also wish to thank Pierre Therrien of Université Laval for his help with computational resources.

References

  1. Andersland OB, Anderson DM (eds) (1978) Geotechnical engineering for cold regions. McGraw-Hill, New YorkGoogle Scholar
  2. Andersland OB, Ladanyi B (2004) Frozen ground engineering. Wiley, Chichester, UKGoogle Scholar
  3. Atchley AL, Coon ET, Painter SL, Harp D, Wilson C (2016) Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys Res Lett 43. doi: 10.1002/2016GL068550
  4. Bense VF, Kooi H, Ferguson G, Read T (2012) Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res 117:F03036. doi: 10.1029/2011JF002143 CrossRefGoogle Scholar
  5. Corapcioglu M, Panday S (1988) Thawing in permafrost: simulation and verification. Permafrost. Nat. Acad. Press, Washington, DC, pp 61–66Google Scholar
  6. De Grandpré I, Fortier D, Stephani E (2012) Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater. Can J Earth Sci 49(8):953–962. doi: 10.1139/e2012-018 CrossRefGoogle Scholar
  7. Doherty J (2005) PEST: model-independent parameter estimation—user manual, 5th edn. Watermark, Brisbane, AustraliaGoogle Scholar
  8. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  9. Environment Canada (EC) (2013) Historic climate data. Environment Canada, Ottawa. http://climate.weather.gc.ca. Accessed December 2016
  10. Fang HY (ed) (1991) Foundation engineering handbook, 2nd edn. Springer, New York, 923 ppGoogle Scholar
  11. Farouki OT (1981) Thermal properties of soil. US Army Corps of Engineering, CRREL Monograph 81-1, Cold Regions Res. and Eng. Lab., Hanover, NH, 136 ppGoogle Scholar
  12. Fortier R, LeBlanc A, Wenbing Y (2011) Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Can Geotech J 48(5):720–740. doi: 10.1139/t10-101 CrossRefGoogle Scholar
  13. Frampton A, Painter S, Lyon SW, Destouni G (2011) Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J Hydrol 403:352–359. doi: 10.1016/j.jhydrol.2011.04.010 CrossRefGoogle Scholar
  14. Frampton A, Painter SL, Destouni G (2013) Permafrost degradation and subsurface flow changes caused by surface warming trends. Hydrogeol J 21(1):271–280. doi: 10.1007/s10040-012-0938-z CrossRefGoogle Scholar
  15. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 ppGoogle Scholar
  16. Ge S, McKenzie J, Voss CI, Wu Q (2011) Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long-term air temperature variation. Geophys Res Lett 38:L14402. doi: 10.1029/2011GL047911 CrossRefGoogle Scholar
  17. Grenier C, Roux N, Anbergen H, Collier N, Costard F, Ferry M, Frampton A, Frederick J, Holmen J, Jost A, Kokh S, Kurylyk B, McKenzie J, Molson J, Orgogozo L, Rivière A, Rühaak W, Selroos JO, Therrien R, Vidstrand P (2015) The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology: first inter-comparison results. Session CR 1.1: Open Session on Permafrost, European Geosciences Union - General Assembly 2015, Vienna, Austria, 12–17 April 2015Google Scholar
  18. Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. Eos Trans AGU 92(9):73. doi: 10.1029/2011EO090001 CrossRefGoogle Scholar
  19. Harvey PK, Brewer TS, Pezard PA, Petrov VA (eds) (2005) Petrophysical properties of crystalline rocks. Geol Soc London Spec Publ 240 ppGoogle Scholar
  20. Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Res Assoc 36:387–398. doi: 10.1111/j.1752-1688.2000.tb04276.x CrossRefGoogle Scholar
  21. Heath RC (1983) Basic ground-water hydrology. US Geol Surv Water Suppl Pap 2220, 86 ppGoogle Scholar
  22. IPCC (2007) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change core writing team. IPCC, Geneva, SwitzerlandGoogle Scholar
  23. IPCC (2013) The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M et al (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 1535 ppGoogle Scholar
  24. Ireson AM, van der Kamp G, Ferguson G, Nachshon U, Wheater HS (2013) Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol J 21(1):53–66CrossRefGoogle Scholar
  25. Jame YW, Norum DI (1980) Heat and mass transfer in freezing unsaturated porous media. Water Resour Res 16(4):811–819. doi: 10.1029/WR016i004p00811 CrossRefGoogle Scholar
  26. Kondratiev VG (2009) Geocryological problems associated with railroads and highways. Proceedings of 9th International Permafrost Conference, Fairbanks, AK, pp 977–982Google Scholar
  27. Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014a) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory and emerging simulation tools. Earth Sci Rev 138:313–334. doi: 10.1016/j.earscirev.2014.06.006 CrossRefGoogle Scholar
  28. Kurylyk BL, MacQuarrie KTB, Voss CI (2014b) Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour Res 50(4):3253–3274. doi: 10.1002/2013WR014588 CrossRefGoogle Scholar
  29. LeBlanc AM, Oldenborger GA, Sladen WE, Allard M (2015) Infrastructure and climate warming impacts on ground thermal regime, Iqaluit International Airport, southern Baffin Island, Nunavut. Summary of Activities 2014, Canada-Nunavut Geoscience Office, Iqaluit, NU, pp 119–132Google Scholar
  30. Liu L, Schaefer K, Gusmeroli A, Grosse G, Jones BM, Zhang T, Parsekian AD, Zebker HA (2014) Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere 8:815–826. doi: 10.5194/tc-8-815-2014 CrossRefGoogle Scholar
  31. Lunardini VJ (1978) Theory of n-factors and correlation of data. In Proceedings, 3rd International Conference on Permafrost, Edmonton, Alberta, 10–13 July 1978, vol 1. National Research Council of Canada, Ottawa, p 40–46Google Scholar
  32. Lunardini VJ (1985) Freezing of soil with phase change occurring over a finite temperature difference. In: 4th International Offshore Mechanics and Arctic Engineering Symposium, American Society of Mechanical Engineers, New YorkGoogle Scholar
  33. Lunardini VJ (1988) Freezing of soil with an unfrozen water content and variable thermal properties. US Army Corps of Engineers Cold Regions Res. and Eng. Lab., Hanover, NHGoogle Scholar
  34. McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21(1):299–316. doi: 10.1007/s10040-012-0942-3 CrossRefGoogle Scholar
  35. McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30(4):966–983. doi: 10.1016/j.advwatres.2006.08.008 CrossRefGoogle Scholar
  36. Molson JW, Frind EO (2015) HEATFLOW-SMOKER: density-dependent flow and advective-dispersive transport of thermal energy, mass or residence time. Univ. Laval, Quebec City and Univ. Waterloo, Waterloo, ON, 116 ppGoogle Scholar
  37. Oldenborger GA, LeBlanc AM, Sladen WE (2014) Geophysical monitoring of permafrost conditions at Iqaluit International Airport, Baffin Island, Nunavut. In: Summary of Activities 2013, Canada-Nunavut Geoscience Office, Iqaluit, NU, pp 129–138Google Scholar
  38. Painter SL (2011) Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Comput Geosci 15:69–85. doi: 10.1007/s10596-010-9197-z CrossRefGoogle Scholar
  39. Palmer CD, Blowes DW, Frind EO, Molson JW (1992) Thermal energy storage in an unconfined aquifer: 1. field injection experiment. Water Resour Res 28(10):2845–2856. doi: 10.1029/92WR01471 CrossRefGoogle Scholar
  40. Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38:L17504. doi: 10.1029/2011GL048497 CrossRefGoogle Scholar
  41. Rühaak W, Anbergen H, Grenier C, McKenzie J, Kurylyk BL, Molson J, Roux N, Sass I (2015) Benchmarking numerical freeze/thaw models. Energy Procedia 76:301–310. doi: 10.1016/j.egypro.2015.07.866 CrossRefGoogle Scholar
  42. Sjöberg Y, Coon E, Sannel ABK, Pannetier R, Harp D, Frampton A, Painter SL, Lyon SW (2016) Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resour Res 52. doi: 10.1002/2015WR017571
  43. Wellman TC, Voss CI, Walvoord MA (2013) Impacts of climate, lake size, and supra and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeol J 21(1):281–298. doi: 10.1007/s10040-012-0941-4 CrossRefGoogle Scholar
  44. Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active-layer thawing and their implication on runoff generation. Water Resour Res 45:W05414. doi: 10.1029/2008WR006880 CrossRefGoogle Scholar
  45. Wu Q, Liu Y, Zhang J, Tong C (2002) A review of recent frozen soil engineering in permafrost regions along the Qinghai-Tibet Highway, China. Permafr Periglac Process 13:199–205. doi: 10.1002/ppp.420 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Masoumeh Shojae Ghias
    • 1
    • 2
  • René Therrien
    • 1
    • 2
    Email author
  • John Molson
    • 1
    • 2
  • Jean-Michel Lemieux
    • 1
    • 2
  1. 1.Département de géologie et de génie géologiqueUniversité LavalQuébecCanada
  2. 2.Centre d’études nordiquesUniversité LavalQuébecCanada

Personalised recommendations