Advertisement

Hydrogeology Journal

, Volume 24, Issue 7, pp 1791–1806 | Cite as

Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

  • Han Xiao
  • Dingbao WangEmail author
  • Scott C. Hagen
  • Stephen C. Medeiros
  • Carlton R. Hall
Report

Abstract

A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the ‘reference’ model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated ‘reference’ model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

Keywords

Climate change Numerical modeling Saltwater intrusion Surficial aquifer USA 

Evaluation de l’impact de la montée du niveau de la mer et du changement des précipitations sur un aquifère superficiel des plaines alluviales côtières de basse altitude et des îles barrières, centre-est de la Floride (Etats-Unis d’Amérique)

Résumé

Un modèle de flux hydrogéologique et transport de salinité tridimensionnel et de densité variable a été construit en utilisant le code SEAWAT pour quantifier la variation spatiale de la profondeur du niveau d’eau et de la salinité de l’aquifère superficiel des îles Merritt et Cap Canaveral dans le centre-est de la Floride (Etats-Unis d’Amérique) en régime permanent pour les conditions hydrologiques et hydrogéologiques de 2010. Le modèle développé est considéré comme le modèle “de référence” et a été calibré à l’aide de mesures piézométriques de terrain, des cartes de l’occupation des sols et de la couverture végétale. Ensuite, cinq modèles de projection/prédiction ont été développés en se basant sur des modifications des conditions aux limites du modèle ‘de référence’ calibré afin de quantifier les impacts du changement climatique selon divers scénarios d’augmentation du niveau de la mer et des projections à 2050 de changements des précipitations. Les résultats du modèle indiquent que l’ouest de l’île Merritt aura une submersion des basses plaines et une intrusion saline du fait de sa basse altitude et de son faible relief alors que les impacts du changement climatique sur l’île de Cap Canaveral et l’est de l’île Merritt ne sont pas significatifs. Les modèles SEAWAT développés pour cette étude se sont montrés très utiles et sont des outils efficaces pour la gestion de la ressource en eau, l’aménagement du territoire et la prise de décision pour l’adaptation au changement climatique pour les sites étudiés ainsi que pour les autres plaines alluviales côtières de basse altitude et systèmes d’îles barrières.

Evaluación de los impactos del ascenso del nivel del mar y de los cambios en la precipitación en el acuífero superficial de la planicie aluvial costera baja e islas de barrera, en el centro-este de Florida (EEUU)

Resumen

Se implementó un modelo tridimensional de flujo y transporte de salinidad de agua subterránea de densidad variable utilizando el código SEAWAT para cuantificar la variación espacial de la profundidad de la capa freática y la salinidad del acuífero superficial en Merritt Island y Isla de Cabo Cañaveral, en el centro-este de Florida (EEUU) bajo un estado estacionario para las condiciones hidrológicas y hidrogeológicas de 2010. El modelo desarrollado se conoce como modelo de “referencia” y se calibró contra los niveles freáticos medidos en el campo y un mapa de uso y cobertura del suelo. Luego se desarrollan cinco modelos de predicción / proyección en base a la modificación de las condiciones de contorno del modelo de “referencia” calibrado para cuantificar los impactos del cambio climático en distintos escenarios de ascenso del nivel del mar y de cambios en las precipitaciones proyectadas hasta 2050. Los resultados del modelo indican que el oeste Merritt Island se encontrará con las tierras bajas inundadas y la intrusión de agua salada debido a su baja altitud y topografía plana, mientras que los impactos del cambio climático en la isla de Cabo Cañaveral y el este de la isla de Merritt no son significativos. Los modelos SEAWAT desarrollados para este estudio son herramientas útiles y eficaces para la gestión de los recursos hídricos, la planificación del uso del suelo y la adaptación al cambio climático en la toma de decisiones de estas y otras llanuras aluviales costeras bajas y sistemas de islas de barrera.

关于海平面上升与降雨量变化对美国佛罗里达州中东部沿海冲积平原和堰洲岛地下浅层非承压含水层的影响的数值模拟

摘要

将三维变密度地下水数值模拟工具SEAWAT应用于美国佛罗里达州中东部梅里特岛和卡纳维拉尔岛,建立并校准了三维变密度地下水流与溶质运移模型,用于模拟现阶段(2010年)该区域地下浅层非承压含水层地下水埋深和盐分浓度的分布,进而预测了研究区未来海平面上升与降雨量变化对于地下水埋深及盐分浓度的动态分布和变化规律的影响。研究表明,在西梅里特岛,由于海拔较低且地势低平,气候变化有可能会引起地下水位的抬升,造成更多低洼地区被淹没,也有可能会引起地下水位的下降,产生海水入侵,污染地下水。研究同时表明,在东梅里特岛和卡纳维拉尔岛,气候变化的影响并不显著。研究成果为水文地质工程师与市政规划人员研究与制定地下水管理策略提供了科学依据和决策支持。

Avaliação do impacto da subida do nível do mar e alteração da precipitação no aquífero superficial das zonas baixas da planície aluvial costeira e ilhas barreiras, no centro-leste da Florida (EUA)

Resumo

Um modelo tridimensional de fluxo subterrâneo com densidade variável e transporte de salinidade é implementado usando o código SEAWAT para quantificar a variação espacial da profundidade do nível freático do aquífero superficial em Merrit Island e Cape Canaveral Island no centro-leste da Flórida (EUA) sobe condições hidrológicas e hidrogeologicas permanentes de 2010. O modelo desenvolvido é denominado como o modelo de “referência” e calibrado com níveis freáticos medidos e mapas de uso e ocupação da terra. Em seguida, cinco modelos de previsão/projeção são desenvolvidos através da modificação das condições de contorno do modelo de “referência” de forma a quantificar o impacto de alterações climáticas sob vários cenários de aumento do nível do mar e alteração do regime de precipitação projetadas para 2050. Os resultados do modelo indicam que a zona oeste de Merritt Island irá sofrer inundação das zonas baixas e intrusão salina devido à baixa elevação e topografia plana, enquanto o impacto das alterações climáticas em Cape Canaveral Island e no leste de Merritt Island não são significativos. Os modelos SEAWAT desenvolvidos neste estudo são ferramentas uteis e efetivas para a gestão de recursos hídricos, no planeamento do uso da terra e na tomada de decisão para adaptar às alterações climáticas nestas e em outras zonas baixas da planície aluvial costeira e sistemas de ilhas barreiras.

Notes

Acknowledgements

This research was funded in part by the NASA Kennedy Space Center, Ecological Program, Climate Adaptation Science Investigators (CASI) project (Award: IHA-SA-13-006) and the Louisiana Sea Grant Laborde Chair Endowment.

References

  1. Anderson MP, Woessner WW (1991) Applied groundwater modeling: simulation of flow and advective transport. Academic, San DiegoGoogle Scholar
  2. Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeology J 18:247–260CrossRefGoogle Scholar
  3. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  4. Bear J, Cheng A, Sorek S, Ouazar D, Herrera I (1999) Seawater Intrusion in coastal aquifers: concepts, methods and practices (theory and applications of transport in porous media). Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  5. Bilskie MV, Hagen SC, Medeiros SC, Passeri DL (2014) Dynamics of sea level rise and coastal flooding on a changing landscape. Geophys Res Lett 41(3):927–934CrossRefGoogle Scholar
  6. Blandford TN, Birdie T, Robertson JB (1991) Regional groundwater flow modeling for East-Central Florida with emphasis on eastern and central Orange County. St. Johns River Water Management District Special Publication SJ91-SP4, St. Johns River Water Management, Palatka, FLGoogle Scholar
  7. Brauman KA, Freyberg DL, Daily GC (2012) Land cover effects on groundwater recharge in the tropics: ecohydrologic mechanisms. Ecohydrology 5:435–444CrossRefGoogle Scholar
  8. Chang SW, Clement TP, Simpson MJ, Lee K (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34:1283–1291CrossRefGoogle Scholar
  9. Cherkauer DS, Ansari SA (2005) Estimating ground water recharge from topography, hydrogeology, and land cover. Groundwater 43(1):102–112CrossRefGoogle Scholar
  10. Cobaner M, Yurtal R, Dogan A, Motz LH (2012) Three-dimensional simulation of seawater intrusion in coastal aquifers: a case study in the Goksu Deltaic Plain. J Hydrol 464–465:262–280CrossRefGoogle Scholar
  11. Dausman AM, Langevin CD, Bakker M, Schaars F (2010) A comparison between SWI and SEAWAT: the importance of dispersion, inversion and vertical anisotropy. 21st Saltwater Intrusion Meeting, Azores, Portugal, June 2010. http://www.swim-site.nl/pdf/swim21/pages_271_274.pdf. Accessed 11 May 2016
  12. Dawes W, Ali R, Varma S, Emelyanova I, Hodgson G, McFarlane D (2012) Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrol Earth Syst Sci 16:2709–2722CrossRefGoogle Scholar
  13. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  14. Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. Techniques of Water-Resour Invest, Book 6, USGS, Reston, VAGoogle Scholar
  15. Hall CR, Schmalzer PA, Breininger DR, Duncan BW, Drese JH, Scheidt DA, Lowers RH, Reyier EA, Holloway-Adkins KG, Oddy DM, Cancro NR, Provancha JA, Foster TE, Stolen ED (2014) Ecological impacts of the space Shuttle Program at John F. Kennedy Space Center, Florida. NASA/TM-2014-216639, NASA, Washington, DCGoogle Scholar
  16. Howard RJ, Mendelssohn IA (1999) Salinity as a constraint on growth of oligohaline marsh macrophytes: I. species variation in stress tolerance. Am J Bot 86(6):785–794CrossRefGoogle Scholar
  17. Hutchings WC, Tarbox DL, and HSA engineers and scientists (2003) A model of seawater intrusion in surficial and confined aquifers of northeast Florida. The 2nd International Conference on Saltwater Intrusion and Coastal Aquifers: Monitoring, Modeling, and Management. http://www.olemiss.edu/sciencenet/saltnet/swica2/Hutchings_ext.pdf. Accessed 2 May 2016
  18. Langevin CD (2003) Simulation of submarine groundwater discharge to a marine estuary: Biscayne Bay, Florida. Groundwater 41(6):758–771CrossRefGoogle Scholar
  19. Langevin CD, Thorne DT, Dausman AM, Sukop MC, Guo W (2008) SEAWAT Version 4: a computer program for simulation of multi-species solute and heat transport. US Geological Survey Techniques and Methods, Book 6, USGS, Reston, VAGoogle Scholar
  20. Lin J, Snodsmith B, Zheng C, Wu J (2009) A modeling study of seawater intrusion in Alabama Gulf Coast, USA. Environ Geol 57:119–130CrossRefGoogle Scholar
  21. Mailander JL (1990) Climate of the Kennedy Space Center and vicinity. NASA Tech. Memo. 103498, NASA, Washington, DCGoogle Scholar
  22. Masterson JP, Fienen MN, Thieler ER, Gesch DB, Gutierrez BT, Plant NG (2014) Effects of sea‐level rise on barrier island groundwater system dynamics: ecohydrological implications. Ecohydrology 7:1064–1071CrossRefGoogle Scholar
  23. McGurk B, Presley PF (2002) Simulation of the effects of groundwater withdrawals on the Floridan Aquifer System in East-Central Florida: model expansion and revision. St. Johns River Water Management District Technical Publication, SJ2002-5, St. Johns River Water Management, Palatka, FLGoogle Scholar
  24. Nakada S, Yasumoto J, Taniguchi M, Ishitobi T (2011) Submarine groundwater discharge and seawater circulation in a subterranean estuary beneath a tidal flat. Hydrol Process 25:2755–2763CrossRefGoogle Scholar
  25. NGWA (2010) Brackish groundwater. National Groundwater Association Information Brief. http://www.ngwa.org/media-center/briefs/documents/brackish_water_info_brief_2010.pdf. Accessed June 2016
  26. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(18):1517–1520CrossRefGoogle Scholar
  27. Oude Essink GHP, Van Baaren ES, De Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res. doi: 10.1029/2009WR008719 Google Scholar
  28. Parker BB (1991) Sea level as an indicator of climate and global change. Mar Technol Soc J 25(4):13–24Google Scholar
  29. Passeri DL, Hagen SC, Medeiros SC, Bilskie MV, Alizad K, Wang D (2015) The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future 3(6):159–181CrossRefGoogle Scholar
  30. Qahman K, Larabi A (2006) Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeol J 14:713–728CrossRefGoogle Scholar
  31. Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion on coastal aquifer. Hydrol Earth Syst Sci 17:421–443CrossRefGoogle Scholar
  32. Rosenzweig C, Horton RM, Bader DA, Brown ME, DeYoung R, Dominguez O, Fellows M, Friedl L, Graham W, Hall C, Higuchi S, Iraci L, Jedlovec G, Kaye J, Loewenstein M, Mace T, Milesi C, Patzert W, Stackhouse PW, Toufectis K (2014) Enhancing climate resilience at NASA centers: a collaboration between science and stewardship. Bull Am Meteorol Soc 95(9):1351–1363CrossRefGoogle Scholar
  33. Sanford WE, Pope JP (2010) Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA. Hydrogeology J 18:73–93CrossRefGoogle Scholar
  34. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137--158Google Scholar
  35. Schmalzer PA, Hinkle GR (1990) Geology, geohydrology and soils of Kennedy Space Center: a review. NASA Tech. Memo. 103813, NASA, Washington, DC. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910001129.pdf. Accessed 2 May 2016
  36. Schmalzer PA, Hensley MA, Mota M, Hall CR, Dunlevy CA (2000) Soil, groundwater, surface water, and sediments of Kennedy Space Center, Florida: background chemical and physical characteristics. NASA/Technical Memorandum-2000-208583, NASA, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000116077.pdf. Accessed 1 May 2016
  37. Shah N, Nachabe M, Ross M (2007) Extinction depth and evapotranspiration from ground water under selected land covers. Groundwater 45(3):329–338CrossRefGoogle Scholar
  38. Sharqawy MH, Lienhard JH, Zubair SM (2010) Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat 16:354–380CrossRefGoogle Scholar
  39. Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Process 13:1277–1287CrossRefGoogle Scholar
  40. Shoemaker WB, Edwards KM (2003) Potential for saltwater intrusion into the Lower Tamiami Aquifer near Bonita Springs, southwestern Florida. US Geol Surv Water Resour Invest Rep 03-4262Google Scholar
  41. SJRWMD (2009) Land cover/land use. St. Johns River Water Management District GIS data. SJRWMD, Palatka, FL.http://www.sjrwmd.com/gisdevelopment/docs/themes.html. Accessed June 2016
  42. Steyer GD, Perez BC, Piazza S, Suir G (2007) Potential consequences of saltwater intrusion associated with hurricanes Katrina and Rita. In: Farris GS, Smith GJ, Crane MP, Demas CR, Robbins LL, Lavoie DL (eds) Science and the storms: the USGS responses to the hurricanes of 2005. US Geological Survey, Reston, VAGoogle Scholar
  43. Sulzbacher H, Wiederhold H, Siemon B, Grinat M, Igel J, Burschil T, Günther T, Hinsby K (2012) Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrol Earth Syst Sci 16:3621–3643CrossRefGoogle Scholar
  44. Tang Y, Tang Q, Tian F, Zhang Z, Liu G (2013) Responses of natural runoff to recent climatic variations in the Yellow River basin, China. Hydrol Earth Syst Sci 17:4471–4480CrossRefGoogle Scholar
  45. Webb MD, Howard KWF (2011) Modeling the transient response of saline intrusion to rising sea-levels. Groundwater 49(4):560–569CrossRefGoogle Scholar
  46. Webb EC, Mendelssohn IA (1996) Factors affecting vegetation dieback of an oligohaline marsh in coastal Louisiana: field manipulation of salinity and submergence. Am J Bot 83(11):1429–1434CrossRefGoogle Scholar
  47. Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater 47(2):197–204CrossRefGoogle Scholar
  48. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Han Xiao
    • 1
  • Dingbao Wang
    • 1
    Email author
  • Scott C. Hagen
    • 2
  • Stephen C. Medeiros
    • 1
  • Carlton R. Hall
    • 3
  1. 1.Department of Civil, Environmental, and Construction EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Civil & Environmental Engineering/Center for Computation & TechnologyLouisiana State UniversityBaton RougeUSA
  3. 3.Ecological ProgramIntegrated Mission Support Services (IMSS) LLC.Kennedy Space CenterUSA

Personalised recommendations